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Abstract 
       The aim of this paper is to design feed forward neural network (FFNN) to solve 

the heat equation. Using a multi-layer with 7 hidden units (neurons) and one linear 

output unit, the sigmoid activation function of each unit in hidden layer is tansig 

function, where the Levenberg – Marquardt training algorithm is used to train the 

network .The existence of the proposed solution was proved. The suggested networks 

have been studied intensively for a few decades and have provided an option for 

modeling complex systems. Therefore this option was utilized to reduce the 

computation of solution, and finally the method is demonstrated through illustrative 

examples.  

 

Keywords :Feed Forward Neural Network, Boundary-initial value problems, heat 
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1-  Introduction 
         Artificial neural networks have been studied over the last decades and are an 

excellent option for modeling complex systems. Some of the thermal systems that 

have been studied with this technique are the prediction of heat transfer coefficients 

(Jambunathan et al., 1996) [7], estimation of heat transfer in the transition region of a 

circular tube (Ghajar et al., 2004) [2], friction and heat transfer in helically finned 

tubes (Zdaniuk et al., 2007) [15], the modeling of evaporative air coolers (Hosoz et 

al., 2008) [3], the characterization of compact heat exchangers (Ermis,2008) [1], the 

estimation of thermal performance of plate and tube heat exchangers (Peng and Ling, 

2009) [10], performance of finned tube evaporators (Zhao et al., 2010) [16], indirect 

evaporative cooling (Kiran and Rajput, 2011) [9] and prediction of convective heat 

transfer in evaporative units (Romero-Mendez et. al.) [11]. 

        The direct problem under consideration consists of a transient heat conduction 

problem in a slab with adiabatic boundary condition, with an initial temperature 

profile denoted by (x). Mathematically, the problem can be modeled by the 

following heat equation:- 

 

               Ut = α2Uxx                            …………….………..(1) 

Where  x[a,b] and t ≥ 0  with  

           BCs { U(a,t)=A    ,   U(b,t)=B  } and  IC   { U(x,0)=(x) } 
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We wont to approximate U(x,t) in (1) by using FFNN.  

2- Artificial Neural Network [14] 

      An Artificial neural network (Ann) is a simplified mathematical model of the  

human brain. It can be implemented by both electric elements and computer software. 

It is a parallel distributed processor with large numbers of connections, it is an 

information processing system that has certain performance characters in common 

with biological neural networks. Ann have been developed as generalizations of 

mathematical models of human cognition or neural biology, based on the assumptions 

that:  

i. Information processing occurs at many simple elements called neurons that is 

fundamental to the operation of Ann's.  

ii. Signals are passed between neurons over connection links.  

iii. Each connection link has an associated weight which, in a typical neural net, 

multiplies the signal transmitted.  

iv. Each neuron applies an action function (usually nonlinear) to its net input 

(sum of weighted input signals) to determine its output signal.  

         The units in a network are organized into a given topology by a set of 

connections, or weights, shown as lines in a diagram .  

Ann is characterized by:  

i. Architecture: its pattern of connections between the neurons.  

ii. Training algorithm : its method of determining the weights on the connections.  

iii. Activation function.  

Ann are often classified as single layer or multilayer. In determining the number of 

layers, the input units are not counted as a layer, because they perform no 

computation. Equivalently, the number of layers in the net can be defined to be the 

number of layers of weighted interconnects links between the slabs of neurons. This 

view is motivated by the fact that the weights in a net contain extremely important 

information. 

 

2.1- Multilayer Feed Forward Neural Network Architecture [14] 
      In a layered neural network the neurons are organized in the form of layers. We 

have at least two layers: an input and an outputlayer. The layers between the input and 

the output layer (if any) are called hidden layers, whose computation nodes are 

correspondingly called hidden neuronsor hidden units. Extra hidden neurons raise the 

network’s ability to extract higher-order statistics from (input) data.  

The Ann is said to be fullyconnectedin the sense that every node in each layer of the 

network is connected to every other node in the adjacent forward layer , otherwise the 

network is called partially connected. Each layer consists of a certain number of 

neurons; each neuron is connected to other neurons of the previous layer through 

adaptable synaptic weights w and biases b . 

 

2.2- Training Feed Forward Neural Network [14]  
       Training is the process of adjusting connection weights w and biases b. In the first 

step, the network outputs and the difference between the actual (obtained) output and 

the desired (target) output (i.e., the error) is calculated for the initialized weights and 

biases (arbitrary values). During the second stage, the initialized weights in all links 

and biases in all neurons are adjusted to minimize the error by propagating the error 

backwards (the back propagation algorithm). The network outputs and the error are 
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calculated again with the adapted weights and biases, and the process (the training of 

the Ann) is repeated at each epoch until a satisfied output yk(corresponding to the 

values of the input variables x) is obtained and the error is acceptably small. In most 

of the training algorithms a learning rate is used to determine the length of the weight 

update (step size) . 

 

3- The Method 

         To illustrate the method we will write the approximate solution as : 

 µ(x,t)=
𝑡𝑏−𝑥(𝑥−𝑎)𝐵+𝑡𝑥−𝑎(𝑏−𝑥)𝐴

𝑏−𝑎
+ [(𝑥 − 𝑎)(𝑏 − 𝑥)]𝑡(𝑥) + 𝑡(𝑥 − 𝑎)(𝑏 − 𝑥)𝑁(𝑥, 𝑡)                       

(2) 

Where N(x,t) is the output of a FFNN with two input units for x and t. 

         It's clear that µ satisfy the BC and IC of (1).  

Our goal is to design a FFNN,  N(x,t) such that µ Fit Informatics unknown function 

U(x,t) in any accuracy . 

Now rewrite (2) to be as follows:- 

 

N(x, t) =
µ(𝑥,𝑡)−

𝑡𝑏−𝑥(𝑥−𝑎)𝐵+𝑡𝑥−𝑎(𝑏−𝑥)𝐴

𝑏−𝑎
−[(𝑥−𝑎)(𝑏−𝑥)]𝑡(𝑥)

𝑡(𝑥−𝑎)(𝑏−𝑥)
   ,   t≠0 , x≠a,b                                

(3) 

         The right side of (3) is unknown function of two variables , denoted by G(x,t), 

and the needed FFNN in (2) is the same network required to approximate the function 

G(x,t), which means that problem (1) has been converted from differential equation 

problem to approximation function problem by FFNN, which will discuss in the next 

section. 

4- The Existence [6] 

        One of the earliest works on FFNN with ridge activation functions is in Hecht-

Nielson. The author used an improved version of Kolmogorov’s theorem due to 

Sprecher which states that: 

         Every continuous function f:[0,1]N → R can be written as: 

          f(x) = ∑
12

1





N

h

h (∑
1

)(
N

k

hhxk

h



 )     (4)                                                                

where the real λ and the continuous monotonically increasing function ψ are 

independent of  f, the constant    is a positive number and the continuous function h, 

1 ≤ h ≤ 2N+1, depends on f. This equation can be interpreted as a three-layered neural 

network where the hth hidden node computes the function  
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                 ∑
1
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N

k

k

h

h hhxz


  , 

and the output nodes compute ∑
12

1

)(




N

h

hh z . However, this is not the network 

architecture commonly used in practice. 

           One of the most elegant approaches to prove universal approximation is 

proposed by Cybenko. By using the Hahn-Banach Theorem and the Riesz 

Representation Theorem, he showed that if the ridge activation function, σ, is a 

continuous sigmoid, then the set of ∑
N

1=i
iσc ( T

iθ x+bi) is dense in C(K), where K is a 

compact set of RN, with respect to uniform norm. Later, his approach was adopted by 

many authors to prove their results.[6] 

       Chui and Li adopted another approach to prove universal approximation. They 

showed that if the ridge activation function σ, is continuous sigmoid and the direction 

vector θ satisfies some interpolation conditions, then the set of∑
1

N

i

ic


 ( T

iθ x+bi) is 

dense in C(K) with respect to uniform norm. They constructed their proof by showing 

that it is possible to realize polynomials as a sum of ridge activation functions.[6] 

      Since polynomials are dense in C(RN), it follows that the three-layered neural 

networks are dense in C(RN) with respect to uniform norm. 

      In Chen et. al., [6] showed that the continuity assumption usually imposed on the 

sigmoid functions is unnecessary. Instead, they proved that if the ridge activation 

function σ, is a bounded sigmoid, then the set of ∑
N

1=i
iσc ( T

iθ x+bi) is dense in C(K) 

with respect to uniform norm. They also pointed out that in order to prove the neural 

network in the n-dimensional case, all one needs to do is to prove the case for one 

dimension . 

      In Hornik, the author adopted Cybenko’s approach to prove universal 

approximation. He showed the sigmoid assumption usually imposed on the ridge 

function is unnecessary. Instead, he proved that if the ridge activation function σ, is 

continuous, bounded and non-constant, then the set of ∑
N

1=i

iσc ( T

iθ x+bi) is dense in 

C(K) with respect to uniform norm. At the same time, he proved that if the ridge 

activation function σ, is bounded and non-constant, then the set of ∑
N

1=i

iσc ( T

iθ x+bi) is 

dense in Lp(μ) with respect to Lp norm for 1 ≤ p < ∞ and a finite measure μ. 

       Leshno et. Al. provides one of the most general results. They showed that if the 

ridge activation function σ, is continuous almost everywhere, locally essentially 
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bounded, and not a polynomial, then the set of ∑
N

1=i
iσc ( T

iθ x+bi) is dense in C(K) with 

respect to uniform norm.  

4.1- Theorem [6] 

       Standard Feed Forward Networks with only a single hidden layer can 

approximate any continuous function uniformly on any compact set and any 

measurable function to any desired degree of accuracy. 

Therefore from the above theorem we have the following:- 

1- To approximate any function on RN we want to determine the number of the hidden 

nodes , activation functions to hidden layer and training functions. 

2- The parameters to this approximation are the weights and biases of nodes in the 

layers which can calculate by training the FFNN. 

3- Any lack of success in applications must arise from inadequate training, 

insufficient number of hidden units, or the lack of a deterministic relationship 

between the input and the target. 

5 Examples 

         Now in this section we give some example which illustrate the suggested 

network  

5.1 Example 1  

Let us have the following heat conduction problem  

                  4Ut = Uxx ,     x[0,2] and t ≥ 0 …………………………. ( 5 ) 

with  BCs: U(0,t)=0    ,   U(2,t)=0 and IC: U(x,0) =(x)= 2 sin (
𝜋𝑥

2
) − sin(𝜋𝑥) −

sin⁡(2𝜋𝑥)  

The exact solution of Eq. ( 5 ) is given by: 

𝑈(𝑥, 𝑡) = 2 sin (
𝜋𝑥

2
) 𝑒

−𝜋2𝑡

16 − sin(𝜋𝑥) 𝑒
−𝜋2𝑡

4 − sin⁡(2𝜋𝑥)𝑒−𝜋
2𝑡  

…………………..………( 6 ) 

Our solution to equation (5) by using (2)  is : 

µ(x,t)=(2x-x2)t(x)+t(2x-x2)N(x,t)      …………….………(7) 

Then the FFNN N(x,t) in (7) is the same as to approximate the following function :- 

   𝐺(𝑥, 𝑡) =
µ(𝑥,𝑡)−(2𝑥−𝑥2)

𝑡
(𝑥)

𝑡(2𝑥−𝑥2)
, t≠0 and x≠0,2  ….……(8) 
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To design FFNN which approximate G(x,t) by Theorem 4.1, we choose 7 nodes to 

hidden layer and the activation function is 'tansig', then to training the FFNN we use 

the function 'trainlm'.  

     After we training the FFNN we obtain the parameters illustrated in Table1 and the 

result is giving in Table 2. 

 

Table1: Training parameter of the suggested network for example 1 

Input Weight Hidden Bias Hidden Weight Output Bias 

4.943193995 -0.597431269 -2.161127886 -1.032560586 5.868012882 

-1.141369003 -2.758773341 1.192524815 -1.637086984  

2.349301891 -3.434468698 0.839751595 3.128773222  

3.301744604 3.775302719 0.867191145 0.744595153  

-3.495976255 -3.407837799 -2.033098557 -0.757759082  

-2.246370758 2.892763372 -3.003247227 -5.291028890  

-1.329680000 -1.193236665 -2.281200040 15.548818803  

Table 2: The results of the example1 using suggested network 

     

 

 

 

 

 

X T U-exact U-approximate (Ue-Up)
2 

0.05 0.1 -0.089870961 -0.112890042 0.000529878 

0.15 0.2 0.023159983 -0.049668986 0.005304059 

0.25 0.3 0.246995214 0.193612744 0.002849688 

0.35 0.4 0.468805803 0.476189268 0.000054516 

0.45 0.5 0.664322864 0.743432968 0.006258409 

0.55 0.6 0.826453566 0.960426098 0.017948639 

0.65 0.7 0.949711452 1.087862662 0.019085757 

0.75 0.8 1.030200603 1.127100867 0.009389661 

0.85 0.9 1.067074077 1.114970548 0.002294072 

0.95 1 1.062705465 1.037712234 0.000624662 

1.05 1.1 1.021950790 0.959671257 0.003878740 

1.15 1.2 0.951156786 0.906248385 0.002016765 

1.25 1.3 0.857272960 0.817980282 0.001543915 

1.35 1.4 0.747185424 0.697317576 0.002486802 

1.45 1.5 0.627275786 0.550804726 0.005847823 

1.55 1.6 0.503167533 0.426107871 0.005938192 

1.65 1.7 0.379613397 0.328191230 0.002644239 

1.75 1.8 0.260480149 0.211407382 0.002408136 

1.85 1.9 0.148794441 0.105483304 0.001875855 

1.95 2 0.046821666 0.045806704 0.000001030 

 MSE 0.092980837 
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5.2 Example 2 

Let us have the following heat conduction problem  

       100 Ut = Uxx      

………………………………….…………………………………………. ( 9 ) 

Where  x[0,π] and t ≥ 0  with  

              BCs: U(0,t)=0    ,   U(π,t)=0  

              IC: U(x,0)=(x)= 3 sin(5𝑥)  

And the exact solution to ( 9 ) is:    𝑈(𝑥, 𝑡) = 3 sin(5𝑥) 𝑒
−𝑡

4   

………………….…..…………( 10 ) 

Our solution to equation (9) by using (2)  is given by: 

µ(x,t)=(πx-x2)t(x)+t(πx-x2)N(x,t) 

………………………………………………………..……(11) 

Then the FFNN  N(x,t) in (11) is the same as to approximate the following function :- 

   𝐺(𝑥, 𝑡) =
µ(𝑥,𝑡)−(𝜋𝑥−𝑥2)

𝑡
(𝑥)

𝑡(𝜋𝑥−𝑥2)
⁡       ,  t≠0 and x≠0,2  

…………………………………..………(12) 

To design FFNN which approximate G(x,t) by Theorem 4.1, we choose 7 nodes to 

hidden layer and the activation function is 'tansig', then to training the FFNN we use 

the function 'trainlm'.  

     After we training the FFNN we obtain the parameters illustrated in Table 3, and 

the result is giving in Table 4. 

 

  

 Table3: Training parameter of the suggested network for example 2 
 

Input Weight Hidden Bias Hidden Weight Output Bias 

-2.884195443 2.324487664 3.702832077 0.514918866 1.641235145 

-3.156701897 -2.117427554 1.034811997 5.615858228  

-1.634109484 2.860559826 -0.243589930 5.603264883  

-2.447982616 -0.583445966 0.074654273 -7.004209469  

-3.788825753 1.421502940 -1.790173712 -3.367507905  

2.352653427 1.686907637 1.179311517 -6.039890252  

-2.865290397 -4.380471379 -6.453552673 3.050140174  
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Table 4: The results of the example2 using suggested network 

 

 

 

 

 

 

 

 

 

X T U-exact U-approximate (Ue-Up)
2 

0.1 0.2 1.368131038 1.368149651 0.000000000 

0.3 0.4 2.707712365 2.763524945 0.003115044 

0.5 0.6 1.545329244 1.416088904 0.016703066 

0.7 0.8 -0.861591049 -0.860353544 0.000001531 

0.9 1 -2.283903663 -2.276725712 0.000051523 

1.1 1.2 -1.568031386 -1.573409343 0.000028922 

1.3 1.4 0.454777480 0.474085428 0.000372797 

1.5 1.6 1.886280563 1.858509202 0.000771248 

1.7 1.8 1.527413585 1.555377139 0.000781960 

1.9 2 -0.136744376 -0.152456116 0.000246859 

2.1 2.2 -1.522620906 -1.350978778 0.029461020 

2.3 2.4 -1.441375021 -1.433929308 0.000055439 

2.5 2.6 -0.103869199 -0.117239402 0.000178762 

2.7 2.8 1.197442601 1.204082428 0.000044087 

2.9 3 1.324839464 1.321854474 0.000008910 

 MSE 0.051821170 
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 الخلاصة

شبكة  تخدامالهدف من البحث هو تصميم شبكة عصبية ذات تغذية تقدمية لحل معادلة التوصيل الحراري. تم اس

، دالة وحدات )عصبونات( ووحدة اخراج خطية واحدة 7متعددة الطبقات ذات طبقة خفية واحدة تحتوي على 

التدريب  ( وتم استخدام خوارزميةtansigلكل وحدة في الطبقة المخفية كانت الدالة ) المستخدمةالتنشيط 

(trainlm تم اثبات وجود الحل .) ا دمت خيارق. تم دراستها بشكل مكثف منذ بضعة عقود حيث ةالمقترحللشبكة

ة الشبكضيح م تويرا تلنمذجة الانظمة الصعبة. لذلك هذا الخيار استخدم لتقليل الحسابات في اثناء الحل ، واخ

 التوضيحية.    الأمثلةمن خلال المقترحة 

ل ة، التوصيتدائيالشبكات العصبية ذات التغذية التقدمية ، مسائل القيم الحدودية والاب الكلمات المفتاحية :

 الحراري.
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