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A B S T R A C T 

Recent advancements in generative artificial intelligence powered by deep learning have 
significantly improved image generation and manipulation, resulting in highly realistic 
images that pose substantial risks to multimedia security. The increasing similarity between 
authentic and deepfake images, especially those generated by Diffusion Models, highlights the 
pressing need for effective detection mechanisms. This study provides a comprehensive 
evaluation of counterfeit facial image detection, focusing on the generalizability and 
robustness of various detection methods. Using a dataset comprising real images from 
CelebA-HQ and synthetic images generated by five state-of-the-art models (StyleGAN2, 
VQGAN, DDPM, PNDM, and LDM), we benchmark four leading detection algorithms: 
Wang2020, Grag2021, Mandelli2022, and Ojha2023. 

The performance of these detectors was evaluated across different generative models and 
under various image perturbations, such as resizing, noise, blur, and compression. 
Additionally, we analyzed frequency-domain artifacts, revealing that GAN-generated images 
exhibit distinct frequency patterns, whereas DM-generated images closely resemble authentic 
ones. A novel hybrid approach combining spatial and frequency-domain features was 
proposed, yielding superior performance in detecting AI-generated human faces. Among the 
methods tested, Mandelli2022 achieved an AUC of 98.38%, while our ResNet-50+FFT model 
outperformed it slightly with an AUC of 98.42%. These results highlight the effectiveness of 
hybrid approaches in improving detection accuracy. However, detectors still face challenges 
in generalizing to diverse datasets, emphasizing the need for more adaptable and robust 
detection strategies. 
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1.  Introduction  

Over the past years, advances in manufacturing have made edited media more and more realistic and available. 
Even though, creative and beneficial applications can be attained easily through image generation such as 
entertainment and advertising, but rather ethical concerns formed as deep learning techniques where images can 
masquerade as humans, highlight the potential harms of media manipulation and artificial generation. For 
example deep learning techniques that change the speeches of politicians [1] can be a potential threat since it can 
spread misleading information, threats to individuals, and harm reputations[2]. Recently, the techniques have 
become an integral part of fraudulent schemes, results in scams as high as $25 million [3]. Given the emerging use 
of social media and online media, it’s not surprising that AI-generated images are becoming more intrusive in 
people’s lives. 

 

 

 

Fig. 1: Images Of Human Faces, Though Entirely Synthetic, Created By A GAN Trained Using The 
CelebA-Hq Dataset [29].  

 

Recently image generation evolved rapidly by introducing generative adversarial networks (GANs) [4,5,6,7,8] and 
variational autoencoders (VAE)[9]. In practical applications, these techniques grounded in deep learning promote the 
dissemination of misleading or deceptive information through the manipulation of images, commonly referred to by 
the contemporary term "Deepfake". The human face images produced exhibit a remarkable level of detail, often 
rendering them nearly indistinguishable from authentic images to the human eye. As a result, numerous 
methodologies aimed at the identification of counterfeit content have been articulated. [10, 11, 12]. 

Furthermore, several platforms, both commercial and open-source, have contributed to bringing this technology 
closer to the people, such as Stable Diffusion [17], Imagen [15], Dreambooth [16], Dall-e 2 [14], and Midjourney 
[13]. However, diffusion models (DMs) have facilitated image generation with high-quality, while the presence of 
manipulated content is increasing leading to hidden privacy issues [18, 19]. 

Nevertheless, Various GAN-based models [4, 7, 8] to generate non worldly face images produce surprisingly 
realistic results, but their output often contains patterns beyond what CNN can learn to detect effortlessly. 
Recently, Diffusion Models (DMs) have ushered in a new era in creating photorealistic images and many 
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researchers have been carrying out to implement them to further enhance the production quality. Due to open-
source communities making their model publicly accessible, individuals can easily create countless images of fake 
human faces without any effort. While this type of deepfake is potentially useful for applications such as 
entertainment and advertising, it can also be abused to create fraudulent schemes or assist in spreading 
misinformation. It is impossible to develop a single detection method that can classify generated face images 
generated by random models due to the diversity of generative models. 

 

Fortunately, detection methods [20, 21, 22, 23, 24, 25, 26] have been developed con- currently with generation 
methods. Some depends on easy training of convolutional neural network (CNN) classifiers with several dataset 
augmentation or preprocessing strategies [20, 24], while others utilizes special patterns left by the generation 
techniques [21, 22, 26]. Despite these advancements, numerous issues continue to persist in contemporary 
experimental frameworks. Primarily, a significant number of detection methodologies predominantly depend on 
extensive datasets for the purpose of training. Consequently, these methodologies primarily focus on images 
generated by a particular category of generative model. The generalization capabilities of such detectors have not 
been adequately explored. Although recent investigations [27, 28] have achieved some progress in the appropriate 
direction, their emphasis has been predominantly on broad categories characterized by abundant contextual 
information, such as outdoor churches, bedrooms, and similar environments. This introduces a new challenge. 
Whether these detectors can achieve success for synthetic images of the human face. Also, a detector’s resistance to 
normal image degradation, especially on DM-generated face images. 

 

This paper focuses on detecting AI-synthesized human face images, particularly those generated by Diffusion 
Models (DMs). To achieve this, a novel feature fusion pipeline is introduced, comprising two distinct branches: one 
processes spatial features of an image using a ResNet-50, while the other extracts frequency-domain features. These 
feature maps are then concatenated and passed through fully connected layers to determine the authenticity of the 
input image. 

The proposed architecture demonstrates exceptional performance and generalization capabilities, validated 
through benchmarks on synthetic human faces generated by seven popular generative models, including StyleGAN2, 
VQGAN, DDPM, PNDM, and LDM. The feature fusion pipeline effectively combines spatial and frequency-domain 
features, enabling robust classification of synthetic images. Benchmark results show the model surpasses state-of-
the-art methods such as Mandelli2022 and exhibits strong resilience against common image perturbations, 
including resizing, noise, and compression. 

Furthermore, this study emphasizes detecting DM-generated face images, addressing a critical gap in the current 
detection landscape. By integrating innovative methodologies and tackling previously underexplored challenges, 
this research advances the field of synthetic image detection and sets a new standard for future studies. 

 

2.  Related Works 

In this section, explore a brief overview of existing systems for generating deep- fake images such as “Generative 
adversarial networks (GANs) and Diffusion models (DMs)”, and examine different detection and analysis 
techniques. 

2.1.  Generative Mod els  

Generative adversarial networks (GANs) are one method of image synthesis tasks. A GAN [31] is trained through 
competition between two models, i.e., a generator and discriminator. The discriminator seeks to classify whether 
an image is real or fake, while the generator aims to trick the discriminator by creating images like those in the 
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dataset. Practically speaking, some GAN models [4, 6] take noise as input    and can extract high-resolution images, 
while others [5, 32] are conditioned on additional information, such as another image. In this paper we will only 
focus on un- conditional face image generation and adopt three pre-trained GAN models, namely- ProGAN [4], 
StyleGAN2 [7], and VQGAN [8]. 

Lately, the Diffusion Models have emerged as a preeminent methodology for image generation, with their 
conceptual foundations rooted in non-equilibrium thermodynamics [33]. Ho et al. [34] introduced denoising 
diffusion probability models (DDPM), which have exhibited remarkable efficacy in image generation when 
juxtaposed with the GANs paradigm [6]. Song et al. [35] subsequently presented denoising diffusion implicit 
models (DDIMs) to accelerate the image generation process while upholding the integrity of image quality. 
Further research, namely the ablated diffusion model (ADM) [36] proposed a more efficient architectural 
framework enhanced by classifier support. In subsequent investigations, Liu et al. [37] introduced pseudo numerical 
methods for diffusion models (PNDMs), resulting in augmented sampling efficiency and enhanced generative 
quality. Ultimately, the latent diffusion model (LDM) [38], which has exhibited superior performance relative to 
its diffusion counterparts, employs a cross-attention mechanism predicated on transformers [39] to effectively 
integrate image and text within the latent space. The generation performance has been significantly improved by 
stable diffusion v2, which is founded upon the principles of LDM and minimizes computational demands. These 
diffusion models demonstrate the capability to generate high-fidelity facial images. This paper encompasses four 
diffusion models within the benchmark, specifically DDPM, DDIM, PNDM, and LDM. 

 

2.2.  Detection Models  

The necessity for synthetic image generators has been present since the inception of image synthesis technology. 
Some detection methodologies have employed various features, including chromatic indicators [39], saturation 
indicators [40], blending anomalies [41], and gradient pattern [27], whereas alternative investigations rely on 
convolutional neural network (CNN)-based classifiers to identify counterfeit images. Scholars have adopted 
sophisticated neural network architectures as principal methodologies. For example, Rossler et al. [10] 
implemented the training of Xcep- tionNet [30] utilizing a comprehensive deepfake dataset. Marra et al. [43] 
examined several CNN-based architectures for the identification of deepfake imagery. 

 

Notwithstanding, the efficacy of most of the models declines in empirical assessments due to insufficient 
generalizability. Consequently, researchers have redirected their focus toward enhancing the generalization 
capabilities of detectors. Wang et al. [20] introduced a model exhibiting robust generalization on previously 
unencountered GAN-generated images by training a fundamental detection network using data subjected to JPEG 
compression and Gaussian Blur preprocessing. Grag et al. [45] augmented the work of [20] by refining the 
configuration of the network architecture. Shiohara et al. [11] fine-tuned a pre-trained Effi- cientNetB4 [46] and 
realized favorable outcomes in cross-data evaluations across multiple deepfake benchmarks. Mandelli et al. [24] 
trained several instances of Efficient NetB4 under varied conditions, thereby achieving state of the art performance.  

The investigations conducted by Dong et al. [47] and Ricker et al. [27 have elucidated that detectors designed for 
recognizing GAN-generated images have become obsolete, as they are predicated on the extraction of trainable 
noise patterns, which no longer hold value in the context of DM-generated images. Wang et al. [44] ascertained 
that images produced by diffusion models possess characteristics that facilitate reconstruction more readily than 
their natural counterparts. The Diffusion Reconstruction Error (DIRE) metric is employed to discern such 
characteristics. Lorenz et al. [48] substantiated the successful attainment of multi-local intrinsic dimensionality 
within the domain of diffusion detection. Amoroso et al. [2] illustrated the segregation of semantic and stylistic 
features in images, further demonstrating that a heightened level of separability for style domains exists within 
synthetic images. Nevertheless, the implementation of semantic-style decoupling presents a considerable 
challenge, as it necessitates specifically tailored training datasets. 
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This study presents a novel feature fusion pipeline that integrates spatial features extracted from ResNet-50 with 
frequency-domain features, enabling superior detection capabilities across a diverse range of synthetic images, 
including those generated by both GANs and diffusion models (DMs). This hybrid framework demonstrates 
enhanced generalization and robustness, consistently outperforming state-of-the-art methods such as 
Mandelli2022 [24], even under challenging image perturbations like resizing, noise, and compression. A 
significant contribution of this work lies in addressing the challenges posed by DM-generated face images, a 
critical gap in existing research. The proposed approach undergoes comprehensive evaluation across seven 
generative models, including advanced diffusion models, underscoring its versatility and resilience in detecting 
synthetic images. 

By combining spatial and frequency-domain features, this unified framework effectively addresses the 
limitations of prior methods, offering robust generalization across diverse generative models. The proposed 
method adapts to the rapidly evolving landscape of synthetic image generation, providing a scalable and reliable 
solution for detecting AI-generated content. 

 

3.  Methodology:  

This manuscript undertakes a thorough evaluation of counterfeit facial image identification. In this section, both 
the dataset and the benchmarking process are delineated. Thereafter, two fundamental aims of the benchmark, 
specifically the generalizability and robustness of a detection mechanism, and identifying methodologies to 
achieve these objectives. 

3.1.  Dataset  

The dataset used for this experiment is composed of real images from CelebA-HQ [4] Synthetic human face 
datasets and images generated by the five latest synthetic models, namely StyleGAN2 [7], VQGAN, DDPM [34], 
PNDM [49], and LDM [17]. For this only unconditional mode is employed to avoid unnatural face images. 
Moreover, each of the models undergoes training utilizing the CelebA-HQ [4] dataset. A uniform resolution of 
256x256 is employed throughout the entire dataset because it has a ubiquitous output size in the selected models. 
Lower or higher resolution created by certain model rescaled to 256x256 by using bilinear interpolation. Under 
these conditions, all models can effectively generate realistic human face images. For each generation model, a total 
of 10k images are gathered and they are split into: 8k, 1k, and 1k for training, testing, validation. 

 

3.2.  Data Preprocessing  

Before training and testing, the dataset underwent preprocessing to ensure uniformity. First, all images were 
rescaled to 256x256 pixels, matching the standard output size of the generative models. Subsequently, the 
dataset was normalized using the calculated mean and standard deviation to standardize input data distribution. 
Once normalization ensured uniform data distribution, the dataset was prepared for the training phase. 

 

A total of 4 deepfake detection algorithms has been implemented for experiments in our benchmark. All methods have 
achieved sufficient performance on general fake image tasks. However, their performance is dropped concerning 
the adaptability with DM generated images. The following detectors have been selected for the experiment. 
Wang2020 [14] 

 

The selected detectors are outlined as follows.  

• Wang2020 [20] performed data preprocessing with Gaussian blurring and JPEG compression then 
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feeding it into a ResNet-50, attaining sufficient generalization ability for GAN generated images.  

• Grag2021 [45] explored further variations of ResNet-50 to improve performance in practical scenarios.  

• Mandelli2022 [24] used an ensemble of five EfficientNetB4[46] networks to detect synthesized images. 
Different datasets created by various GAN models and different augmentation techniques were used to 
train each model separately. This strategy resulted in a significant improvement in overall performance. 

•  A large pre- trained vision-language model was utilized by Ojha2023 [25] and manifested rare 
generalization ability in detecting synthesized images. 

These detectors were rigorously evaluated to analyze their performance, adaptability, and limitations, 
particularly when applied to DM-generated images 

3.3.  Generalizabili ty  And Robu stness  

In this subsection, we evaluate the capacity for generalization of a detector when confronted with artificially 
generated human facial images. This inquiry can be approached through two distinct methodologies. The first 
involves training the detector using a multitude of categories of synthetic images to enhance its ability to 
generalize across various representations of human faces. To implement this initial strategy, this research 
employed the LSUN dataset [53], which comprises a wide array of synthetic image categories, including but not 
limited to office and store environments. Conversely, the second methodology investigates whether a detector trained 
on datasets derived from a specific generative model can maintain satisfactory performance when applied to previously 
unseen Generative Adversarial Networks (GANs) and diffusion models (DMs). To address this methodological concern, 
the training data is obtained from a consortium of GAN and diffusion models, followed by subsequent testing against 
previously unencountered data. 

Besides generalization ability, the benchmark additional steps are the robustness of detectors against common 
image perturbation. Particularly effectiveness of the succeeding perturbation is analyzed. 

• The operation of image resizing is conducted by initially down sampling the image to reduced resolutions 
utilizing a scale of {2, 4, ..., 10}, employing bicubic interpolation, followed by an upscale to dimensions of 
256×256. 

• Gaussian noise characterized by a mean of zero is introduced, with the standard deviation being selected 
from the set {5, 10, . . ., 25}. 

• The application of a blurry effect is achieved through the implementation of a Gaussian Blur kernel. The 
dimensions of the kernel are chosen from the range {3, 5, . . ., 13}. 

• JPEG compression is executed, and the effects of various quality factors are assessed individually, 
specifically from the set {10, 20, ..., 100}. 

3.4.  F r eq u en c y  A n al ys is  

As the image generation tools are continuously improving, their outputs become undetectable by humans in the 
spatial domain and even simple CNN-based detectors. GAN-generated images can be identified via its 
distinguishing features through frequency analysis  observed artifacts  in general  categories  of 
synthetic  images [51,20,27,28]. Synthetic human face images generated by various models can be detected by 
analyzing forgery traces in the frequency domain. Prior studies [20] have discovered that applying fast Fourier 
(FFT) to an image can extract the frequency spectrum. Figure 2 average frequency spectrum of 1000 images 
sample from Celeb-HQ dataset. 
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Fig. 2: Frequency Spectra Of Real Images Sourced From Celebq  Dataset And Generated Images 
From(Progan,Stylegan2,Vqgan)  

The frequency spectrum depicted by figure 3 manifests high contrast from prior studies [20, 51]. Nevertheless, 
high frequency noises are manifested by the dataset created by VQGAN. Also, StyleGAN2 exhibits quite fewer 
noises but still discernible from the real image spectra. On the other hand, the spectra of DM-created images are 
closely like the real images spectrum as shown in figure 2, excluding LDM which includes high frequency noise. 
Whilst images generated by DDPM and PNDM contain fewer visible artifacts in the frequency domain, they are more 
prone to high spectra density which deviated from real images spectra. 

  

Fig. 3: (Progan,Stylegan2,Vqgan)Noises.  

Significant discrepancies can be discerned between authentic images and artificially generated images in their 
frequency representations. The implications of these distinctions are further examined in this manuscript by 
employing a hybrid model, as depicted in figure 2, which can identify generated images produced by various 
Generative Adversarial Networks (GANs) and Diffusion Models (DMs). In particular, the detection output layer is 
designed as a categorical classification mechanism, with a fundamental pre-trained classification network, such 
as ResNet-50 [52] forming one of the branches and functioning as a feature extractor for both authentic and 
synthetic images. Conversely, the second branch applies Fast Fourier Transform (FFT) to the image, followed by a 
convolutional block that subsequently extracts features; these features, derived from both branches, are 
concatenated and subsequently input into a fully connected network. Furthermore, a categorical classification 
approach is employed as the final layer to assign labels to the images. 
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Fig. 4: Hybrid Detection Model Architecture  

 

Figure 4, shows the diagram of the hybrid detection model architecture, combining ResNet-50 for spatial domain 
analysis and FFT for frequency domain analysis, with feature concatenation and fully connected layers for final 
classification. This model aims to enhance detection capabilities for GAN and DM-generated images. 

4.  Experimental  Resul ts  

The experimental procedure is systematically delineated into two distinct phases. In the first phase, a variety 
of prominent detection methodologies are scrutinized, specifically Ojha2023 [25], Wang2020 [20], 
Mandelli2022 [24], Grag2021 [45] utilizing the weights disseminated by the respective authors. The detection 
algorithms were primarily trained on the LSUN dataset [53] which encompasses a wide array of general 
categories of synthetic imagery, whereas the latter was subjected to training on a synthetic face dataset [54] 
for comparative analysis. All detection algorithms were thoroughly evaluated using the entirety of the five test 
sets provided within this benchmark. 

In the second phase, the robustness of each detector against image perturbations is systematically evaluated. 
This evaluation encompasses all detectors from the first phase, which were tested on facial images generated 
by ProGAN and DDIM, inclusive of various perturbations.  

Following previous work about synthetic image detection and benchmarking Area Under Receiver Operating 
Characteristic Curve (AUC) scores are used to evaluate the detectors. Firstly, table 1 reports the performance of 
the detectors. Wang2020 performance is relatively low on images generated by both GAN and DM, however 
reasonable generalization among extensive categories of fake images has been documented by previous studies. 
High generalizability on GAN generated images was attained by Grag2021 but fails to achieve good performance 
on DM generated images. Ojha2023 Exhibits impressive transferability across images synthesized by both GANs 
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and DMs, excluding Style- GAN2. Relative to, the Mandelli2022 manifests exceptional performance in our bench- 
mark. The combination of ResNet-50 and frequency representation even outshines the cutting-edge performance 
on certain GAN models and DMs. In conclusion, detectors trained on extensive categories struggle to adapt 
synthetic face images. 

 

Table 1:performance of the detectors, Whites belong to the authors 

 

 

 

 
AUC (%) 

GANs DMs  
Average 

StyleGAN2 VQGAN DDPM PNDM LDM 

Wang2020 87.4 81.2 68.1 79.4 80.1 79.24 

Grag2021 99.1 99.4 60.2 68.9 99.2 85.36 

Mandelli2022 94.6 99.9 98.4 99.3 99.7 98.38 

Ojha2023 73.7 96.3 93.5 96.7 98.2 91.48 

ResNet-
50+FFT 

94.6 99.8 98.7 99.4 99.6 98.42 
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Fig. 5: Average Frequency Spectrum Of 1000 Images Sample From Celeb -Hq Dataset. 

Secondly, robustness of various detection algorithms in response to prevalent image perturbations is depicted 
in Figure 5. Even though both Wang2020 and their performance is evidently compromised by noise and 
compression artifacts. Similarly, as the intensity of perturbations escalates, the efficacy of Ojha2023 markedly 
declines. Notably, Mandelli2022 emerges as the most resilient algorithm, particularly when exposed to 
Gaussian blur and JPEG compression. However, the introduction of low resolution or significant noise adversely 
affects its operational performance. 

5.  Conclu sion,  And  F eatu re Work  

While significant progress has been made in generative AI detection, the rapid evolution of sophisticated models, 

particularly Diffusion Models (DMs), presents ongoing challenges. Existing detection techniques often struggle to 

generalize effectively across diverse generative models and rely heavily on extensive datasets, making them 

sensitive to variations in the data. To address these limitations, our hybrid model leverages spatial and frequency-

domain features, offering enhanced detection accuracy and robustness against common image perturbations. Our 

benchmarking results validate the effectiveness of this approach, with the ResNet-50+FFT model achieving the 

highest AUC (98.42%), surpassing the state-of-the-art Mandelli2022 model (98.38%) across a wide range of GAN 

and DM-generated images. This success underscores the practical potential of our method in detecting AI-

synthesized human faces and safeguarding multimedia content. However, despite its strengths, the proposed 

method has certain limitations that warrant further investigation. The integration of Fast Fourier Transform (FFT) 

and deep learning introduces computational complexity, particularly when applied to large, high-resolution images. 

Additionally, the model's ability to generalize across diverse domains remains a challenge. For instance, a model 

trained on social media imagery may not perform as effectively on medical or satellite images without significant 
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fine-tuning.  

Future research should focus on designing scalable and adaptable frameworks to address these challenges. Potential 
directions include optimizing computational efficiency for high-resolution data, improving cross-domain 
generalization, and expanding the model's capabilities to incorporate tasks like image quality assessment. For 
example, alongside detecting authenticity (real or fake), the model could identify compression artifacts or low-
quality distortions commonly associated with image manipulation. As generative AI continues to advance, the 
development of robust, scalable, and versatile detection techniques will be critical for protecting multimedia content 
and addressing the broader implications of synthetic media in various domains. 
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