Synthesis and Charactrization of Hetromacro cyclic Compounds via cyclization Reactions

Dr. Nagham. Mahmood. Aljamali

Assist. Prof., Chem. Dept., College of Education, Univ.Kufa

Abstract:

In the present study, new type of hetromacro cycles [4,5] were synthesized by the reaction between terminal of (amine, thiol) of compounds [1-3] with carbonyl compounds (4 – amino benzoyl chloride, 4-methanal ethyl benzoate, 4-methanal benzaldehyde) by condensation reaction. The synthesized compounds have been investigated using different chemical techniques, such as (Uv-Visble spectra, FT.IR-spectra, H.NMR-spectra, (C.H.N)-analysis, and melting points).

Introduction:

The importance of this compounds has long been recognized in the synthetic organic chemistry ,which have a wide variety of biological activity such as pharmacological activities ,which include anti fungal $^{(1,2)}$,anti bacterial $^{(3,4)}$,anti tumor ,antibercular $^{(5,6)}$ and anti convulsant $^{(6)}$.

In this article , synthesized hetromacrocycles are result from condensation reaction as the ring – closing step . these compounds are promising candidates for developing new supramolecular structures , they are reported to have antibacterial activity , the structural modification of organic molecule has considerable biological relevance and other uses $^{(7\text{-}10)}$, which are contain (amide, imine , sulphide , thiazol) groups $^{(6\text{-}11)}$ due to activity of these compounds .

These compounds are stable at room temperature and are non hygroscopic, have good yield, from a synthetic point of view, they are containing reactivite functional groups are important for the above – listed applications.

Experimental:

All chemical used were supplied from Merck & BDH-chemical company. All measurements were carried out by :

- -Melting points :electro thermal 9300, melting point engineering LTD, U.K.
- -FT-IR spectra : fourrier transform infrared shimadzu (8300) (FT-IR) ,KBr-disc was performed by CO.S.Q. Iraq .
- -H-NMR spectra: in centre lab institute of earth and environmental science , AL byat university , Jordan .
- -Elemental analysis (C.H.N): EA-017 Mth in centre lab –institute of earth and environmental science, AI-byat university, Jordan.
- -Uv-Visible spectra: shimadzu-1700, double beam with computerized, Japan.

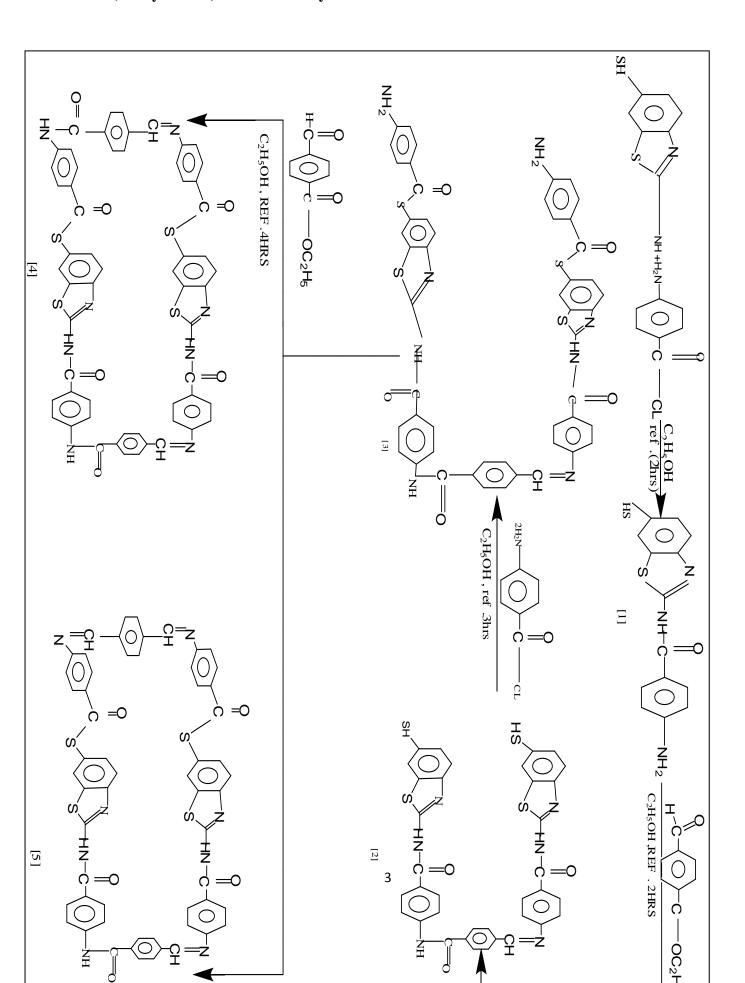
Synthesis of 6-Mercapto-2-(4-amino benzamide)-benzothiazole [1]:

A mixture of (0.05mole, 9.1 gm) of 6-Mercapto -2-(4-amino benzothiazole & (0.05 mole, 7.77 gm) of 4- amino benzoyl chloride were heated under reflux for (2 hrs), the reaction mixture was cooled, the precipitate was filtered of & recrystallized from ethanol to produce (16.4g) 84% of bill yellow crystal compounds [1].

Synthesis of Bis{6-(mercapto-2-benzamide)-benzothiazol}-4-benzamide methyl imine [2]:

Refluxing mixture of (0.04 mole ,12.04 g) of compounds[1] with (0.02 mole ,3.56 g) of 4-formal- ethyl benzoate were reacted for two hours refluxing until the participitate formed ,after cooling, the precipitate was filtered off & recrystallized to produce(15.2g) 81% of yellow crystal compounds [2].

Synthesis of Bis{6-(4-aminobenzoyl sulphide-2-benzamide)-benzothiazol}-4-benzamide methyl imine [3]:


A mixture of (0.04 mole, 28.6g) of compound [2] and (0.08 mole, 12.44 g) of 4-amino benzoyl chloride were reacted by condensation for (3hrs) refluxing until the participitate formed, after cooling, the precipitate was filtered off & recrystallized to produce(45.3g) 83% from bill orange crystal compounds[3].

Synthesis of compounds [4,5]:

 $(0.02 \ mole\ , 19.08\ g)$ of compound [3] was reacted with one of [$(0.02\ mole\ , 3.56\ gm)$ of 4-formal—ethyl benzoat , $(0.02\ mole\ , 2.68g)$ of 4-formal benzaldehyde] respectively by reflux for (4hrs) & recrystallized to yield(23.2g ,21.1g) (82% , 80%) from(orange, red) compounds [4,5] respectively :

Compound [4]: Bis - {(6-benzoyl sulphide -2-benzamide) benzothiazol -4-benzamide methyl imine } - hetromacrocycle .

 $\label{lem:compound} \begin{tabular}{ll} Compound [5]: Bis-{(6-benzoyl sulphide -2-benzamide)-benzothiazol} -4-benzamide - tris (methyl imine) - hetromacrocycle. \end{tabular}$

Result and Discussion:

All the synthesized compounds[1-5] have been characterized by their melting points and spectroscopic methods, such as (Uv-visible, FT.IR, H.NMR spectrum, and (C.H.N)-analysis):

FT.IR Spectra:

In FT.IR spectra ,the reaction is followed by disappearance of (-NH₂) absorption band at (3420)cm⁻¹ in compound [1] , and appearance two band :at (1610)cm-1 .(1690)cm-1 due to (HC=N)of azomethine group (7-9) and ($_{HN}$ -C) carbonyl of amide group , respectively in compound [2] . while FT.IR spectra of compound [3] showed disappearance of (S-H) absorption band at (2455) cm⁻¹ and appearance absorption (3455)cm⁻¹ due to (-NH₂) group (11-14) .In compound [4] we are observed disappearance of (-NH₂) absorption band and appearance absorption band at (1616)cm⁻¹ due to (HC=N) azomethine group and (1690)cm⁻¹ due to ($_{HN}$ -C) amide group (15-18) . While FT.IR Spectra of compound [5] showed disappearance of (-NH₂) ,absorption band appearance absorption band at (1631)cm⁻¹ due to (HC=N) azomethine group ,other informative bands (19-21) are listed in table (1) . The presence these bands consider as indication to formation these compounds .

H.NMR-Spectrum:

H.NMR –spectrum of compounds in figures (4-6): showed the following characteristics chemical shift were appeared: singlet signal at 6 9.79 for one proton of azomethine group (-CH=N), peak at 6 9.96 for proton of amide group ($_{HN}$ - $_{C-}$) in compound [2], signal at 6 8.5 for two proton of amine group (-NH₂), signal at 6 9.70 for proton of azomthine group (-CH=N) peak at 69.9 for proton of amide group ($_{HN}$ - $_{C-}$) in compound [3], while the compound [4,5] are disappear the signals at 6 8.5 for protons of amine group (-NH₂) and appear signals at 6 9.71 for proton of imine $_{C-NH}$) and at 6 9.9 for proton of amide group ($_{C-NH}$), multistate leaning on each other at 6 7.5-7.8 that could be attributed to the protons of benzene ring in these compounds.

This is other evidence to formation of compounds [1-5], and other peaks⁽¹⁸⁻²¹⁾ in figures (4-6).

UV-Visible and (C.H.N)-Analysis:

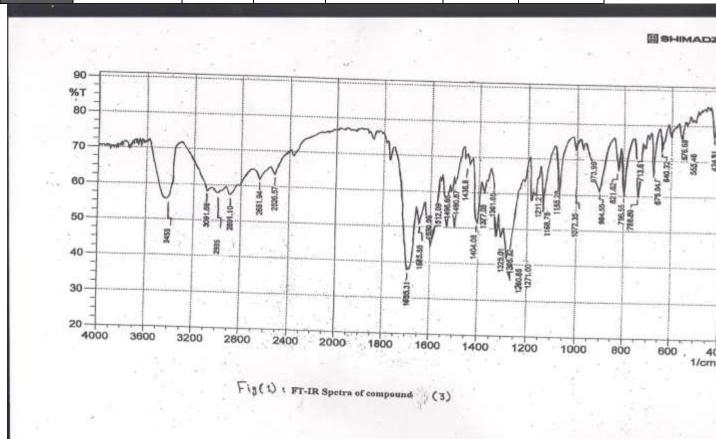
UV-spectra of compounds [1-5] have electron transition $(n-\pi^*)$ due to the hetroatom (S,N) in these compounds beside of transition $(\pi-\pi^*)$ of conjugated system , the UV-spectra of these compounds show absorption maxima (315-405) nm due to oxochromic groups $(-NH_2,-SH,\bigcup_{C-NH}^{O})$ with conjugated system of compounds [1-5].

It was found from (C.H.N) –analysis , from compared the calculated data from compounds [1-5] are in good agreement with experimentally , the results were compactable and this is other evidence for formatted compounds , the data of analysis , λ_{max} and melting points are listed in table (2).

Acknowledgment:

I would like to express my thanks to Mr.Muhanad –Abu-Alsoaud in centre Lab-Institute of Earth and Environmental Science –Al-Bayt University H.J.K in Jordan for providing (C.H.N) element analytical, and H.NMR –spectrum.

Table (1):FT.IR data (cm⁻¹)of compounds[1-5]


Comp.	v(N-H)	v (S-H)	v (CH=N)	(0) HN-C-	(C-S)
No.			Azomthine	carbonyl of amide	Sulphide
[1]	3420m	2470w		1685s	
[2]		2455w	1610s	1690s	
[3]	3455m		1615s	1695s	1325vs , 675s
[4]			1616s	1690s	1315vs , 682s
[5]			1631s	1690s	1323s , 682s

s=strong, m=medium, w=weak, v=very

Table (2):Melting points,M.F , λ_{max} and (C.H.N)-Analysis of compounds[1-5]

Comp.	M.F	m.p	٦ _{max}	Calc / Found		
No.	M.Wt _(g/mole)	(c°)	(nm)	C%	H%	N %
[1]	$C_{14}H_{11}N_3O S_2$	161	310	55.813	3.654	13.953
	301			55.609	3.538	13.710
[2]	C ₃₆ H ₂₄ N ₆ O ₃ S ₄	182	335	60.335	3.351	11.731
	716			60.213	3.274	11.654
[3]	C ₅₀ H ₃₄ N ₈ O ₅ S ₄	221	360	62.893	3.563	11.740
	954			62.648	3.571	11.599
[4]	C ₅₈ H ₃₆ N ₈ O ₆ S ₄	243	392	65.168	3.370	10.486

1068			65.096	3.310	10.348
C ₅₈ H ₃₆ N ₈ O ₅ S ₄	247	405	66159	3.422	10.646
1052			66.145	3.309	10.573
	C ₅₈ H ₃₆ N ₈ O ₅ S ₄	C ₅₈ H ₃₆ N ₈ O ₅ S ₄ 247	C ₅₈ H ₃₆ N ₈ O ₅ S ₄ 247 405	C ₅₈ H ₃₆ N ₈ O ₅ S ₄ 247 405 66159	C ₅₈ H ₃₆ N ₈ O ₅ S ₄ 247 405 66159 3.422

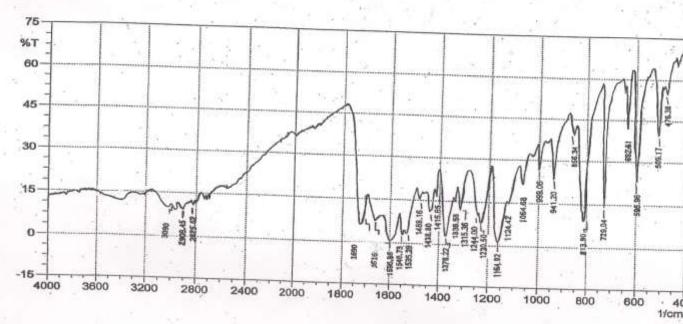
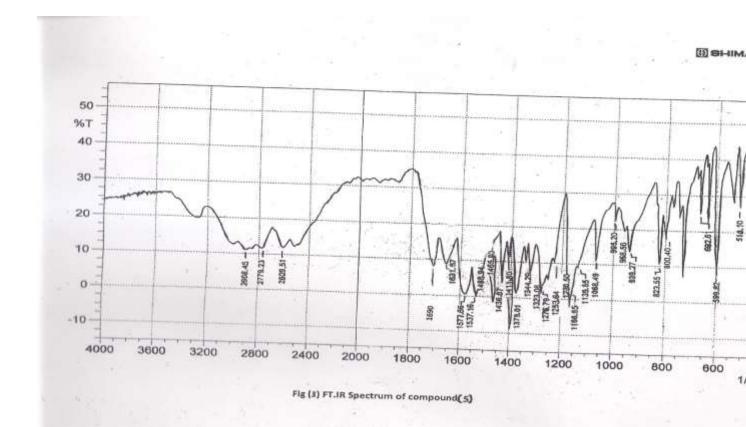
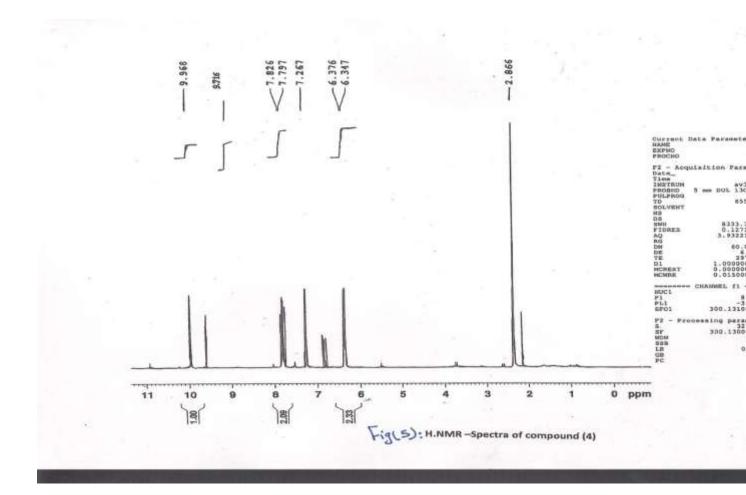




Fig (2) FT-IR Spetra of compound(4)

Reference:

- 1. Vinay.V, Lakshika.K., (2011), I.J.R.P.S, 1, 1, 17-27.
- 2. Faridbod. F, Ganjali.M, Diarvand. R, (2008) ,Sensors .,8,1645–1703.
- 3. Beckmann . U and Brooker . S ., (2003) , Coord . Chem. Rev ., 245 , 17 29.
- 4. Amanda .J , Yanalexander .W and Mark. M ., (2005) ,J.Org . Chem. ,70 , 7936–7946.
- 5. Rajavel .R , Senthil. M and Anitha. C ., (2008), E-Journal of Chemistry ., 5, 3 , 620–626.
- 6. Leroy.C., (2003) ,Annu.Rep.Porg.Chem.,Sect., A ,99,289-347.
- 7. Nagham . M . Aljamali ., (2005), J . AlQadisia , 10 ,1 ,131–138.
- 8. Mustafa.Y, Askin. K and Basaran.D., (2007)., J. Serb.Chem.Soc, 72, 3,215–224.
- 9. Zolfoghar . R , Leili . R . A , Kamellia . N , and Seyed . M ., (2004) ,Acta . Chem . Solv ., 51 , 675 686.

- 10. Harlal . S and Varshney . A . K ., (2007) ,Bioinorganic Chemistry and Applications ., 1 –7.
- 11. Abdullah . M and Khadija . O ., (2007) , Molecules , 12 , XC.
- 12. Andrea.S., Daniel.V., Andre.L., and Lubomir.F., (2001), Arkivoc., (Vi), 122–128.
- 13. Jarrahpour A, Motamedifar. M and Paskhir., (2004) Molecule, 9,875, 1420.
- 14. Canapolot . T., (2004) , Russian . J. Coord . Chem. , 30 , 87 , 40.
- 15. Verma . M and Stables . G ., (2004) , Molecules, 45 , 46.
- 16. Pandey . H and Dweiv . R ., (2005) , Molecules ,4 , 2 , 88.
- 17. Sharba . A , Al- Bayati . R , Aouad . M and Rezki . N ., (2005) , Molecules ,10 , 1161–1168.
- Sharba . A , Al- Bayati . R , Aouad . M and Rezki . N ., (2005), Molecules, 10 , 1153 – 1160.
- 19. Anna. M., Alessandra. M., Patrizia. D., Paola. B., Antonino. L., Girolama. C. and Gaetano. D., (2001), Arkivoc., VI., 129 142
- 20. Nagham .Aljamali ., (2010) ,J .Babylon .Sci .,4 ,18,1425-1436 .
- 21. Nagham .Aljamali ., ,(2010) ,J .Babylon .Sci .,3 ,18 ,925-942.

تخليق مركبات حلقية كبيرة غير متجانسة عن طريق تفاعلات الحولقة

د.نغم محمود الجمالي

أستاذ مساعد -قسم الكيمياء -كلية التربيةللبنات -جامعةالكوفة

الخلاصة:

تم في هذه الدراسة تخليق نوع جديد لمركبات حلقية عيانية غير متجانسة [5,4]من تفاعل مجاميع الثايول و الأمين في مركبات [1-3]مع مركبات الكاربونيل (4- أمينو - كلوريد البنزويل , 4- فورمال بنزوات الأثيل , 4- فورمال بنزوات الأثيل , 4- فورمال بنزلديهايد) بأستخدام تفاعل التكثيف .شخصت المركبات المحضرة بمختلف التقنيات الكيميائية تمثلت ب(طيف الاشعة فوق البنفسجية - المرئية , طيف الاشعة تحت الحمراء , طيف الرنين النووي البروتوني المغناطيسي , التحليل الكمي الدقيق للعناصر) ومن ثم قياس درجات أنصهارها.