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Abstract

The aim of this paper is to design feed forward neural network (FFNN) to solve
the heat equation. Using a multi-layer with 7 hidden units (neurons) and one linear
output unit, the sigmoid activation function of each unit in hidden layer is tansig
function, where the Levenberg — Marquardt training algorithm is used to train the
network .The existence of the proposed solution was proved. The suggested networks
have been studied intensively for a few decades and have provided an option for
modeling complex systems. Therefore this option was utilized to reduce the
computation of solution, and finally the method is demonstrated through illustrative
examples.

Keywords :Feed Forward Neural Network, Boundary-initial value problems, heat
equation.

1- Introduction

Artificial neural networks have been studied over the last decades and are an
excellent option for modeling complex systems. Some of the thermal systems that
have been studied with this technique are the prediction of heat transfer coefficients
(Jambunathan et al., 1996) [7], estimation of heat transfer in the transition region of a
circular tube (Ghajar et al., 2004) [2], friction and heat transfer in helically finned
tubes (Zdaniuk et al., 2007) [15], the modeling of evaporative air coolers (Hosoz et
al., 2008) [3], the characterization of compact heat exchangers (Ermis,2008) [1], the
estimation of thermal performance of plate and tube heat exchangers (Peng and Ling,
2009) [10], performance of finned tube evaporators (Zhao et al., 2010) [16], indirect
evaporative cooling (Kiran and Rajput, 2011) [9] and prediction of convective heat
transfer in evaporative units (Romero-Mendez et. al.) [11].

The direct problem under consideration consists of a transient heat conduction
problem in a slab with adiabatic boundary condition, with an initial temperature
profile denoted by ¢(x). Mathematically, the problem can be modeled by the
following heat equation:-

U= o®Uxk e, (1)
Where xe[a,b]andt>0 with

BCs{U(@t)=A , UDb,t)=B }and IC {U(x,0)=&Xx) }
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We wont to approximate U(x,t) in (1) by using FFNN.

2- Artificial Neural Network [14]

An Atrtificial neural network (Ann) is a simplified mathematical model of the
human brain. It can be implemented by both electric elements and computer software.
It is a parallel distributed processor with large numbers of connections, it is an
information processing system that has certain performance characters in common
with biological neural networks. Ann have been developed as generalizations of
mathematical models of human cognition or neural biology, based on the assumptions
that:

i.  Information processing occurs at many simple elements called neurons that is

fundamental to the operation of Ann's.
ii.  Signals are passed between neurons over connection links.
iii.  Each connection link has an associated weight which, in a typical neural net,
multiplies the signal transmitted.
iv.  Each neuron applies an action function (usually nonlinear) to its net input
(sum of weighted input signals) to determine its output signal.
The units in a network are organized into a given topology by a set of
connections, or weights, shown as lines in a diagram .
Ann is characterized by:

i.  Architecture: its pattern of connections between the neurons.

Ii.  Training algorithm : its method of determining the weights on the connections.
iii.  Activation function.
Ann are often classified as single layer or multilayer. In determining the number of
layers, the input units are not counted as a layer, because they perform no
computation. Equivalently, the number of layers in the net can be defined to be the
number of layers of weighted interconnects links between the slabs of neurons. This
view is motivated by the fact that the weights in a net contain extremely important
information.

2.1- Multilayer Feed Forward Neural Network Architecture [14]

In a layered neural network the neurons are organized in the form of layers. We

have at least two layers: an input and an outputlayer. The layers between the input and
the output layer (if any) are called hidden layers, whose computation nodes are
correspondingly called hidden neuronsor hidden units. Extra hidden neurons raise the
network’s ability to extract higher-order statistics from (input) data.
The Ann is said to be fullyconnectedin the sense that every node in each layer of the
network is connected to every other node in the adjacent forward layer , otherwise the
network is called partially connected. Each layer consists of a certain number of
neurons; each neuron is connected to other neurons of the previous layer through
adaptable synaptic weights w and biases b .

2.2- Training Feed Forward Neural Network [14]

Training is the process of adjusting connection weights w and biases b. In the first
step, the network outputs and the difference between the actual (obtained) output and
the desired (target) output (i.e., the error) is calculated for the initialized weights and
biases (arbitrary values). During the second stage, the initialized weights in all links
and biases in all neurons are adjusted to minimize the error by propagating the error
backwards (the back propagation algorithm). The network outputs and the error are
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calculated again with the adapted weights and biases, and the process (the training of
the Ann) is repeated at each epoch until a satisfied output yx(corresponding to the
values of the input variables x) is obtained and the error is acceptably small. In most
of the training algorithms a learning rate is used to determine the length of the weight
update (step size) .

3- The Method

To illustrate the method we will write the approximate solution as :

th=X(x—a)B+t*~%(b—x)A n [
b—a

H(x,t)=
)

Where N(x,t) is the output of a FFNN with two input units for x and t.

(x—a)(b—x)]"¢(x) + t(x —a)(b — x)N(x,t)

It's clear that p satisfy the BC and IC of (1).

Our goal is to design a FFNN, N(x,t) such that p Fit Informatics unknown function
U(x,t) in any accuracy .

Now rewrite (2) to be as follows:-

uCx,6) th=X(x—a)B+t*~(b-x)A

[(x—a)(b—x)]¢ ¢(x)
— b—a
NGt = t(—a)(b—x) ;
(3)

t20 , x#ab

The right side of (3) is unknown function of two variables , denoted by G(x,t),
and the needed FFNN in (2) is the same network required to approximate the function
G(x,t), which means that problem (1) has been converted from differential equation
problem to approximation function problem by FFNN, which will discuss in the next
section.

4- The Existence [6]

One of the earliest works on FFNN with ridge activation functions is in Hecht-
Nielson. The author used an improved version of Kolmogorov’s theorem due to
Sprecher which states that:

Every continuous function f:[0,1]N — R can be written as:

2N+1 N

)= 2 ( 2Av(x +eh)+hy (@)
1

h=1 k=

where the real 2 and the continuous monotonically increasing function w are
independent of f, the constant & is a positive number and the continuous function ¢n,
1 <h <2N+1, depends on f. This equation can be interpreted as a three-layered neural
network where the h'" hidden node computes the function
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N
z,= 2"w(x, +éh)+h

k=1
2N+1

and the output nodes compute Z¢h(zh). However, this is not the network
h=1

architecture commonly used in practice.

One of the most elegant approaches to prove universal approximation is
proposed by Cybenko. By using the Hahn-Banach Theorem and the Riesz

Representation Theorem, he showed that if the ridge activation function, o, is a
N

continuous sigmoid, then the set of ZCiG(eiT x+bj) is dense in C(K), where K is a
i=1

compact set of RN, with respect to uniform norm. Later, his approach was adopted by

many authors to prove their results.[6]

Chui and Li adopted another approach to prove universal approximation. They
showed that if the ridge activation function o, is continuous sigmoid and the direction

N
vector 0 satisfies some interpolation conditions, then the set of Zcia (0] x+hy) is
i=1
dense in C(K) with respect to uniform norm. They constructed their proof by showing
that it is possible to realize polynomials as a sum of ridge activation functions.[6]

Since polynomials are dense in C(RV), it follows that the three-layered neural
networks are dense in C(RN) with respect to uniform norm.

In Chen et. al., [6] showed that the continuity assumption usually imposed on the
sigmoid functions is unnecessary. Instead, they proved that if the ridge activation

N
function o, is a bounded sigmoid, then the set of ZCiG(OiT x+bi) is dense in C(K)
i=1
with respect to uniform norm. They also pointed out that in order to prove the neural
network in the n-dimensional case, all one needs to do is to prove the case for one
dimension .

In Hornik, the author adopted Cybenko’s approach to prove universal
approximation. He showed the sigmoid assumption usually imposed on the ridge
function is unnecessary. Instead, he proved that if the ridge activation function o, is

N
continuous, bounded and non-constant, then the set of Zcic(e: X+bi) is dense in
C(K) with respect to uniform norm. At the same time, Iﬁé proved that if the ridge
activation function o, is bounded and non-constant, then the set of NZCi(S (0] x+bi) is
dense in Lp(p) with respect to Lp norm for 1 < p < o and a finite meellzlre L.

Leshno et. Al. provides one of the most general results. They showed that if the
ridge activation function o, is continuous almost everywhere, locally essentially

166



AL-Qadisiyha Journal For Science Vol.19 No. 2 Year 2014
ISSN 1997-2490 Alaa K.

N

bounded, and not a polynomial, then the set of ZCiG(OiT x+bi) is dense in C(K) with
i=1

respect to uniform norm.

4.1- Theorem [6]

Standard Feed Forward Networks with only a single hidden layer can
approximate any continuous function uniformly on any compact set and any
measurable function to any desired degree of accuracy.

Therefore from the above theorem we have the following:-

1- To approximate any function on RN we want to determine the number of the hidden
nodes , activation functions to hidden layer and training functions.

2- The parameters to this approximation are the weights and biases of nodes in the
layers which can calculate by training the FFNN.

3- Any lack of success in applications must arise from inadequate training,
insufficient number of hidden units, or the lack of a deterministic relationship
between the input and the target.

5 Examples

Now in this section we give some example which illustrate the suggested
network

5.1 Example 1
Let us have the following heat conduction problem
AUt =Uxx, Xe[0,2]andt>0 .....ccoeveniiiiiniiininnnnnnn. (5)
with BCs: U(0,t)=0 , U(2,t)=0 and IC: U(x,0) =#x)= 2 sin (%) — sin(mx) —
sin(2mx)
The exact solution of Eq. (5) is given by:

—7'[2 —7'[2
U(x,t) = 2sin (nz—x) eTt — sin(mx) eTt - sin(27tx)e‘”2t
Our solution to equation (5) by using (2) is:
XD =(2%-XD) A(X)H2X-XONKXE) e (7)

Then the FFNN N(x,t) in (7) is the same as to approximate the following function :-

2 t
Gx, t) = HEO=Cxx) 409y and x202 ®)

t(2x—x2)
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To design FFNN which approximate G(x,t) by Theorem 4.1, we choose 7 nodes to
hidden layer and the activation function is 'tansig’, then to training the FFNN we use
the function 'trainim’.

After we training the FFNN we obtain the parameters illustrated in Tablel and the
result is giving in Table 2.

Tablel: Training parameter of the suggested network for example 1

Input Weight Hidden Bias Hidden Weight Output Bias
4.943193995 -0.597431269 -2.161127886 -1.032560586 5.868012882
-1.141369003 -2.758773341 1.192524815 -1.637086984
2.349301891 -3.434468698 0.839751595 3.128773222
3.301744604 3.775302719 0.867191145 0.744595153
-3.495976255 -3.407837799 -2.033098557 -0.757759082
-2.246370758 2.892763372 -3.003247227 -5.291028890
-1.329680000 -1.193236665 -2.281200040 15.548818803

Table 2: The results of the examplel using suggested network

X T U-exact U-approximate (Ue-Up)?
0.05 0.1 -0.089870961 -0.112890042 0.000529878
0.15 0.2 0.023159983 -0.049668986 0.005304059
0.25 0.3 0.246995214 0.193612744 0.002849688
0.35 0.4 0.468805803 0.476189268 0.000054516
0.45 0.5 0.664322864 0.743432968 0.006258409
0.55 0.6 0.826453566 0.960426098 0.017948639
0.65 0.7 0.949711452 1.087862662 0.019085757
0.75 0.8 1.030200603 1.127100867 0.009389661
0.85 0.9 1.067074077 1.114970548 0.002294072
0.95 1 1.062705465 1.037712234 0.000624662
1.05 1.1 1.021950790 0.959671257 0.003878740
1.15 1.2 0.951156786 0.906248385 0.002016765
1.25 1.3 0.857272960 0.817980282 0.001543915
1.35 14 0.747185424 0.697317576 0.002486802
1.45 15 0.627275786 0.550804726 0.005847823
1.55 1.6 0.503167533 0.426107871 0.005938192
1.65 1.7 0.379613397 0.328191230 0.002644239
1.75 18 0.260480149 0.211407382 0.002408136
1.85 19 0.148794441 0.105483304 0.001875855
195 2 0.046821666 0.045806704 0.000001030

MSE 0.092980837
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5.2 Example 2
Let us have the following heat conduction problem
100 Ut = Uxx

Where xe[0,x] and t>0 with
BCs: U(0,t)=0 , U(x,t)=0

IC: U(X,0)=¢(X)= 3 sin(5x)
And  the Ulx,t) = 3sin(5x) e+

exact solution to ( 9 ) is:

Our solution to equation (9) by using (2) is given by:
(X, )= (mrX-X2) @(X) +t(rx-X?)N (X, 1)

Then the FFNN N(x,t) in (11) is the same as to approximate the following function :-

—(rx—x2)E
Glx,t) = nxt)—(mx—x2)" ¢(x) =0

t(mx—x2) ’

and  x#0,2

To design FFNN which approximate G(x,t) by Theorem 4.1, we choose 7 nodes to
hidden layer and the activation function is 'tansig’, then to training the FFNN we use
the function ‘trainim’.

After we training the FFNN we obtain the parameters illustrated in Table 3, and
the result is giving in Table 4.

Table3: Training parameter of the suggested network for example 2

Input Weight Hidden Bias | Hidden Weight | Output Bias
-2.884195443 | 2.324487664 3.702832077 0.514918866 1.641235145
-3.156701897 | -2.117427554 1.034811997 5.615858228
-1.634109484 | 2.860559826 | -0.243589930 | 5.603264883
-2.447982616 | -0.583445966 | 0.074654273 | -7.004209469
-3.788825753 | 1.421502940 | -1.790173712 | -3.367507905
2.352653427 1.686907637 1.179311517 | -6.039890252
-2.865290397 | -4.380471379 | -6.453552673 | 3.050140174
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Table 4: The results of the example2 using suggested network

X T U-exact U-approximate (Ue-Up)?
0.1 0.2 1.368131038 1.368149651 0.000000000
0.3 0.4 2.707712365 2.763524945 0.003115044
0.5 0.6 1.545329244 1.416088904 0.016703066
0.7 0.8 -0.861591049 -0.860353544 0.000001531
0.9 1 -2.283903663 -2.276725712 0.000051523
1.1 1.2 -1.568031386 -1.573409343 0.000028922
1.3 14 0.454777480 0.474085428 0.000372797
15 1.6 1.886280563 1.858509202 0.000771248
1.7 1.8 1.527413585 1.555377139 0.000781960
1.9 2 -0.136744376 -0.152456116 0.000246859
2.1 2.2 -1.522620906 -1.350978778 0.029461020
2.3 2.4 -1.441375021 -1.433929308 0.000055439
2.5 2.6 -0.103869199 -0.117239402 0.000178762
2.7 2.8 1.197442601 1.204082428 0.000044087
2.9 3 1.324839464 1.321854474 0.000008910

MSE 0.051821170
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