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1. Introduction 
Mutualism is a relationship between two species when one 

of them get benefits from the activity of the other. During 

the past several decades, theoretical studies the stability and 

persistence of mutualism interaction. For example, in [1], a 

delay commensalism model has been proposed and 

investigated the periodic solution of the model with 

impulsive action. Moreover, several theoretical [2-5] also 

claimed that it might be more appropriate to assume that the 

connection between two species is non-linear. They 

recognized the commensalism interaction with functional 

response. Lei has developed a stage-structure 

commensalism system; he has concluded that the system 

might admit the unique positive fixed point that is globally 

stable [6]. 

On the other hand, harvesting species is necessary to 

obtain a human resource. Many researchers examined the 

impact of harvesting on population dynamics [7-9]. There 

are three kinds of harvesting: constant, linear, and non-

linear harvesting. [10,11]. The latter is more realistic from 

the biological point of view [12]. In [13], a harvesting form 

known as the Michaelis-Menten type of harvesting has been 

suggested. In general, some harvesting might lead to the 

complex dynamic behaviors of the system; for instance, In 

[11], it has been shown that the Holling type II harvesting 

with the logistic model may admit zero, one or two positive 

equilibrium points. Further, in [14], it has been shown that 

the predator-prey model with Michaelis-Menten type 

harvesting might have a rich bifurcation phenomenon. 

This paper purposes of studying the effect of Michaelis-

Menten’s type of harvesting in the commensal of two 

ecological populations. According to the Holling-type II 

functional response, the first population benefits from the 

second. The residual of this article is arranged as follows: 

Section two considers the equilibrium points for our model. 

In section three, the stability of the equilibrium points has 

been provided. Finally, some numerical analyses have been 

investigated to confirm our analytical result. 

 

2. Assumptions of the Model 
Suppose a two coexist species model that incorporates the 

non-linear term of harvesting for the first species. The first 

species benefit from the latter, while the latter neither 

benefit nor harm from the former. Based on assumptions. 

𝑢(𝑡) is the density of the harvested first species, 𝑣(𝑡) is the 

density of the second. 

Under the above assumptions, the model can be offered 

by the following system of differential equations: 
𝑑𝑢

𝑑𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) +

𝛽𝑢𝑣

𝛼+𝑢
−

𝑞𝐸𝑢

𝑐𝐸+𝑙𝑢
= 𝑢𝑓1(𝑢, 𝑣),

𝑑𝑣

𝑑𝑡
= 𝑠𝑣 (1 −

𝑣

𝑚
) − 𝑑𝑣 = 𝑣𝑓2(𝑢, 𝑣).

  (1) 

Here, model (1) has been analyzed with the initial 

conditions 𝑢(0) ≥ 0 and 𝑣(0) ≥ 0.  

All system parameters (1) are assumed to be positive and 

described as: 𝑘, 𝑚 are the carrying capacities of the first and 

second species, respectively with intrinsic growth rate r, s; 

𝛽  is a commensalism coefficient; 𝛼  is half-saturation 

constant; 𝑞, 𝐸 are the effort, and the catchability rate applied 

on the first species, i.e.; 𝑞𝐸 represents the harvesting rate of 

the first species; 𝑐, 𝑙 are suitable constants; 𝑑 represent the 

predator’s natural death rate.  
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Figure 1 illustrates the schematic sketch of system (1) 

under examination. 
 

 
Figure 1. Schematic sketch of system (1). 

 

The equations on the right-hand side of system (1) are 

continuously differentiable functions on ℝ+
2 = {(𝑢, 𝑣), 𝑢 ≥

0, 𝑣 ≥ 0} . Therefore, there exists a unique solution for 

system (1).  

The positive invariance of ℝ+
2  for system (1) is studied 

first, and then boundedness is proven 

 

3. Positivity and Boundedness of the Solution 
Lemma 1. System (1) is positively invariant. 

Proof. Let 𝑈 = (𝑢, 𝑣)𝑇 ∈ ℝ2  and, 𝐹(𝑈) =
[𝑓1(𝑈), 𝑓2(𝑈)]𝑇, where, 𝐹(𝑈): ℝ+

2 → ℝ2 and 𝑓 ∈ 𝐶+
∞(ℝ+

2 ). 

Then the system (1) becomes: 

𝑈 =̇ 𝑓(𝑈), (2) 

with 𝑈(0) = 𝑈0. It is clear for any 𝑈(0) ∈ ℝ+
2 , such that 

𝑈𝑖 = 0, then [𝑓𝑖(𝑈)]𝑛𝑖=0 ≥ 0 (for i = 0; 1; 2). Now, any 

solution of the eq. (2) with 𝑈0 ∈ ℝ+
2 , say 𝑈(𝑡) = 𝑈(𝑡; 𝑈0), 

is such that 𝑈(𝑡) ∈ ℝ+
2 , for all 𝑡 > 0. Thus, system (1) is 

positively invariant [15].     

 

Theorem 1. All solutions 𝑢(𝑡) and 𝑣(𝑡) of the system (1) 

with the initial conditions (𝑢, 𝑣) are uniformly bounded. 

Proof. Let (𝑢(𝑡), 𝑣(𝑡)) be any solution of system (1) with 

a non-negative initial condition. Then for 𝑤(𝑡) = 𝑢(𝑡) +

 𝑣(𝑡), we have 
𝑑𝑤

𝑑𝑡
=  

𝑑𝑢

𝑑𝑡
+ 

𝑑𝑣

𝑑𝑡
 

𝑑𝑤

𝑑𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) +

𝛽𝑢𝑣

𝛼+𝑢
−

𝑞𝐸𝑢

𝑐𝐸+𝑙𝑢
+ 𝑠𝑣 (1 −

𝑣

𝑚
) − 𝑑𝑣  

Hence, 
𝑑𝑤

𝑑𝑡
+  𝜂 𝑤 ≤  𝑟𝑢 + 𝑠𝑣 + 𝛽𝑘𝑚 = 𝜇 

where 𝜂 = min. {𝑒𝑞, 𝑑}, Then 
𝑑𝑤

𝑑𝑡
+  𝜂𝑤 ≤  𝜇, then: 

0 ≤ 𝑤(𝑢(𝑡), 𝑣(𝑡))  ≤  
𝜇

𝜂
 (1 − 𝑒−𝜂𝑡) + 𝑤(0)𝑒−𝜂𝑡 ,   

Hence: 

0 ≤ 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 w(t) ≤  
𝜇

𝜂
,  

Therefore, all the solutions of system (1) that are initiated in 

ℝ+
2  are attracted to the region 𝜉 =  {(𝑢, 𝑣) ∈  ℝ+

2 ∶ 𝑤 =

𝑢 + 𝑣 ≤
𝜇

𝜂
}  under the given conditions. Thus, these 

solutions are uniformly bounded.     

 

4. Existence of Equilibria and their Stability 
In this section, the existence and stability analysis of the 

equilibrium points of system (1) is calculated. The 

computation shows that system (1) has the following 

equilibria 

1. The vanishing equilibrium point: 𝐹1 = (0,0).  

2. The second population equilibrium point: 𝐹2 = (0, 𝑣̈), 

where 𝑣̈ =
(𝑠−𝑑)𝑚

𝑠
, exists when: 

s > 𝑑.  (3) 

3. The first population equilibrium point 𝐹3 = (𝑢̃, 0) , 

where 𝑢̃ is the positive root of the following quadratic 

polynomial  

(
𝑟𝑙

𝑘
) 𝑢2 − (𝑟𝑙 −

𝑐𝑟𝐸

𝑘
) 𝑢 + 𝑞𝐸 − 𝑟𝑐𝐸 = 0.  (4) 

By discard rule of sign, eq. (4) has unique positive 

solution say 𝑢̃ if  

𝑞 < 𝑟𝑐.  (5) 

Moreover, if 𝑟𝑙 <
𝑐𝑟𝐸

𝑘
 and 𝑞 > 𝑟𝑐 are satisfied, then 

system (1) has no positive roots. Finally, if 𝑟𝑙 >
𝑐𝑟𝐸

𝑘
 and 𝑞 > 𝑟𝑐, then system (1) has two positive roots. 

4. The positive equilibrium point 𝐹4 = (𝑢∗, 𝑣∗),  where 

𝑣∗ =
(𝑠−𝑑)𝑚

𝑠
, exists when s > 𝑑 and 𝑢 , is the positive 

solution of the following polynomial 

𝐴𝑢3 + 𝐵𝑢2 + 𝐶𝑢 + 𝐷 = 0.  
where 𝐴 = 𝑟𝑠𝑙 > 0,  

𝐵 = 𝑐𝐸𝑟𝑠 + 𝑟𝑠𝑙(𝛼 − 𝑘) + 𝑠𝑞𝐸𝑘𝑙, 
𝐶 = −[𝑟𝑘𝑠𝛼𝑙 + 𝑟𝑘𝑠𝑐𝐸 − 𝑟𝑠𝛼𝑐𝐸 + 𝑘𝛽𝑙𝑚(𝑠 − 𝑑) −

𝑠𝑞𝐸𝑘𝛼𝑙 − 𝑠𝑞𝐸2𝑘𝑐], 
𝐷 = −𝑟𝑘𝑠𝛼𝑐𝐸 − 𝑘𝛽𝑚𝑐𝐸(𝑠 − 𝑑) + 𝑠𝑞𝐸2𝑘𝛼𝑐  

Therefore, by discard rule of sign, the above equation 

has a positive root, say 𝑢∗  either if the following 

conditions  

𝛼 > 𝑘  

𝐷 < 0,  
hold. Or when 𝐵, 𝐶 and 𝐷 are all negative. 

Otherwise, system (1) could have no positive fixed point 

or has two fixed points depending on the sign of 𝐵, 𝐶 

and 𝐷.  

 

4.1 Stability of equilibria: 
Now, local stability around the above equilibrium points is 

clarified. First, the variational matrix of the system (1) at 

each point is computed, and then, the eigenvalues of the 

resultant matrix are calculated. 

1. The variational matrix of system (1) at the vanishing 

fixed point 𝐹1 = (0,0) can be written as: 

𝐽(𝐹1) = [
𝑟 −

𝑞

𝑐
0

0 𝑠 − 𝑑
].  

Then, the eigenvalues of 𝐽(𝐹1) are given by 𝜆01 = 𝑟 −
𝑞

𝑐
 

and 𝜆02 = 𝑠 − 𝑑. That means 𝐹1 is a locally asymptotical 

stable point if and only if 𝑟 <
𝑞

𝑐
 and s < 𝑑  hold. 

Otherwise, if one of the previous conditions are violated, 

then 𝐹1become a saddle point. Moreover, if both of the 

previous conditions are violated, then 𝐹1  become an 

unstable node.  

2. The Jacobian matrix of the system at 𝐹2 can be written 

as: 

𝐽(𝐹2) = [
𝑟 −

𝑞

𝑐
+

𝛽𝑣̈

𝛼
0

0 −(𝑠 − 𝑑)
].  
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Then, the eigenvalues of 𝐽(𝐹2) are given by 𝜆11 = 𝑟 −
𝑞

𝑐
+

𝛽𝑣̈

𝛼
 and 𝜆12 = −(𝑠 − 𝑑) < 0 . That means 𝐹2  is a 

locally asymptotical stable point if the following is 

satisfied 

𝑟 +
𝛽𝑣̈

𝛼
<

𝑞

𝑐
, (6)  

Otherwise, 𝐹2 become a saddle point. 

3. The Jacobian matrix of the system at 𝐹3 can be written 

as: 

𝐽(𝐹3) = [
𝑟 −

2𝑟𝑢

𝑘
−

𝑐𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2

𝛽𝑢

𝛼+𝑢

0 𝑠 − 𝑑
]. 

Then, the eigenvalues of 𝐽(𝐹3) are given by 𝜆21 = 𝑟 −
2𝑟𝑢

𝑘
−

𝑐𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2  and 𝜆22 = 𝑠 − 𝑑 . That means 𝐹3  is a 

locally asymptotical stable point if the following 

conditions are satisfied 

𝑟 <
2𝑟𝑢

𝑘
+

𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2  

𝑠 < 𝑑.  

On the other hand, if one of the previous conditions 

are violated, then 𝐹3 become a saddle point. Moreover, 

if both of the previous conditions are violated, then 𝐹3 

become an unstable node. 

4. The Jacobian matrix of the system at 𝐹4 can be written 

as: 

𝐽(𝐹4) = [
𝑟 −

2𝑟𝑢∗

𝑘
+

𝛼𝛽𝑣∗

(𝛼+𝑢∗)2 −
𝑐𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2

𝛽𝑢∗

𝛼+𝑢∗

0 −(𝑠 − 𝑑)
].  

Then, the eigenvalues of 𝐽(𝐹4) are given by 𝜆31 = 𝑟 −
2𝑟𝑢∗

𝑘
+

𝛼𝛽𝑣∗

(𝛼+𝑢∗)2 −
𝑐𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2  and 𝜆32 = −(𝑠 − 𝑑) . That 

means 𝐹4 is a locally asymptotical stable point in the 𝑅+
2  

if the following are satisfied 

𝑟 +
𝛼𝛽𝑣∗

(𝛼+𝑢∗)2 <
2𝑟𝑢∗

𝑘
+

𝑐𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2,  

s > 𝑑.  
It is clear that if one of the previous conditions are 

violated, then 𝐹4 become a saddle point. Moreover, if 

both of the previous conditions are violated, then 𝐹4 

become an unstable node. 

 

In the following, it will be shown that system (1) has no 

periodic solution, 

 

Theorem 2. System (1) has no periodic solution in ℝ+
2 , if the 

following condition is satisfied: 
𝛽

(𝛼+𝑢)2 >
𝑞𝐸𝑙

𝑣(𝑐𝐸+𝑙𝑢)2  (7) 

Proof. For any initial value (𝑢, 𝑣) in ℝ+
2 , let 𝐻(𝑢, 𝑣) =

1

𝑢𝑣
, 

ℎ1(𝑢, 𝑣) = 𝑟𝑢 (1 −
𝑢

𝐾
) +

𝛽𝑢𝑣

𝛼+𝑢
−

𝑞𝐸𝑢

𝑐𝐸+𝑙𝑢
 and ℎ2(𝑢, 𝑣) =

𝑠𝑣 (1 −
𝑣

𝑚
) − 𝑑𝑣. 

Clearly, 𝐻(𝑢, 𝑣) > 0, for all (𝑢, 𝑣) ∈ ℝ+
2  and its C1 function 

in ℝ+
2 . 

Now, since 𝐻ℎ1(𝑢, 𝑣) =
𝑟

𝑣
−

𝑟𝑢

𝑘𝑣
+

𝛽

𝛼+𝑢
−

𝑞𝐸

𝑣(𝑐𝐸+𝑙𝑢)
; 

𝐻ℎ2(𝑢, 𝑣) =
𝑠

𝑢
(1 −

𝑣

𝑚
) −

𝑑

𝑢
  

Hence: 

Δ(𝑢, 𝑣) =
𝜕𝐻ℎ1

𝜕𝑢
+

𝜕𝐻ℎ2

𝜕𝑣
.  

= −
𝑟

𝑘𝑣
−

𝑠

𝑙𝑢
−

𝛽

(𝛼+𝑢)2 +
𝑞𝐸𝑙

𝑣(𝑐𝐸+𝑙𝑢)2 < 0  

Note that Δ(𝑢, 𝑣)  does not change sign if condition (7) 

satisfies and is not identically zero in the ℝ+
2 . Then according 

to Bendixson-Dulic criteria, there is no periodic solution.     

 

5. Persistence Analysis 
In this section, the persistence of the system (1) is measured 

to indicate the existence of all system species for long time 

behavior. Recall that, from the mathematical point of view, 

the persistence of a system implies that there are no omega-

limit sets on the boundary planes for the strictly positive 

trajectories that initiate in ℝ+
2 .  

 

Theorem 3. Suppose that the boundary equilibrium points 

conditions hold, then system (1) is uniformly persistent if 

the following conditions are satisfied: 

𝑠 >
𝑠𝑣̈

𝑚
+ 𝑑,  (8) 

𝑟 >
𝑟𝑢̈

𝑘
+

𝑞𝐸

𝑐𝐸+𝑙𝑢̈
  (9) 

Proof. Consider the following function 𝜑(𝑢, 𝑣) = 𝑢𝑎𝑣𝑏 , 

where 𝑎 and 𝑏 are positive constants. Obviously 𝜑(𝑢, 𝑣) >
0 for all (𝑢, 𝑣) ∈ ℝ+

2  and 𝜑(𝑢, 𝑣) → 0 when 𝑢 → 0 or 𝑣 →
0. Consequently: 

𝜔(𝑢, 𝑣) =
𝜑̇

𝜑
= 𝑏 [𝑠 (1 −

𝑣

𝑚
) − 𝑑] + 𝑎 [𝑟 (1 −

𝑢

𝐾
) +

𝛽𝑣

𝛼+𝑢
−

𝑞𝐸

𝑐𝐸+𝑙𝑢
]. 

Now, the only possible omega limit sets of the system (1) 

on the boundary of 𝑢𝑣 -plane are the equilibrium points 

𝐹1, 𝐹2 and 𝐹3. Thus according to the Gard method [16], the 

proof follows, and the system is uniformly persists provided 

that 𝜔(𝑢, 𝑣) > 0 at the boundary fixed points. 

Now, since: 

𝜔(𝐹1) = 𝑏(𝑠 − 𝑑) + 𝑎 (𝑟 −
𝑞

𝑐
);  

𝜔(𝐹2) = 𝑏 [𝑠 (1 −
𝑣̈

𝑚
) − 𝑑] + 𝑎 (𝑟 −

𝑞

𝑐
); 

𝜔(𝐹3) = 𝑏(𝑠 − 𝑑) + 𝑎 (𝑟[1 −
𝑢̈

𝑘
] −

𝑞𝐸

𝑐𝐸+𝑙𝑢̈
).  

It follows that, 𝜔(𝐹1) > 0, 𝜔(𝐹2) > 0  and 𝜔(𝐹3) >
0 under conditions (8), (9) and the boundary equilibrium 

points conditions for all values of 𝑎 and 𝑏. Then, system (1) 

is uniformly persistent.     

 

6. Bifurcation Analysis 
This section determines the bifurcations condition for the 

positive equilibrium point of the system (1). For this 

purpose, system (1) can be rephrased in the following vector 

forms 
𝑑𝑈

𝑑𝑡
= 𝐹(𝑈)  with 𝑈 = [

𝑢
𝑣

]  and 𝐹 = [
𝑢𝑓1(𝑢, 𝑣)

𝑣𝑓1(𝑢, 𝑣)
] . For 

any non-zero vector 𝐾 = (𝑘1, 𝑘2)𝑇 , the second derivate of 

𝐹 to 𝑈 is given by: 

𝐷2𝐹(𝑈)(𝐾, 𝐾) = [
(−

2𝑟

𝑘
−

2𝛼𝛽𝑣

(𝛼+𝑢)3 +
2𝑐𝐸2𝑞𝑙

(𝑐𝐸+𝑙𝑢)3) 𝑘1
2 +

2𝛼𝛽𝑘2

(𝛼+𝑢)2

−
2𝑠𝑘2

2

𝑙

] 

 (10) 
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Theorem 4. For the parameter value 𝑑∗ = 𝑠, then system 

(1), at the equilibrium point 𝐹4 , has a saddle-node 

bifurcation. 

Proof. According to the variational matrix 𝐽(𝐹4), system 

(1), at the equilibrium point 𝐹4, has a zero eigenvalue, say 

𝜆32 = −(𝑠 − 𝑑) = 0, at 𝑑 = 𝑑∗ , and the Jacobian matrix 

𝐽(𝐹4), becomes: 

𝐽∗(𝐹4) = [
𝑟 −

2𝑟𝑢∗

𝑘
+

𝛼𝛽𝑣∗

(𝛼+𝑢∗)2 −
𝑐𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2

𝛽𝑢∗

𝛼+𝑢∗

0 0
].  

Now, suppose that 𝐾4 = (𝑘1
4, 𝑘2

4)𝑇  is an eigenvector 

corresponding to the eigenvalue 𝜆32 = 0. Thus, (𝐽∗(𝐹4) −
 𝜆32𝐼)𝐾4 = 0, which implies: 

𝑘2
4 = − (𝑟 −

2𝑟𝑢∗

𝑘
+

𝛼𝛽𝑣∗

(𝛼+𝑢∗)2 −
𝑐𝑞𝐸2

(𝑐𝐸+𝑙𝑢)2)
(𝛼+𝑢∗)𝑘1

4

𝛽𝑢∗ , 

where 𝑘1
4is any nonzero real number. 

Let 𝑋4 = (𝑥1
4, 𝑥2

4)𝑇  be an eigenvector associated with the 

eigenvalue 𝜆32 of the matrix (𝐽∗(𝐹4))𝑇. Then, ((𝐽∗(𝐹4))𝑇 −
 𝜆32𝐼)𝑋4 = 0, Subsequently, by solving this equation for 

𝑋4 , it is obtained that 𝑥1
4 = 0  and 𝑥2

4  is non zero real 

number. 

Now, to confirm that the conditions of Sotomayor’s 

theorem for saddle-node bifurcation are satisfied, the 

following is considered: 
𝜕𝐹

𝜕𝑑
= 𝐹𝑑(𝑈, 𝑑) = (

𝜕𝑓1

𝜕𝑑
,

𝜕𝑓2

𝜕𝑑
)

𝑇

= (0, −1)𝑇 .  

Therefore, 𝐹𝑑(𝐹4, 𝑑∗) = (0, −1)𝑇 and hence: 

(𝑋4)𝑇𝐹𝑑(𝐹4, 𝑑∗) =  −𝑥2
4 ≠ 0.  

Thus, the first condition of saddle-node bifurcation is 

satisfied. 

Now, by substituting 𝐹4, 𝑑∗ and 𝐾4 in (10), the following is 

obtained: 

𝐷2𝐹(𝐹4, 𝑑∗)(𝐾4, 𝐾4) = [
(−

2𝑟

𝑘
−

2𝛼𝛽𝑣∗

(𝛼+𝑢∗)3
+

2𝑐𝐸2𝑞𝑙

(𝑐𝐸+𝑙𝑢∗)3
) 𝑘1

42
+

2𝛼𝛽𝑘2
4

(𝛼+𝑢∗)2

−
2𝑠𝑘2

42

𝑙

].  

Hence: 

(𝑋4)𝑇𝐷2𝐹(𝐹4, 𝑑∗)(𝐾4, 𝐾4) =
2𝑠𝑘2

42

𝑙
≠ 0.  

This means the second condition of saddle-node bifurcation 

is satisfied. Thus, according to Sotomayor’s theorem, 

system (1) has saddle-node bifurcation at 𝐹4  with the 

parameter 𝑑∗.     

 

Corollary 1. According to Sotomayor’s theorem, the 

transcritical and pitchfork bifurcation cannot occur at 𝐹4 

with the parameter 𝑑∗ since 𝐹4(𝑋4)𝑇𝐹𝑑(𝐹4, 𝑑∗) ≠ 0. 

 

7. Numerical Analysis 
This section discovers model (1) dynamics by performing 

numerical simulations using MATLAB R2018b. For this 

purpose, the following parameter set is measured for system 

(1). 

𝑟 = 0.9, 𝑘 = 5, 𝛽 = 0.4, 𝛼 = 0.8, 𝑞 = 0.02, 𝐸 =
0.03 𝑐 = 𝑙 = 1, 𝑠 = 0.8, 𝑚 = 4, 𝑑 = 1. (11) 

For the above set of parameters, it is clear that system 

(1) has the vanishing 𝐹1 = (0,0) and the first species 𝐹3 =
(4.99,0) equilibriums point. Figure 2 and Figure 3 show the 

location and the stability behavior of these two equilibriums 

points. 
 

 
Figure 2. The two species nullcline which shows the 

number and location of the equilibrium point of 

system (1). 
 

Moreover, the behavior for the 𝐹1 = (0,0) confirm the 

result, which states that 𝐹1is a saddle point if one of the 

following conditions 𝑟 <
𝑞

𝑐
 or 𝑠 < 𝑑 is violated. Regarding 

the parameter given by (11), it is clear that the first condition 

is violated since 𝑟 = 0.9 >
𝑞

𝑐
= 0.02 . In this case, the 

eigenvalues of 𝐽(𝐹1)  have an opposite sign (𝜆11 =
−0.2, 𝜆12 = 0.88) (See Figure 3). On the other hand, Figure 

3 shows that 𝐹3 = (4.99,0) is a stable fixed point since the 

eigenvalues of 𝐽(𝐹3) are both negative (𝜆21 = −0.2, 𝜆22 =
−0.88) that confirms the stability conditions for 𝐹3. Further, 

it is clear from Figure 3 the solutions that started from the 

different initial points settle down to the 𝐹3 after some time. 
 

 
Figure 3. Phase plane examination with the data given by 

eq. (11). 
 

Now, using the same parameter in eq. (11) with 𝑑 = 0.6, 

system (1) has four different equilibrium points 𝐹1 =
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(0,0), 𝐹2 = (0,1), 𝐹3 = (4.99,0)  and 𝐹4 = (5.36,1)  (See 

Figure 4). 

Moreover, Figure 5 describe the behavior around the 

above equilibrium points as: 

1. The trivial fixed point 𝐹1 = (0,0) is a nodal source since 

the eigenvalues of 𝐽(𝐹1) 𝜆11 = 0.2, 𝜆12 = 0.55 are both 

positive. 

2. The second population equilibrium point 𝐹2 = (0,1) is 

a saddle point since the eigenvalues of 𝐽(𝐹2)  𝜆21 =
−0.2, 𝜆22 = 1.83 has the opposite of sign. 

3. The first population equilibrium point 𝐹3 = (4.99,0) is 

a saddle point since the eigenvalues of 𝐽(𝐹3)  𝜆31 =
−0.8, 𝜆32 = 0.2 has the opposite of sign. 

4. The positive equilibrium point 𝐹4 = (5.36,1) is a node 

sink saddle since the eigenvalues of 𝐽(𝐹4)  𝜆41 =
−0.2, 𝜆42 = −1.02 are both negative. 

 

 
Figure 4. The two species nullcline which shows the 

number and location of the equilibrium point of 

system (1). 
 

 
Figure 5. Phase plane examination with the data given by 

eq. (11) with d = 0.6. 
 

Using the same parameter in eq. (11) with 𝛽 = 0.9 , 

system (1) has the same behaviour as above. The only 

difference is that the density of the first species rises from 

5.36 to 5.76. This analysis shows that the increase in the 

commensalism coefficient leads to a rise in the first species 

(See Figure 6). 
 

 
Figure 6. The two species nullcline and phase plane 

examination with the data given by eq. (11) with 

𝛽 = 0.9. 
 

Furthermore, if we are substituting 𝑑∗ = 𝑠 = 0.8 in eq. 

(11), then system (1) has the same dynamic behavior as 

when 𝑑 = 1 (See Figures 7 and 8). This result authorises the 

result that has been evidenced in Theorem 4. which says 

system (1) at the equilibrium point 𝐹4  has a saddle-node 

bifurcation at 𝑑∗ = 𝑠 . As a result, system (1) with the 

parameter given in eq. (11) with 𝑑 ≥ 0.8 , loses the 

persistent and the solution settle down to the first population 

equilibrium point 𝐹3 . And when 𝑑 < 0.8 , system (1) 

converge asymptotically to the positive equilibrium point 

𝐹4 . Further, when the parameter 𝑑  passes 𝑑∗ = 0.8,  the 

number of equilibrium points decrease from four to only 

two equilibrium points. This result shows that 𝑑∗ = 0.8 

plays as a saddle-node bifurcation parameter at the 

equilibrium point 𝐹4. 
 

 
Figure 7. Phase plane examination with the data given by 

eq. (11) with d = 0.8. 
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Figure 8. The two species nullcline and phase plane 

examination with the data given by eq. (11) with 

d = 0.8. 

 

8. Conclusion 
In the suggested model, it has been noticed that system (1) 

has at least four different equilibrium points. The existence 

of the equilibria has been calculated. The system’s stability 

at 𝐹1, 𝐹2, 𝐹3  and 𝐹4  have described based on the detailed 

conditions. The persistence conditions of system (1) have 

been driven. The saddle-node bifurcation at the positive 

equilibrium point has been shown. The numerical 

simulations have been illustrated to confirm the logical 

results. The result has been exposed that the two 

commensalism populations can live together in abundance 

for a long time if the death rate is less than the intrinsic 

growth rate for the second population. Moreover, the 

commensalism coefficient positively impacts the density of 

the first species.  
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