On Types of S_{β} - Functions

Hashmiya Ibrahim Nasser

Department of Math. - AL-Qadissiya Education jaberabrahim @ yahoo. com

Abstract

In this paper we introduce and study another types of functions in a topological spaces namely, S_{β} -compact and S_{β} -coercive by using the concept of S_{β} -open sets. Also we investigate some properties of these concepts and the relation between them.

Keywords: $S_{\mathcal{B}}$ -open, $S_{\mathcal{B}}$ -closed, $S_{\mathcal{B}}$ -compact space, $S_{\mathcal{B}}$ -continuous, $S_{\mathcal{B}}$ -compact, $S_{\mathcal{B}}$ -coercive.

الخلاصة

Introduction

In 1963, Levine initiated the notation of semi-open (briefly 5-open) sets and study their properties of this concept. Throughout the properties in topological spaces. In 1982, AbdEl-monsef defined the class of β -open set. Also in 2012, Kalaf B. and others were introduced a new concept denoted by S_R -open set. Finally, in 2013, Kalaf B. and Ahmed K. wre introduced a new type of compact spaces namely S_R -compact. Present paper, (X,T) and (Y,T') (or simply X and Y) denote topological spaces. The closure (resp. interior) of a subset A of a space X which denoted by cl(A) (resp. int(A). A subset A of X is called S-open (resp. β -open), if $A \subseteq cl(int(A))$ (resp. $A \subseteq cl(int(cl(A))))$. The complement of S-open (resp. β -open) set is called Sclosed (resp. β -closed) set.

Finally in section two, we give some basic properties of new types of functions and relation between them.

1. Basic definitions and notations:

We introduce some elementary concept which we need in our work.

1.1. Definition: [Al-Sheikhly, 2003]

A topological space X is called:

i. Locally indiscrete if every open subset of X is closed.

ii. Hyper-connected if every non-empty open subset of is dense.

1.2. Definition: [Kalaf, 2012]

i. A S-open subset A of a topological space X is called S_{β} -open if for all $x \in A$, there is a β -closed set F such that $x \in F \subseteq A$. A complement of S_{β} -open is called $S\beta$ closed.

ii. A subset A of a topological space X is called S_{β} -open if and only if A is S-open and it is a union of β -closed sets.

iii. A subset N of a topological space X is called S_{β} -neighborhood of a subset A of X, if there is a S_{β} -open set U such that $A \in U \subseteq N$. When $A = \{x\}$ we say that N is S_{β} - neighborhood of x.

iv. A topological space X is called S_{β} -compact, if for every S_{β} -open cover of X has finit subcover. Clearly, every S-compact space is S_{β} -compact.

1.3. Remark: [Kalaf, 2013]

i. If X is a T_1 -space, then every S_{β} -open subset in X is S-open.

ii. A space X is hyper-connected if and only if a S_{β} -open subsets of X are \emptyset and X. iii. If a space X is locally indiscrete, then every S-open subset of X is S_{β} -open.

1.4. Theorem: [Kalaf, 2012]

i. If *B* is clopen subset of a topological space *X* and *A* is open, then $A \cap B$ is S_{β} -open. ii. Let $A \subseteq Y \subseteq X$, if *A* is S_{β} -open subset in *X* and *Y* is open subset in *X*, then *A* is S_{β} -open subset in *Y*.

iii. Let $A \subseteq Y \subseteq X$, if A is S_{β} -open subset in Y and Y is clopen subset in X, then A is S_{β} -open subset in X.

1.5.Definition: [Al-Sheikhly, 2003;Kalaf, 2013]

Let $f: X \to Y$ be a function, then f is called:

i. S-compact if the inverse image for every compact set in Y is S-compact set in X.

ii. S_{β} -closed if the image for every closed set in Y is S_{β} -closed set in X.

ii. S_{β} -irresolute if the inverse image for every S_{β} -open set in Y is S_{β} -open set in X.

2. Type of *sp*-Functions:

In this section, we introduce a new S_{β} -functions called S_{β} -compact and S_{β} -coercive functions.

2.1. Definition:

A function $f: X \to Y$ is said to be S_{β} -compact if the inverse image for every compact set in Y is S_{β} -compact set in X.

2.2. Example:

i. An identity function $f: (X,T) \to (X,T')$ with $X = \mathcal{R}$, $T = \{ \emptyset, X, \{0\} \}$ and $T' = T_{ind}$ is S_{β} - compact.

ii. Let $X = \{1, 2, 3\}$ and $Y = \{2, 4, 6\}$ with topologies $T = T_{ind}$, $T' = \{\emptyset, Y, \{4\}\}$ resp. A function $f: X \to Y$ defined by $f(x) = 2x, \forall x \in X$ is S_{β} -compact, since X is locally indiscrete space [by using remark (1.3.iii)].

The following example shows that not every function is S_{II} -compact.

2.3. Example:

Consider a countable set X with co-countable topology, then the constant function from X into any space Y is not S_B -compact.

2.4. Theorem:

Every S-compact function is S_{β} -compact.

Proof: By using definition (1.2.iv), this is just the condition of our theorem.

The converse of the Theorem above is not true in general as the example shows:

2.5. Example:

Let $X = \mathcal{R}$ with topology $T = \{ \emptyset, X, \{0\} \}$, then a function $f: (X, T) \to (X, T_U)$ which defined by $f(x) = 0, \forall x \in X$ is S_{β} -compact, but not S-compact.

In general a s_{β} -compact and compact functions are independent as the following examples:

2.6. Example:

A function in example (2.3) is compact, but not S_{θ} -compact.

2.7. Example:

Let X = (0,1) with topology $T = \{\emptyset, X, G = (0, 1 - \frac{1}{n})\}, n = 2, 3, \dots$. A constant function f from a space X is a $S_{\mathcal{B}}$ -compact, but not its compact.

Recall that every 5-compact function is compact [Al-Sheikhly H. 2003], the converse is not true as the following example shows:

2.8. Example:

Let $X = I \cup \{x\}$ with I uncountable set and $x \notin I$, let $T = \{\emptyset, X, \{x\}\}$ be a topology on X, a constant function from X into itself is compact but not S-compact, because X is not S-compact space, since $\{\{x, x_i\} : i \in I\}$ is a S-covering of X but has no finite subcover.

2.9. Theorem:

Let $f: X \to Y$ be a S_{β} -compact function and A be a clopen subset of X, then $f_{|A}: A \to Y$ is also S_{β} -compact.

Proof:

Let K be a compact subset of Y, then $f^{-1}(K)$ is s_{β} -compact set in X, since A clopen in X. Then by Theorem (1.4.iii), $A \cap f^{-1}(K)$ is a s_{β} -compact set in A, but $A \cap f^{-1}(K) = f_{|A|}^{-1}(K)$, then $f_{|A|}$ is s_{β} -compact.

2.10. Remark:

A composition of two S_{β} -compact functions not necessary S_{β} -compact.

2.11. Theorem:

Let $f: X \to Y$ and $g: Y \to Z$ be two functions, then:

i. If f and g are s_{β} -compact and Y be a locally indiscrete, then gof is s_{β} -compact.

ii. If f and g are s_{β} -compact and Y be a T_1 -space, then **gof** is s_{β} -compact.

iii. If g compact and f be a s_{β} -compact, then $g \circ f$ is s_{β} -compact.

iv. If g be a S-compact and f be a S_{β} -compact, then gof is S_{β} -compact.

2.12. Definition:

A function $f: X \to Y$ is said to be s_{β} -coercive if for every s_{β} -compact subset B of Y there is s_{β} -compact subset A of X such that $f(X/A) \subseteq (Y/B)$.

2.13. Example:

i. The identity function for any space is S_{B} -coercive.

ii. Let $X = \{1, 2, 3\}, Y = \{4, 5\}, T_X = \{\emptyset, X, \{3\}\}, T_Y = T_{ind} \text{ and } f: X \to Y \text{ be a function}$ which defined by f(1) = f(2) = 4, (3) = 5, then f is S_{β} -coercive.

2.14. Theorem:

A S_{B} -compact function from S_{B} -compact space is S_{B} -coercive.

Proof:

Let $f: X \to Y$ be a S_{β} -compact function and let B be a S_{β} -compact subset of Y. Since X be a S_{β} -compact. Then $f(X/X) = \emptyset \subseteq f(Y/B)$, thus f is S_{β} -coercive.

2.15. Theorem:

A restriction S_{β} -coercive function on clopen subset is S_{β} -coercive.

Proof:

Let $f: X \to Y$ be a S_{β} -coercive function and F be a clopen subset of X, to show that $f_{|F}: F \to Y$ is a S_{β} -coercive function, let B be a S_{β} -compact subset of Y. Then there is a S_{β} -compact subset A of X such that $f(X/A) \subseteq (Y/B)$. Since F be a clopen subset of X, then by Theorem (1.4.iii), $F \cap A$ is $S\beta$ -compact subset of F. Since $f_{/F}(F \cap A) = f(F/A)$ and $F/A \subseteq X/A$ $\Rightarrow f(F/A) \subseteq f(X/A) \Rightarrow f_{/F}(F/F \cap A) \subseteq Y/B$, hence $f_{/F}: F \to Y$ is S_{β} -coercive function.

2.16. Theorem:

A composition of two S_{β} -coercive functions is S_{β} -coercive. **Proof:** Clear.

Recall that the s_{β} -irresolute image of s_{β} -compact is s_{β} -compact [Kalaf K. 2012].

2.17. Theorem:

Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that:

i. If *gof* is S_{β} -coercive with *g* is S_{β} -irresolute and one to one, then *f* is S_{β} -coercive. **ii.** If *gof* is S_{β} -coercive with *f* is S_{β} -irresolute and onto, then *g* is S_{β} -coercive. **Proof:**

i. Let **B** be a S_{β} -compact subset of **Y**, then g(B) is a S_{β} -compact subset of **Z**. Since $g \circ f$ be a S_{β} -coercive, then there is a S_{β} -compact subset **A** of **X** such that $g \circ f(X|A) \subseteq Z/g(B)$, then:

,thus

 $\begin{array}{l} f(X/A) = g^{-1}(\ gof(X/A)) \subseteq g^{-1}(Z/g(B)) = g^{-1}(Z \cap (g(B))^c) = g^{-1}(Z) \cap g^{-1}(g(B^c))) = Y/B \end{array}$

f is S_{β} -coercive function.

ii. Let C be a S_{β} -compact subset of Z. Since gof is S_{β} -coercive, then there is a S_{β} -compact subset A of X such that $gof(X/A) \subseteq Z/C$, thus $g(f(A^c)) \subseteq Z/C$, since f onto we get $g((f(A))^c)) \subseteq Z/C$. Then f(A) is S_{β} -compact subset of Y. Thus g is S_{β} -coercive function.

Journal of Babylon University/Pure and Applied Sciences/ Vol.(26), No.(3), 2018

Reference:

- Al-Sheikhly A. H., 2003, " On Semi Proper G-Space ", Thesis submitted to the col. of science AL-Mustansirya univ.
- Kalaf B. A. and N. K. Ahmed, 2012," s_{β} -open and s_{β} -continuity in topological spaces "Int. J. of Math. Sci. and Engg. Appls., III(1), P. 1-13.
- Kalaf B. A. and N. K. Ahmed, 2012, " S_{β} -compact and S_{β} -compact spaces "Int. J. of Math. Sci. and Engg. Appls., Vol. 3, Issue 4, April.
- Kalaf B. A. and N. K. Ahmed ,2012, "Weak separation Axioms And Functions With $S_{\mathcal{B}}$ -closed Graph", Int. J. of Math. Sci. and Engg. Appls., Vol. 6, No. III.
- Kalaf B. A. and N. K. Ahmed, 2013, "*S*_β-paracompact Spaces ", J. of Ad. Stud. in topology, Vol. 4, No. 1, p. 40-47.
- Kalaf B. A. and N. K. Ahmed, 2013," S_{β} -compact Sets and S_{β} -locally Compact Spaces ", J. of Ad. Stud. in topology, Vol. 4, No. 1, p. 113-118. Levine N., 1963, "Semi open sets and semi continuouty in topological spaces ", Amer. Math., Monthly 70, 36-41.
- Mashhour A. S., Abd El-monsef M. E. and El-Deeb S. E., 1982, "On pre-continuous and week Pre-continuous mappings", proc. Math. Phys. Soc., Egypt 53, p.47-53.