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Abstract

The purpose of this paper is to investigate the finite-time
stability of a proposal problem containing a Riemann-
Hadamard fractional differential nonlinear control system
with delay Riemann-Katugampola fractional-order systems.
The inequalities for satisfying the stability depend on
Gronwald's general formulation, which constrains the types of
fractionals. The necessary and sufficient conditions are
presented in different results to support the stability with
delay time of solution with nonlinear functions as well as the
numerical examples to illustrate all the interesting results.
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1.Introduction

The topic of stability is a hot topic in
control theory. On the other hand, one of
the main issues in this subject is regulating
time delay systems[1],[2],[3].[4],[5] Time
delay systems have been used for many
years in a wide range of technologies and
systems, including electrical, pneumatic,
and hydraulic systems, networks, chemical
processes, lengthy transmission lines, and
others[5]. Delay may be found in many
physical and engineering elements of
systems in the control context, delay refers
to the duration necessary for information to
be communicated and the system to
respond. Because systems have a limited
time to acquire information and react to
these delays, these delays are frequently
employed to depict the impacts of
transmission and uations, as a result, they
must be addressed wusing fractional
differential equations with difference
variables. Delay fractional differential
equations (FDEs) are used to examine
systems impacted by time delay and create
essential mathematical models of real
phenomena in engineering, mechanics, and
economics [6],[7],[8].[9]. The idea of these
systems' stability played an essential role
in this context. It is worth mentioning that
time delay in a control system might result
in a closed-loop characteristic equation
with  sequential components.  These
sequential terms generally produced an
unlimited number of isolated roots, making
it difficult to analyze the stability of time-
delay systems. Generally applicable
algebraic solution for evaluating the
stability of these systems .These processes
need extensive knowledge and
analysis[10]. It should be emphasized that
the existence of a pure time delay in the
control system, both in the regulating
components and in the system state itself,
might result in
undesirable reactions or
instability .The Previous research has
examined this subject in  depth,
concentrating on the application of the
notion of Lyapunov's second principle and
stability[11],[12].In addition to the matrix

gven system
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idea, understanding and analyzing the
dynamic nature of the internet is essential
in the field of computational science.
therefore, the predicating these electrons
becomes an essential component of
developing electrical models to regulate
events .Furthermore, the system stability
theories may be applied to a wide range of
disciplines, like electrical engineering,
mechanical engineering, biology, science,
and environmental science. As a result, it is
sufficient for the system to exist only from
Lyapunov's point of view, but it must also
be controllable, useful and desirable from a
rational point of view. If a system is only
stable within a narrow, unplanned range, it
may be completely unstable. In this
context, a comprehensive examination of
different subgroups of the country's area is
necessary. This study can provide more
complete picture of the movement of the
system in the given field. Furthermore,
managing the system over limited time
periods must be taken into account, as
these frontier gains do not account for the
system of paramount importance. As a
result, multiple concepts of system stability
have been proposed and explored in a
series of earlier research. Researchers are
always working to create new approaches
and tools for understanding and ensuring
the stability of complex systems.

As a result, these discoveries have been
expanded [13] . In addition, new
approaches for evaluating the stability of
linear systems with a finite time horizon
have been developed, with Amato and
Colleagues

[14],[15]proposing the finite time horizon
.The previous studies [16],[13],[17] have
also addressed linear time delay analysis in
the context of limited and practical
stability. In addition, in the

context of finite-time stabilization and
significant development with a focus on
issues stabilization [18], theories of
fractional ~ dynamical  systems  are
undergoing significant development .In a
focus on issues such as robust and output-
determined stability, internal stability,
finite-time stability, practical stability, root
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location, strong controllability —and
observability, and other elements.
Matignon [19],[20]researched the stability
of finite-dimensional linear fractional
differential systems in state space form
(internal and exterior).

Stability is a fundamental concept in this
field because it is concerned with the
ability to ensure the stability of the system
without the harmful influence of primitive
angles or positions. In this context,
researchers have previously presented
models of dynamic systems and methods
for analyzing their stability, such as
“ultimate stability” and previous studies
[21],[22] have also presented and
discussed many features and results related
to the robust stability of fractal systems,
which include space systems with a
continuous state. Uncertain. However,
stability analysis of  non-Lyapunov
fractional systems remain a major
challenges since algebraic tools cannot be
used directly in this context due to the lack
of the Roth-Horwitz criterion and
fractional ordering.

A novel technique based on the Bellman-
Gronwall method was recently introduced,
as well as the development of the
"classical" Bellman-Gronwall inequality.
For a specific class of fractal systems, the
emphasis was on the problem of
sufficiency and the requirements that allow

system paths to remain inside prescribed
sets.
This paper will discuss and analyze these

results, techniques, and recent
advancements in the subject of fractal
dynamic system stability. We will

concentrate on systems with a short time
delay and high stability, and we will try to
make a difference.

Understanding time-stamped systems are
critical for achieving effective applications
in a wide range of sectors, including
sophisticated robotics, intelligent medical
systems, and industrial industries. The use
of steps along with the generalized
Gronwald inequality is a successful
approach to creating dependable temporal
stability criteria for complex systems,
thanks to recent advances in control and
theoretical engineering. Previous research,
as indicated in
sources[14],[15],[23],[24],[25],[26],[27]
and [28] even though these sources have
been widely referenced in earlier research
The objective of this article is to highlight
a new field of research and extend the
concept of limited time stability of
nonlinear partial-order delay systems by
applying the step method together with the
generalized Gronwald inequality.

Take into account the following Riemann-—
Hadamard and Riemann —Katugampola

{ FEDEx(t) = Ax(t) + f (&,x(6), RED{#x(t — 5)) + Bu(t), t € [0.T]

x(t) =9(b),

(1.1)
where RED™# denotes the Riemann—
Hadamard derivative of order « > 0 and
x(.) €ER™ for te [—0,T] ,and 0 <a <
b < oo, RED ™ denotes the

control function. Finally the function 9(t)
is a nonlocal function defined on [—7, 0],
T € (—0,0).

The research strategy is as follows:The
second  section goes over the
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nonlinear differential control nonlocal
system of fractional order

t €[—1,0]
Riemann —Katugampola Fractional

derivative of order0<a <1land u isa
positive value .Also f(.,.,.):[0.T] X
R™ X R™ - R™ and By, IS a control
matrix and u(t): [0,T] - R™isa

REpax(t)calculus. In the third section, we
looked at the theories of the existence and
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uniqueness of linear fractal differential
equations. In Section 4, answer of the
example using illustrations. Finally, in
Section 5, We state the conclusions of the
article.

2. Preliminaries
Several definitions and lemmas related to
fractional calculus are reviewed in this

section.
F(1 (1 g )f (t#

RED x(t) =
RK a1 - __ 1= ud
th x(t) F(1—0() ( dt ) ft (T”—t#)“

Definition (2.2), [29]:
Let a>0,u>0,

x € L'([a,b]),R),

Definition (2.1),[29]:

Let a>0,u>0, x€ L'([a,b]),R),
0<a<b<o .The left and right
Riemann—Katugampola fractional
derivatives (R-K FDs) of order a is
defined by

— x(7) drt

x(r) dr.

0<a<b<o .The left and right

Riemann—Katugampola fractional integrals (R-KFIs) of order « is defined by

u a-—1

RKD; % x(t) = r(l ) f:(tu ;T )

RK =1 1 b (ehoe\*TH
D x(t)_r(a:) ( u )

Definition (2.3), [6]:
Let a € (0,1),u>0,[a,b] ER,0<
a<b< oo, The left and right Caputo

—Katugampola fractional derivatives (C-—
KFDs) are defined respectively by

0 = @D iz (<0 (@) dn

EDIHx () = 1"(1——0.')( t” ”;)ft m (x(z) — x(b)) dr.

Definition (2.4), [8]:

Let a, b be two real numbers with 0 <
a < b. Then the left and right Riemann—
Hadamard fractional integrals (RH-FIs) of
RH Lt (0et) al

oD “x(t) = r( 5 (log ) dt

T

a-—1
RH _ 1 x(T)
D %x(t) = F( ; (log ) —drt
Definition (2.5), [8]:

Let @« > 0 The set of real numbers with
n = [a] + 1,the left and right Riemann—

REDEx(t) =

I"(nl—a) (t %)n N (108 f)n_a_l @ dr

order a > 0 for function f:[a,b] = R is
defined by

Hadamard fractional derivatives (RH-FDs)
of order « > 0 defined by

T>a

i Sl (LAY P (jogl) T A
ngx(t) _I"(n—a)( tdt) ft (logr) T dr T<b

RH _(;a\" d RHp™H —
oDl x(t) t— x(t) and D, x(t)

Definition (2.6):
The Soboleve fractional normed space
defined by M*P(Q) ={u€

d n
—t E) x(t) wherea =n

LP(R)and ®ED&u(t) exist} has a norm
llxllyer = llxll,+1*EDEX @),
Lemma (2.1), [9]:
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Leta > 0, f(t) = 0, be a nondecreasing
function locally integrable on [0, T) (some
T < +o) and g(t) =0, nondecreasing
continuous function defined on [0, T),
g(t) <M (constant), and suppose x(t) >
0 and locally integrable on [0, T) with
Lemma (2.2),[12]:

Assumethat 0 < f; < f,,0 <a < 1.Then

A® < 0 + gOEDfi (1)
on this interval. Then i) <
f(OE.(g(®)t?), t € [0,T),
where E, is the Mittag-Leffler function

defined by E(¢) = ¥ g—

r(La+1)

5= A%< (- A

3.Problem Formulation for Proposal
system

In this section, we look at the existence,
uniqueness and stability theorems for -
order nonlinear differential equations.

Proof:
By using definition (2.4),(2.5) we have

“UDE(H4D ) =

t

rorams (tar) Ja (losg?

_ 1 d t t\"%1 s S\ 1 x)
T r@ri-a o)) Ja (log;) Sds (fa (log ?) Tdf)

Theorem (3.1):
Let a> 0, then the equality

R (RED; *Hx) = x(t) is valid for any
summable function x(t) € L,(a, b),0 <
a<1.

)_a % ds (f: (log z)a_l %ﬂdr)

t

— 1 d t x(@ . 1 od. ot 0\ x@
= roraa ¢ a0 la (log?) =P dr = o ¢ e e (log?) Z2dr = x(t)

T

Lemma (3.2), [30]:

Let f be a continuous function on a
rectangle R = [a,b] x [c,d], then
[ f(x,y)dA have the

LS Feoyydyydx= [ f(x,y)dx)dy

Theorem (3.2):

T

Let a>0pf>01<p<oxo0<
a <b <o and let u€ R and ¢ €ER
such that u > c. Then for x € X?(a,b) .
Then RED;«(REDPx) = Rip Py,

Proof:
By using Lemma (3.2), we have

_ - 1 t £\*1 B=1 x(s) 1
RZDtOI(RI('ZIDt ﬁx(t)) = o , (log—) (faT (logg) % ds);dr Now we have

T

that,

_ -B 1 t [t £\@1 \F~1 x(s) 1
RI(‘llDt (X(RZDt x(t)) = @) fa (L_ (log ;) (log ;) T dS);dT

1 t ot \¥TP=2 x(s) 1
T T(@r) J‘a (fr (log E) s ds) -t

1 t ot \¥TP=2 x(s) 1
T T(@rp) J‘a (fr (log E) s ds) -t

e s ((C0) BRI (C10) ) 2

-t (((108) ™ 2) e

+B-1
= L t logE * igzdt
a T T

r(a+p)
RHD=* Py (t)


https://www.statisticshowto.com/types-of-functions/continuous-function-check-continuity/
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Lemma (3.3), [31]:

If £(t) € C"[0,+w]andn—1<a<ne€z",

1. REDIH(RED “HF()) = f(b)

, , *f(a)
2. CKDTEF(r) = REp&Hf() — BLA

r(i—-a)

Lemma (3.4):
The relation between  Riemann—
Hadamard fractional derivatives and

k [k]
RHP~ a(RHD f(t)) fx a f(» dr — Y= 1k|(0g§) A C))
and for

for order a>0n—[ ]+1
REDF(REDEf (1)) = f(©) = f(a)
Proof:

Form Defintion (2.4), and definition (2.5),
we have that

—_ a/'l')_a

Riemann-Hadamard fractional integral
have the following formulation

a

n=1, we get the following relation

RHp - (nglpf‘rﬂf(t)) = RHp-a (RZDZL—d,ﬂf[n] (t)) = Rthn,uf[n] (t)

_ 1 x x\"1 f[”](‘r)
- (n—1)!fa (log;) T dt

-1 [n—-1]
- (togd) T £ L

- (n-1)!"a ; dar T

1 x A\ 1 g g2l
- (n—-2)! fa (log;) E T dr —

1 x x\n-1 ( f[n—3](T)
:(n—3)'.f (log7) 7 ==

xd f(‘L') nll( {)k
ad‘[ T dt Zk 1 a

R”Dt “(REDEF(D) = F(O) — f(a)

Lemma (3.5):

A nonnegative  function  locally
integrablea(t) on 0<t<T (someT <
+o0) and g(t) is a nonnegative,
nondecreasing continuous function defined

u(t) = a(t) + g(t) f; (log E)a_

on this interval. Then

' u(s)ds

n 1)|(log )"—1 e

w11k )
knzkl(lg) aa

[kl
me) for every a € (0,1) then

on 0 <t<Tg(t) < M (constant), a > 0,
and suppose u(t) is nonnegative and
locally integrable on 0 < t < T with

w(® < (o) + [ 2 780D (10g )" as)] s

r(@r(k+1a)

u(t) < a(t)E, (g(t) (loé{g)a)

proof:

Let Bo(t) = 22 [*(1o ;)a_1

—ds
@ QD(S)S—

,t> 0.Thenu(t) < a(t) + Bu(t) imply

u(t) < Z:;:Bka(t) + Bu(t)

Now
(3.2)

B™u(t) < ft—(g(t)r(a)) (log;)na_1 a(r)%

a)

B™u(t) > 0asn — +o0o Vte|[0,T)
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By induction the relation in (3.2) is true = k. now we need to prove for n =k +1,
for n = 1. Assume that it is true for some n implies that
e = 06 = 20 01 (og!)" 12 R o8 wcone|

Since g(t) is nondecreasing, it follows that
k+1 (g “ ! (F(a)) ka-1 —ds
B u(®) < @ fa 10 fa I (ka) g;) u(@)de| =

By interchanging the order of mtegratlon we have
k+1

k+1 (g@®)" t (r(a))k na-1 s\ ka—1 —ds
B ) = e Ja ff r(ka) (IOgE) (l°g¥) ds|u(r)——=

k+1 (g(t))k+1 5 (r@)” a-1 o\ ka—1 s
B lu(t) < r@ fa  Tka) ( z) log ) (z log;) ds|u(®)—
k+1 (g(t))"“ [ (r@)" - ket ]

k+1 (9@ (¢ 1 (r@)" - ryke-t ot
B*u(t) < e fa 0 “F(ea) ( ) (logt) (1 - 2)%zkae=1 gy

k1 (9@ e[ (ra)” ka+a-1
B u(t)_ r(a) J.a F(ka) (log‘t)

|

k+1

k+1 < (4®) [ (r(a)" (k+1)a-1 _as
B u(® = r(a) fa (ka) (logs) B(ka, a)|u(s)—
k1 (@) e[ @)\ AED e | s
B u(t) = r(a) fa r'(ka) (10 s) F((k+1)a) ( ) s
W+
k+1 t| (g®Or@) E(k+1)oc—1 —ds
B u(e) < fa r(@r(k+1a) (logs) u(s) p

r(@r(k+a)
- (9@®Or@)"

t
t\"* ! —ds
U(t) < Cl(t) + f n=1m(log;> Cl(S) T 0<t<T

u(®) < a0 (1+ 27, 90 (1 (10g2) "] )

r'(e)r(na) S

u(t) < a(t) (1 + anlw (logé)na
lo "

i n t E na—-1
Since B"u(t) < | log- u(s)ds - 0,n - oVt € [0,T)

t
) , then
a

r(@)nar(na)

w (g@®Or@)"

u(® = (14 X
(9@r@(iogt))

r'(@)nal (na)

t

g;) ) , we have that

u@®) <a@®|(1+Xy-, ) , We obtain

(s@r@(iogt))’
r(na+1)

1 o
u®) <a@®)|(1+ ﬁzn:l

) , We get that

3 f g (s0r@(og)) \
u(t) < a(t) @Z”ZO TasD , hence

u(t) < a(t)E, (g(t) (log g)a F(a)) , the lemma is complete.
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Lemma (3.6):
let a > 0,and x(t) € L*([a,b]),R), 0<a<b< oo_then I(RED&)x(t) —
(FEDE)Y (O)llmar < C1(O)1x(E) = Y(©)llyar Where Cy(£) = (}j‘)@

I(FaDEO)x() = (FeDOYy O llyer < My () (llx() — y(Oll,

—a ay 2
_ ((ogg) ~  ((ogg)
where M, (t) = < D + ( D .
Proof.
From Definition(2.5), we have that

(C*4DOx(®) = (*4DOY®) = (1) [ (logt) * X2 -

r(11—a) (t %) fa (log;) )

C (1 4) [F(1ogl) ¢ G@y@)
- r(i-a) (t dt) fa (log‘r) T dr
Therefore,

1 d t @ — mMapr
ICHDEIE) = CHDEY O lher = o5 (1) [ (0g8) 2O g

T

o (@ - }’(T)”M“P(t%) jt(logg)_a &

Y@ g
T

I(FEDE)x() — (FEDH)y®)llyar =

ra- T
d t - d
ICEDE) = (AP Ollyer = s 6D = yDllyer (¢57) [ (10g5) &

I(FEDE)x () — (FEDE)y ()l yer
1

T (A-aord- )”x(T) — y(@llyar (t%) (10g;>

I(*EDHx(®) — (FEDE)Y(Ollmar

1-a |t

- i W YO (1) 51)
- (1 _ a)l—v(l _ ) x(T) Y(T) M*P dt Oga_
ICFADE(0) = (DY Ollusr = 15 148 =y llsr (@) (log )
(1083)

I(*@D)x () — (*EDO)Y(Ollyer = )le(r) y(@llyer

ra-—

(togg)
set C,(t) = F(l—ia) , We get that

IC*EDEx(E) = (FEDOYDllyar < COIIXE) = y(Ollwar
< G OUIx@® = yOll#[[*EDE (x(0) = y©)]].)
< GEOUD - yOlp* |- (r2) [7 (l0gh) * 222247 ” )

Ji (1o -)”’>

< GOl (@) = yOllp*Ix(©) = yOllp 772 a)( %

< Cl(t)<||x(t) YOllp + 1x(®) =yl - r(1 D )

(3.3)
t -
log— 10 a
< | llx@® —y®ll, (% + Cl(t) r(1 >>
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< (lx(@) = y©Oll, <(m )a) + <(:)(f5_)a)> ))
Set M, (t) = (((:ﬁ%_)a) + <(;O§£_)a) ) ) hence

ICFaDEO)x() — (FaDOy O llyer < My () (llx() — y(Oll,

(3.4)
Lemma (3.7):
Let a > 0, for x(t) € L*([a,b]),R),0<a<b <
Then
1. I1%4Dg *x(t) — RZD{";y(t)IIMa.v < GOlx(@) — y(@©)llyar
_ ~(logg)
where C, (t) = T@l).

2, IRED *x(t) = *ED: y () |lyar < Mp(©)(Ilx(2) — y(Ol) where M,(t) =

(00",

ar(a) ar(e)r(i-a) |’
Proof:

RH _RH G Ea_lﬂ _ Lt (10e )T 2@
1. MaDi%x(t) — “aD %y(t) = F(a) (logT) dt 5 (log T) —dt

AN X(T) y(7)

RHD—a _ RHD—(I — f - z -

a™t x(t) a*t y(t) r(a) a dT

T
Therefore

1 t a—1 D
174D %x(6) = MDZ“y O)ler < 7o f (10g-) L0k . Ol

)~y Ol f f1ogl)

T
(s
al’(a)

I*ED %x(t) — *iD *y ()l yar < .

1#GDs “x(8) — FaD “y () llyar <

lx(6) = y (O llyer

set C,(t) = ( Fg(_)) we get

2. IRGD*x(t) = *iDF Yy Ollyar < CONx(®) — y(Ollyar
(3.5)

t

I1%GD: *x () = *iD “y O llyer < C(O) | lx() — y Dl <1 - M)

ri-a)

176D “x(6) = *EDE Y (D) llyer < | llx(6) = y(t)up(( %) (os) (ox) )

r(a) ar(a) r(i-a)
t a
_ ((ogg) 1
Set MZ(t) o ( al (a) + aI*(a)I"(l—a))
(3.6)

Then, [I*4D;*x(¢) — RED; %y ()l yar < My()(lIx(©) — y(©l,)
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Lemma (3.8):

Let @ > 0,u > 0,and x(t) € L'([a,b]),R), 0 < a < b < oo then ("aD")x(®)
e Sl (*EDE Yy () | o

Ca(Olx(2) = (@)l when C5(8) = == ((e# — a¥)).

Proof:
a (u—1)
((RIéDa.#)x(t) (RKD“#)y(t)) m(t(l—u) %) fot (:ﬂ:u)a x(7)dT —

a d t -1
= (t(l m) )fa T y(t)drt

r- 06) (tu TH)a
- -1
r(l—a) ”_ U G =y ) y<f>)dr]
Therefore

I(*aDe*)x (@) = (RKD“’“)y(t)IIMap

-1
1 u_ a,
< ( [ f e (@) = Y@l pdr]
-1
I(*aD)x @ = (*aD )y Oll e < 12 = yOllwer F7—=3 ”_ U (th — )@ ]
[(F&D*)x (@) = (FEDE*)y Ol e
‘ua

d t
ul(1 —a) (tl_“ E) Ua Gl r“)‘“,ur(“‘l)drl

|
u“ _dy [0—(tt — a*)~ett
,uI“(l—ac)(t1 #E> —a+1 ]

a u _ ouy—a+l

(5PN = (EDEWO e < 16O = ¥l b (1142 %]

ul (1 — dt —a+1
[(F&D"*)x(®) — (*&D )y @]

< 1x(©) = YO llyer
(%D )x(®) — (*&D )y O] e _

< 1) = YOllger i () [C =TI
IC*&DE™)x(@) = (*aD™ )y O]y

< Nlx(®) = y@©)llmar

MEP
~ u s (th — aH)~ —a+1
= () =y Oller F(l—a)( ﬂdt) [ —a+1
a —a 4 1)(th — gh)~ayer-1
IS0 )(©) = (DOl < 10) = YOl b (o DD

IC*EDe)x (@) = (*aD )y O e <
(3.7)

((t# = a*)™)x (@) = y (Ol yar

F(l -a)

set C(t) = —ak)™* , we get
I(*EDE*)x(©) = (REDE™ Yy (Ol yap < €5 DX = Y@ llgar )now we get
I(6DE*)x () = (*ED* )y (Ol e
< (0 (IIx(@® = Ol + [[F4D{ (x (&) = y®)]| )

< GO =y Olly* |75 (e) J2 (1087) =222 ar]] )

T

< GO = YOl HIx®) = yOlly o (t2) [ (1ogt) ™ %)

T
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< C3(t) <||x(t) —y®Oll, + llx(®) — y(t)||pM>

r(i-a)

< (llx(®) - y(t)up(%wg(t)( )))

ri r(i-a)
— Uk (th—ak)—« pE(th—ah)=@ (logg)_a
< (Ilx(® y(t)l|p< o () e
B.8)t
[ u*(tFr—a)@ pE(th—ah)—@ (logé)_a
Mg(t)_< ri-a) +( e )m_a) , hence

I(FaDEO)x () = (FeDH)y®)llmer < Ms(®)(lx (@) — ¥yl

Theorem (3.3): solution of the Riemann—Hadamard
Let x:[—7,T] = R™ Be a continuous Fractional order nonlinear differential
differential function , T > 0 then x(t) is a control nonlocal system (1.1),if and only if
(FiD7 e (Ax(t) + f (& x(6), REDfx(t — 5) ) + Bu(t)) + x(a)
x(t) =
#(0) for—t<t<0
(3.9)
Proof:

For —t < t < 0, we have the solution is x(t) = ¢(t), now from lemma (3.4) , we have
that

x(t) = REp;/@ (Ax(t) +f (t,x(t), RED“Hx(t — s)) + Bu(t)) +x(a) 0<t<T ,
implies that
x(t) = x(a) = (Ax(t) + f (£ x(6), "D x(t — 5) ) + Bu(t))
,Ripre(REDEx(t)) = REp ** (Ax(t) +f (t x(t), D x(t — s)) + Bu(t)) By using
lemma (3.4), we obtain
FEDEx(t) = Ax(t) + f (&, x(6), RED{*x(t — 5) ) + Bu(t).
The other side of proving which given by:
FEDEx(t) = Ax(t) + f (&, x(6), RED{x(t — 5) ) + Bu(t)
RED;*(REDEx (1)) = RED; @ (Ax(t) +f (t,x(t), RED x(t - s)) + Bu(t))
x(t) = x(a) = *4D; % (Ax(t) + f (£x(6), *EDFx(t = 5) ) + Bu(t) ), therefore
x(6) = D7 (Ax(t) + f (&, x(6), KD x(t — 5) ) + Bu(t) ) + x(a),
is the solution of (1.1).

Theorem (3.4): proof:

Consider the Riemann—-Hadamard and Let x; (t) and x,(t) be any two different
Riemann —Katugampola Fractional order solutions to system (1), then x(t) and y(t)
nonlinear differential control nonlocal both satisfy the formulation of solution
system (1.1) with (f(t,00) = (1.1). Also, let &(t) = x1(t) —x,(t) =
[0, ...,0]7).Then has a unique continuous ¢(t) — d(t) = 0, one can obtain &(t) =
solution. 0for —t <t < 0. Hence the system
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(1.1) has a unique continuous solution for -1 <t <0.
Now, for0 < t < T, we have that

£(0) = 1, (6)-xa(8) = *AD7* (Ax(e) + f (&,2(8), REDx(e = ) ) + Bu(®) ) -
RID; (Ay(©) + £ (6,70, D y(e - 9)) + Bu(®)
£ = M7 (45 + £ (650, D =) ) + (@)

£ =50t (108)) " (46@ + £ (2.6@, DM@ - 9)) — F@00)) S+ £(@

Where 0 < t < 1, we get that

60 = t (1og§)“_1 (A8 + £ (6.6, MDE e~ ) = £(,00) T+ £(@)
15 er =5 | (g ||A€(r) + (2.6, DT E(x — )

—f(T 00| ., =+ IE@lluer

[HoImS =m f log; ||A€(T)+L(t.€(r).R’éDf"”€(T—s)) M?
FIE@lyer

6@ e = s [ (1082) 1450 + 16 + GG =) oo T
FE@llyer

IOl = 75 [ (l08) 1480+ 167 + COF @)y T
+ 1@ lyer

Where £*(t) = supge[—,01 1§ (¢ + )|
a-—1

1t t dt
1€ @ller < 14+ L0+ Co(@lwer 7 [ (0g7) 15 @llar =
Set g(0)= (14 + L(1 + C3(0) e )

a—-1

1 [t drt
1€ @lluer < 8Os [ (log2) 1€ @llsr

€Il < 0E, (g(t) (10g:) r(oo)

IS (DI yar <0

I1E" (O llmyer < x(8) —y(t) <0

x(t) =y(t)

Ift <t <Tthené&(t)=x(t) — (t)
A+L(1+Cs ap

6Ol < PEELEOwr) [ 10,

when L; = (|4 + L(1 + C3(t) || yar)

. 1 [t t\* . dr
16" @llwer < (A + LA+ C(O)ller) s j (1o8=) 1€ @ lluer ==
. .1 t t -t dt
1€ @ller < Lpes [ (o) I @l 155
t

16 @llyer < Ly [ (log2) 18 @ e -

16 @llyer < (L) 7 S (10g2) e Dler =

T

d
IIf*(T)IIva

Ti-H
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~ a
1E* @ ller < 0Eq(Ly) ((l0g2) )

1€ (D) ||yer < 0,Then x(t) —y(t) =0

Then system (1.1) has a unique continuous solution.

3.1 Stability of the Riemann-Hadamard The solution to the Riemann-Hadamard
and Riemann —Katugampola Fractional and Riemann-Katugampola —Katugampola
order nonlinear differential control fractional order nonlinear differential
nonlocal system with maximal interval control nonlocal system (1.1) is in the
(0, T] equation (3.9). Then the following
Theorem (3.1.5): inequalities hold:

a
I 2(t) 11 < 8(8)Eq (o(e) (logs) )
(3.10)
Proof:
Since x(t) has the following formulation,

x(t) = {RZD{ “ (4x() + f (&,x(6), KD x(t — 5)) + Bu(®)) + x(a)
9(0) t € [-71,0]
t<T,we have

x(t) = $ (log )

. Thus, for 0 <

" (4x(0) + £ (6,20, FEDFx(t - )) + Bu(®)) L +l1x(@)llyer

t a-1 d
@l = o), (log7)  [|4x (@) + 7 (620, *D{*x(t =) + Bu@)| T
+x(a)|[yar
() llyar = ||Ax(E) + f(t,x(t), RED{x(t — 5)) = f(£,0,0) +
a—-1 d
w7 a (1087) X (@llyer
RK @t @1 ar
lx(Ollyar = ||[Ax@® +L(x(t) + REDEHx(t - 5) +Bu(t)|| " m ‘(log2) =
+lx(a)|[yar )
o
lx(@llyer = ||Ax(0) + L (x(0) + REDFx(t = 5)) + Bu(®)| apm o (0g%) =

+llx(@) e
x(E)llyer < (||Ax(t>||Map + L@y + IL(Cs@x(E —

t t

a-1 a—-1
N yew )75 Sz (logs) E+1Bu®llwer 7 J1 (1085) T+ l1x(@llyes

T

Ix(Ollyar < <||Ax(t)||Mam +{[LxO)||, e + H <C3(t) sup x(t +

9€e[-1,0]
a—1 a—1
ﬁ))‘ )i L (l0g%) " 4 1IBu®llyer o= [ (logZ) T+ llx(@llyar
M@P
a—1
(@ llwar < (1Allyer + L1+ CO),ap ) s Ji (l087) sup x(e+9) T+

r(a) T
) F(C{) 196[ ]
t N\* " d
1BuOllyer 75, (log—) T+ x(@)

T

t \¢1 g
Set 5(t) = ||Bu() || yer — F( -1, (1og-) %, we have that

T

5(t) = (llBu(t)IIp + ||[RED* Bu(t)|| ) @ Ja t(logf)a_1 % , we obtain that
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6(t)=<||Bu(t)|Ip+ L8 gy ) %) impies tha
4
_ (les)” 1
5(0) = (- I1Bu(Ol, + 1Bu(O)ly e
() = (I1Allyer +[|IL(1 + C(O)| yap ) + 12(@)llpser

=4+ (L +LCO)|ap + IX(@)Ipar

MEP

o(t) < ||Allyer + ||L||yyar + |ILC5(E)||yyer + |lx(a@)]|yer , which given that
o () < 1Ally + ILC; Ol + ILIL, + [[F4DEHA]|, + [|FADE L], + [|*4DE#Les )],

p(eh—at) (10g5) " (10g2) "
7@ < Il + L [FFEZ ety + |54 s = |
a(th—at) log& - :
(”m_;) )<(F(1_)a) ) + llx(@ll, + ||*4D/ ”x(a)||p , We get that
P
-a 0n—a
po(th—at) (logg) (logg)
o (6) < lAlly + LIl || 5= || MU et IR (e
u&(th—ah) (logf)—a ( )
1Ll || (s )(r(l‘i@ A+ )||x<a)||,,
-a 0n—a
pE(tH—ak) (log%) (loga)
o (6) < llAll, + LIl ||m—|| L+ TR A | Il | Rt +
pE(th—ak) (logﬁ)_“ ( t)—
1Ll || ( e )(r(l‘ia) + (14 )IIx(a)Ilp,lmpllesthat
Xl < 6(8) + o (t) — (1og 97 sup x(t+9) E
r(a)-a 9€e[-1,0]
lx(®)]l < 6(@) + | a(t) (RﬂDt_“’” sup x(t+19) ) , hence
Y€e[-1,0] M

I x(t) | < 5()E, ( a(t) (logg)a F(a)) .

3.2 Stability of the Riemann-Hadamard
and Riemann-Katugampola Fractional

order nonlinear differential control
nonlocal system by Using the step
method.

Theorem (3.2.6):

T [24
67(1) E o0(T) (logz) < &, where

5r(1) = 8:(1) +L |ra )aogjr)“(zr-l_
Snt1(DEgo0(n+ 1) (lOg (Tl+a1)T)

=

r(i—-a)

8 (VEq 00 (O ((TH) —
(T = (0 + D)D) 611 (1) = 6, ((E + D7) +

(th — a)“ [Z 19j(0Eq0,(j7) (log;) ]l

163

Assume that the Riemann-Hadamard
and Riemann-Katugampola —Katugampola
fractional order nonlinear differential
control nonlocal system (1.1) satisfy the
conditions in lemma (3.8). Then the
solution of (1.1) is finite-time stable if the
following conditions are satisfied:

(@)®)) +
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t

5,0 = UIBu®llyer +LCONllyer) 75 2 (1088) ™ £+ x(@)

Proof

From formula (3.9)

x(t) = REp; (Ax(t) +f (t,x(t), RED x (b — s)) + Bu(t)) +x(a) te0,1]
Therefore,

a—1
lx () llyer < ||Ax<t)+L(x(t))||Wr(a) [i(log2) " Z+ (IBu@lyer +

LG (Ox(t = ) 75 [ (10g%) I @ )l
(O ller <14+ Lllyer = f (1088) " 2@+ (B llyer +
LE O ller) s fi (10g2) L+ Ix(@ler

t

a-1 4.
Set 8,(8) = (IBu(llwar +LC;OI9lIwar) s [, (logs) &+ x(a)
0o(t) = [|1A + L||yar
By using the Lemma (3.5) for t € [0, 7]
lx(®)||yer < 6:(t) + oo(£)RED*x(¢) for t € [0, 7], we have that

T a
lx®ller < 81(D)Ea00(0) (log) (@)
Fort € (it,(i + 1t],1 < i < n, we have that

lx(@llmer < (Allyar ([x(@|lyer + Lllx(@)lpar + ”B”M“p lu(@)lper +
t dt

Hix@llr s S (logs) 247517 (1082)” (s = Dl &

r(a)
(@l < Qlles 12(Ollyer + LIKOlger + 1B lyer [ullyer +
t 1 A\*1 ar 1 —-u - dt
Hx@ller ) fi (logt) L (e1on Ly [T (s = Dllyer L, we
obtain that

Ix(@Ollmar < UAlper lx(@llyer + Llix@llyar + [Bllyar [u(Dlyer +

t t a—1 d a _ d u-1 d
Flix(@)llyer )r( o (IOg?) lJFL(ﬁ( t! ”a)f;u: su)a”x(s_f)”’”“” i

K pi-u 2t st _ ds 1-p st~ _
ri- a)( dt)f‘r (th—st)a Ix(s T)”Map + +r(1 @) (t dt)fl‘r(tﬂ S#)allx(s
)| yar —) we get that
x@llyew < UAllyer 12O llwer + LIxOlar + ||B||Ma.p @) llyer +

t \* 1 a
Hlx(@llwer )75 f; (108 ) i+L<||x<s — Dllyar s (4 = o) =

(t* —a")?) + llx(s = Dllyar

r(1 a)

o (8 = 20 = (¢ = 7)) o s -

) || yer r(1 - (( th — ) — (tH — w”)“)) . we have that

Ix(@©lmer < (Allper X llper + Lllx@llyer + IIBIIMw lu(llper +

+||x(a)||Map)r() t(logi)“'l$+L<||x<s—r)||Map (@ =) +

r(i-a

lIx(s = Dllyar (@)% + o+ lx(s = Dllyar r(1 5 (4 = n“)“))
Ix(@Ollyar < (”A”M“'p Ix(@llmar + Lllx(©)llyer + ”B”M“'p lu(@llyer +

+“x(a)”W>p<)ft(logf)a_1?+L<|w||Map (@@ = ah)™) +

r(1

r(i-a)
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(61 (DEqo0(0) log ﬁ)a F(“)> (O + -+

r(l-a

(5i(T)EaO'0(iT) (logg)a F(a)> o ((t* — n#)a)>
lx@lmer < (Allyar [x@|lyer + Lllx(@llpyer + |1Bllyer lu(lyer +

0 (@ — @) +

I¥(@llyer ) 75 fis (10g2)” —+L<a)

ri-a

(@)

(61 (1)Eq00 (1) (logg)“ r(a))

<6i(r)Eaao(iT) (1og —)“ r(a)> (e - r#)a)> , implies that
lx(Ollmar < (Allyar [[x(@Olyar + Lllx(@Olpyer + [|Bllyar lu(D)|[yer +
A (e~ @) +

@l ) s fi: (10g2)” —+L<w

r(l-a

(51(”'5“"0(”(10%) r (“)> (M + e+

r(l-a

(6i(r)Eacro(iT) (log. ) F(a)>

r(l-a

((t” — zr“)“)) we get that

51@)—(||B||Map||u<r>||Map+||x(a)||Mp)r(m)(logg)“u( L= (- a#)“)).

0o(t) = (J|Allyar + L), hence

e (Oller < (8,(0) +L ((&(r)Eaao(r) (10g2)° r(a))

[TRTAN:
F(la)(T at)®) + -+

<5i(r)Eaaoar)(logi;’)“r(a)) JCE n“w)) + 0o (O, ¥ x(O)llyer

r(l-a

e (@®llyer < 6 (G0 + D7) +L
0o (i + D7)"aD; “’”ux(t)uMav_

Set §;41(t) =6, ((i + D) + L

(o — @) [Si, 6, (DEq000) (10g2) 7@ | +

r(1 a)

r(1 a)

(e — @) [Sicy 8D Eq0o (1) (1085)” I'(@)]
By using lemma (3.5) , we obtain, for ¢t € (it, (i + 1)t ], implies that _
I @lluer < B1a(0) B + D7) (l0g) 1)

(Ol < 8:41(2) Eq0,(( + 1)7) <log( L+ D ) r(a)

Finallyfort € (n+ 1), T],1 < i < n, we get that
Ix(@Il < ([Allyer lx(@llyer + Lllx(@llyer +

t N\* 1 ar L t (th—gi\ @1 dt
1Bllwer lu@luer) 7o [y (logs)  F47 00 (55) It = 9llwer 25
@ llyer < UAllyes (O llyer + L@ llar + 1B llyer [u@llyes +

t A\ 1 gz u® 1-u 4 T skl ds
Hlx(@llyar )= [ (log?) 7+L(m(t e e s = Dllyar S +

_HE 1_#5) 2t skt B as
F(l—a)(t dt f.[ (th— S”)a”x(s T)”Map + 4
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sh-1 d @ d t sh-1

_HE (pr—p A (DT _sKTT _ wp B K p1-pd _
r(i-a) (t )f (t”—sl‘)“”x(s T)”M P +F(1—a) (t dt)f(n+1)1' (t#—s#)a”x(s
)| yar —) we get that

lx(@llyer < (Allyer lx@llyer + LIIx(@©llyer + ||Bllyer [w(@)||yer +

@ q
+1x(@) | yer )F(M) (10g7) 7’+L<m = (¢ =TT — (¢ —a“)“)llx(s—r)IIMap +

((#_

s = Dllwar 2 (6 = 2099 = (% = 79 + -+ [x(5 = Dllyar
-+ D@OFT = (t* =@M + (s = Dllyer

F(1 a)

—((t* = (n + (DM —

F(l a)
(t* — t”)“)) , We get that
lx(Ollyar < (lAllyar Ix(Ollyar + Lllx(©llyer + [1Bllyar [u(@yer +

Fllx(@liyer hma) (10g%)" ?ﬂ(uﬁnw (@)% = @)N)x(s = Dllyar +

r(i-a)

[%(T)%Go(logﬂ)“l" (a)] 5 (n(2))%) + [6n41(DEq0p(n +

F(l

1) (log ) r@)l— ((n+ 1)((r)ﬂ)a—(tﬂ)a)> , we get that
lx(Ollmar < (Allyar [[x(@Olyar + Lllx(@Olyer + [|Bllyar lu(D)|[yer +

@ q
+l1x(@) e )ﬁ(logg) 7’ +1 <||ﬁ||Map (@) = (@)™ +

r(l-a

[8(2)Eq0o(log =) T ()] 5 (D)) + [8n41(D)Eqoo(n +

r(1

1) (log> ) r(@)l— ((t“ —(n+ 1)(1)#)“)> , we get that

IR < UBllwew () e )) s (l0gZ) " + 1 (uauw ()" - (a#)“))

r(i-a

(<||A||Ma.p+L)R'§D;“||x(t>||Ma,p)+L((61<T)Eaao(log§)“r(a)> (@) + o+

[6n<r>Eaao(logE>“r<a)]

ri—-a)

r(1 ((n(T)M)a) + [On4+1(T)Eqoo(n +

1) (1og2) (@] =2 (e - (n + 1)(r)ﬂ)“)>

a
81(8) = (IBllyer Iu@llyer) 77 (108 ) +L<||a||Map = (@) -

(a“)“)>, ao(t) = ((1Allyar + L))
@I < 8,(T) + L [ (og ) (£ 6@ B (G0) (l0g ) ) (@) - (@)9)) +

Bars(Eg0o(n + 1) (log ™) (@) 2 (7% = (n+ @D+ 8o(DFED; “[x(0) e
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Set 6:(7) = 6,(T) + L [ (10g j0) ()1 §(0Ea00 () (log) r@) (1) = (@))) +

Sne1(D)Eq00(n + 1) (lo “”“’) I(@) = (T = (n+ (MY,

r(i-a)
By using lemma (3.5), we have that, fort € ((n + 1)z, T], implies that
a
()l < 87(1) Eqoo(T) (logZ) (@) (311)
Remark (3.1): differential control nonlocal system (1.1) is
The Riemann-Hadamard and Riemann- finite-time stable if it satisfies  the
Katugampola Fractional order nonlinear following condition:
& (1og T)a
87(1) Eqoo(T) (log) I'(@) <& where 57(7) =< e |Bu(Dl, +
1
”Bu(T)”p—I"(l—a)al"(a)> IfT € (0,7].
4. lllustrative example Katugampola —Katugampola fractional
In this section, we provide one example order nonlinear  differential  control
to illustrate the finite time stability of the nonlocal system (1.1).
Riemann-Hadamard and Riemann-
Example (4.1): Fractional order nonlinear differential
Consider the following Riemann— control nonlocal system (1.1) as follows :

Hadamard and Riemann -—Katugampola

CKD@H (L) = ( 0 1) (sin(t)) + (tsm(t) kKD (sin(t — 0. 1))) ( )u(t) t € [0,]

—2 0/ \cos(t) tcos(t) *ED* (cos(t — 0.1))
(4.12)
where u(t) = [u (t),u,(t)]” is a vector Now we need to compute

. _ a
control fun_ctlon_s. We have that_ 1Al = 2, 5(t) E,o(t) (logﬁ) as follows 6(t) =
and. By using inequality (3.6) in Theorem .
(3.1.5) with a €(0,1), and L, =L, = (l %92 ) IBu(®|l, +
1,a=0.1,forte ar (a) P
[-7,0], 1Bl = 1, lu(®Il =1, we have 1
that 1Bully r—ar | @nd
WA (et —ak) (1og?) " (1ogg) *

o(©) < 14lly + 1Ll [<FEZ52 + ki + e IR vy

LIl +(1 +( ) e @,

(#“(t”—a”)) (logé)_a
ri-a) r(i-a)

I x(t) I < 6()Eq, ( o(t) (log;) ) . Therefore

6\ . . £\ —al
(togg) 1 o piie(eri-ak) (1og)
I X(t) = ( al (a) ri-a)ar(a) ) =0 (2 + || r(1—ai) || t1+2 r(1—-ai) +
p P
(logi)_al (ui“i(t”i—a”)) (log&)_m n sin(a) 1 _
r(i-ai) r(1-ai) r(1-ai) F(l m) cos(a) » rlia+pw) €
P P

Now the following tables and figures Katugampola Fractional order nonlinear
explained the values of epsilon depended differential control nonlocal system (4.12)
on different values of and to be the is stable with their different values of
Riemann-Hadamard and Riemann- epsilon.
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Tablel. The value of ¢, for a = 0.1,

t u=a u=20.2 u=20.3 u=0.4 u=20.5 u=20.6 u=0.7 u=20.8 un=20.9
0.2 1.5222 3.1704 4.8799 6.5917 8.2535 9.8214 11.2600 12.5421 13.6484
0.4 1.5909 3.3344 5.1563 6.9883 8.7704 10.4520 11.9929 13.3624 14.5395
0.6 | 1.6209 3.4120 5.2956 7.1991 9.0582 10.8185 12.4357 13.8764 15.1168
0.8 | 1.6400 3.4639 5.3924 7.3512 9.2733 11.1016 12.7890 14.2993 15.6065

1 1.6539 3.5030 5.4680 7.4733 9.4508 11.3413 13.0959 14.6762 16.0540

Table2. The value of ¢, for @ = 0.5

t =01 p=0.2 | p=0.3 | p=0.4 U=a«a u=0.6 u=20.7 u=20.8 u=20.9
0.2 | 1.2014 | 2.5022 3.8514 5.2024 6.5139 7.7514 8.8868 9.8987 10.7718
0.4 | 1.5106 | 3.1661 4.8960 6.6355 8.3276 9.9244 11.3874 12.6878 13.8055
0.6 | 1.6589 | 3.4920 5.4196 7.3677 9.2704 11.0719 12.7270 14.2014 15.4709
0.8 | 1.7557 | 3.7082 5.7728 7.8697 9.9275 11.8847 13.6911 15.3080 16.7074

1 1.8271 | 3.8699 6.0406 8.2559 10.4405 12.5290 14.4673 16.2131 17.7352

Table3. The value of ¢, for @ = 0.9

T u=01|u=0.2 |pu=03|u=04| u=0.5 u=0.6 u=20.7 u=20.8 Uu=a

0.2 0.6532 | 1.3604 | 2.0940 | 2.8285 3.5416 4.2144 4.8318 5.3819 5.8566

0.4 1.1564 | 2.4237 | 3.7480 | 5.0796 6.3749 7.5972 8.7172 9.7127 10.5683

0.6 1.4423 | 3.0361 | 4.7121 | 6.4058 8.0601 9.6265 11.0655 12.3474 13.4512

0.8 1.6432 | 3.4707 | 5.4030 | 7.3657 9.2916 11.1234 12.8141 14.3274 15.6372

1 1.7983 | 3.8089 | 5.9454 | 8.1258 10.2760 12.3315 14.2394 15.9576 17.4557
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The graph displays the solution of the
fractional differential equation over
time for different values of the
parameter T, highlighting the effect of
these variations on the system's
stability. As u increases, the amplitude
of x(t) also rises for a given a,
indicating that x(t) grows with higher
u. When comparing the graphs for a« =

0.1, = 0.5, and @ = 0.9, it is clear
that the overall amplitude of the
function increases as u  grows,

emphasizing the significant influence of
a on the system's stability.

5. Conclusion

1. The Riemann—Hadamard and Riemann
—Katugampola Fractional order
nonlinear differential control
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