```
عبد الوهاب و آخرون
```

(BA)

مجلة ديالي للعلوم الزراعية ، 3 (2) : 303 - 312 ، 2011

BA NAA

) BA NAA 2009-2008 . (

BA (100+ 75) BA+ NAA ¹⁻ . 100 NAA ¹⁻ . 75 (15 10 5)

. 2008 /9/25 -: (BA NAA) -1

. (NAA) (BA NAA)

(NAA) -3

(15) -4 (5)

Rutaceae Citrus sinensis L. (Citrus)

(1990)

> . 2010 / 12 / 8 . 2011 / 2 / 2

-2

```
عبد الوهاب و آخرون
```

```
مجلة ديالي للعلوم الزراعية ، 3 ( 2 ) : 303 - 312 ، مجلة ديالي للعلوم الزراعية ، 3 ( 2 ) .
```

. (1988) (1986) Starrantion . (2002 BA(50 (2004) 1 1- . 100 BA10 Valencia BA (1990) Halim Troyercitrange 10 1- . 200 NAA (2005)(2008)1- . 100 NAA BA NAA / 2009/10/1) 2008/9 /25 (/ 75 (BA) (NAA+BA) 1- . 100 (NAA) (15 10 5) (100+75) $(4 \times 3)($) 2009 2009 /10/1 (100/ (1986) Sridhar Mahaderean

```
عبد الوهاب و آخرون
                               مجلة ديالي للعلوم الزراعية ، 3 ( 2 ) : 303 - 312 ، 2011
                   (LSD)
%5
                                            .( 1990
                                                               )
                                                               -1
                                            (1)
- . 75 BA +<sup>1-</sup> . 100
                                   NAA)
                                                               (1
                                   ( % 93.33)
 (1989 Fosket 1981 Sachs)
                                         1- . 100
       NAA
                                                          NAA
   (1998
                 (1988) (
                     % 84.44
     NAA
                                                          BA
                                       (2004)
    . 100
                 BA (
                                                           10
```

BA NAA .1

•

	15	10	5	1-/.
65.55	66.66	66.66	63.33	control
46.66	43.33	46.66	50.00	NAA
84.44	86.66	83.33	83.33	BA
93.33	96.66	93.33	90.00	NAA+BA
6.136		n.s		L.S.D. 5%
	73.33	72.50	71.66	
	n.s			L.S.D. 5%

(1985) (2) (2) (49.55) BA NAA

عبد الوهاب و آخرون

مجلة ديالي للعلوم الزراعية ، 3 (2) : 303 - 312 ، 2011

(1981) Boswell Naure (1987) BA

15

(41.50) 5 (42.65) BA NAA

BA NAA .2

	15	10	5	1
33.52	34.55	33.54	32.48	control
45.40	45.96	45.35	44.89	NAA
39.92	40.03	40.19	39.56	BA
49.55	50.06	49.55	49.06	NAA+BA
0.428	n.s			L.S.D. 5%
	42.0	42.16	41.50	
	0.371			L.S.D. 5%

BA NAA (3)

NAA

(6.90)

NAA+BA BA
BA NAA

.

.()			BA NAA	.3	
	15	10	5		
				X	
6.90	6.93	6.90	6.86	control	
7.78	7.86	7.80	7.70	NAA	
7.03	7.10	7.06	6.93	BA	
7.45	7.56	7.43	7.36	NAA+BA	
0.104		n.s		L.S.D. 5%	
	7.36	7.30	7.21		
		0.090		L.S.D. 5%	
(/) -4 (4)					
		/	42.50	/ 29.16	
Olissaina	1	2 2 \		/ 29.16	
Oliveira	(3 2)		(1005) D 1	
15				(1995) Ramadas	
	15 (10 5) / 37.85			37.85	
(2)		15	37.03	
	15	(NAA+B	A)		
	15 (NAA DA)			/ 43.73	
		•		, .5.75	
/)			BA NAA	.4	
		(
	15	10	5		
				/	
29.16	29.73	29.36	28.40	control	
36.85	37.06	36.56	36.93	NAA	
39.04	40.86	40.03	36.23	BA	
42.50	43.73	42.23	41.53	NAA+BA	
0.604		1.066		L.S.D. 5%	
	37.85	37.05	35.77		
		0.523		L.S.D. 5%	

```
(^2)
                                                                 -5
                                          (5)
                         1318.15
                                                        (NAA+BA)
                                 866.03
                                                           NAA+BA
[ 2008
             ] (4 2
. 100
              NAA
                       15
                                                              . 1 -
                                                         <sup>2</sup> 1159.36
    5
        (15)
                       BA+NAA
                                                      1077.60
                      )
             2000
                                                           ( 1988
                                                        (4 3 2 )
                      15 (NAA+BA)
                                             2
                                                 1362.67
                                           835.73
                                                              5
(<sup>2</sup>)
                                                             .5
                                       BA NAA
                                              5
                   15
                                10
                                                      1 -
  866.03
             887.60
                          874.71
                                      835.73
                                                             control
                         1118.67
                                      1133.72
 1124.41
             1120.84
                                                              NAA
 1187.19
            1266.29
                                      1054.22
                         1241.07
                                                                BA
 1318.15
            1362.67
                                                          NAA+BA
                         1305.05
                                      1286.73
 27.585
                          47.77
                                                          L.S.D. 5%
                         1134.87
            1159.36
                                      1077.60
                          23.889
                                                          L.S.D. 5%
                      (
                                  100 /
                                        )
                                                                 -6
                                                  (6)
     NAA+BA
```

2.60 (4 2)

(1985 West Wood)

100/

2.87

```
عبد الوهاب و آخرون
                                    مجلة ديالي للعلوم الزراعية ، 3 ( 2 ) : 303 - 312 ، 2011
      (1988
                          )
                                                        Chlorophyllase
                                                            (2004)
      100
                                                                     1 -
               15
    100 /
                                    5
             2.65
                                                            100 /
                                                                     2.78
                                              (15)
                                (4 3 2
                                      BA NAA
                                                               .6
                          (
                              100/
                                      )
                     15
                                                  5
                                   10
   2.60
               2.66
                             2.60
                                           2.55
                                                                  control
   2.66
               2.73
                             2.67
                                           2.61
                                                                    NAA
                                           2.66
   2.74
               2.82
                             2.74
                                                                      BA
               2.91
   2.87
                             2.88
                                           2.81
                                                               NAA+BA
  0.24
                                                               L.S.D. 5%
                              n.s
               2.78
                             2.72
                                           2.65
                            0.110
                                                               L.S.D. 5%
                                        (
                                             / )
                                                                       -7
                                             (7)
                    NAA+BA
    (24.73)
                                                (32.52)
        (1986)
                 Starrantion
                                            (5
                                                 4 2
                  1-
                              50
                                       BA
                     .
                                                                       -8
                                                 (8)
     75
             BA
```

1- . 100

%49.45

%46.48

1-

NAA

			BA NAA	.7
		(/)	
	15	10	5	
				1
24.73	24.79	24.81	24.58	control
29.70	29.94	29.66	29.49	NAA
30.67	30.94	30.45	30.63	BA
32.52	33.06	32.50	32.00	NAA+BA
0.711		n.s		L.S.D. 5%
	29.68	29.35	29.17	
		n.s		L.S.D. 5%

BA (7) NAA (7) NAA (7) NAA (7) S 48.26 (7 5 2)

BA NAA .8

(1985

)

10 5 15 48.45 47.62 47.88 47.55 control NAA 46.48 46.67 46.52 46.26 49.45 49.48 49.42 49.44 BA 48.24 NAA+BA 48.35 48.45 48.37 0.249 L.S.D. 5% n.s 48.26 47.96 47.89 L.S.D. 5% 0.215

. (100+75) (NAA+BA) -1

.¹⁻ . 100 NAA

-2

```
عبد الوهاب و آخرون
                                        مجلة ديالي للعلوم الزراعية ، 3 ( 2 ) : 303 - 312 ، 2011
                                                                             -3
                                                      . 2000 .
                                     .1988 .
                                                 . 2004 .
                                                     . 2008 .
                                   . Citrus aurantium
                                         . 1990 .
                                                    . 2005 .
                    . Citrus aurantium
                 .1990 .
                                                    . 1998 .
                                                     . 1985 .
          .1988.
                                                         . 1988 .
                                                          .1987.
Fosket, D.F. 1989. Cytokinins in plant physiology "2<sup>nd</sup> 1, Tiaz and
       E, Zeeger . sinaur Assocsates Inc. Sunderland mass achusetts .
Halim, H.D.R. Kumar., B.G.Coombe and D.A. Spinall .1990.
       "Dormancy and bursting of in planted citrus bud and the effects of
       plant growth " substances International society of citrus Nursevy IV
       congress . South Africa; 1-5.
Mahaderean, A. and R. Sridhar. 1986. Methods in physiological
       plant pathology . sivakanmi publication 3<sup>rd</sup> ed . Madras-India .
Naure, E.M., S.B. Boswell and R.C. Hohmes. 1979. Chemical
```

treatments dayienght effect forcing and growth of newly budded

orange trees " *Hortscience*, 14 (3): 229 – 231.

- Naure, E.M. and S.B. Boswell. 1981. Stimulating growth of qusescent citrus buds with 6- benzyle amino purine. *Hortscience*, 16 (2); 126-163.
- Oliveira, D. and M.T.Ramadas. 1995. Techniques to improve the development of the "escudete" graft citrus fruit "Spanish, 121 p.
- Sachs, T.1981. The control of the patterned differentiation of resultant tissues " *Adr. Bot. Rev.* 56; 771-778.
- Starrantion, A.,A. Caruso and G.Zhi- Yng.1986. Influence some growth regulators on the taking of shoot tip grafting citrus. rivista. della or to florofrue Italiana (Italy). V.70 (2) p.117-126.
- West Wood, M.N. 1985. Temperat. zone pomology. Oregon state Univ. W.H. free man and company. San Francisco.

EFFET OF SCIONS TREATMENT PERIOD WITH GROWTH REGULATORS NAA, BA ON GROWTH OF BUDDED ORANGE ON SOUR ORANGE ROOTSTOCK.

S. A. Abed – Alwahaab * Al Mussaib Technical College. T. H. Bresam

A. J. Fahad

ABSTRACT

This study was carried at Al-Hindya horticultural station \ Kerbela during the season 2008-2009 to find out the effect of local orange scion treatment with 100 mg \l^-1 NAA and 75 mg \l^-1 BA and (100 mg \l^-1 NAA +75 mg \l^-1 BA) and control for 3 dipping periods(5 , 10 and 15 minutes) on the percentage of budding success and the root and vegetative growth characters of the budded seedlings . Sour orange seedlings were used as rootstocks . using RCBD , with three replicates . The results were summarized as follow : -

- 1- Higher budding success percentage were obtained with treatment of buds by (NAA+BA) at (100 + 75) mg \ l⁻¹ gave (93.39%) as compared with control (65.55%). The treatment with BA gave 84.44%, while there was decrease due to NAA (46.16%) as compared with the other treatments .
- 2- the treatment ($100 \text{ mg}\l^{-1} \text{ NAA} + 75 \text{ mg}\l^{-1} \text{ BA}$) showed significant increased in most studied the vegetative and roots characters .
- 3- Treatment with NAA at 100 mg\l⁻¹ resulted in significant increase in the vegetative and roots characters .
- 4- Dipping of scions in the growth regulators at 15 minuets period caused of a significant increase the vegetative and root characters . while 5 minuets period gave the lowest means of the characters studied .