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     Landform classification is the process of identifying and grouping 

different types of landforms based on their physical characteristics. This 

study investigated the use of Digital Elevation Models (DEMs) to 

classify landforms in Kirkuk City, Iraq. The study used two different 

DEMs: the Shuttle Radar Topography Mission (SRTM), the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global DEM (GDEM). It used three different landform classification 

models: the Topographic Position Index (TPI), Support Vector Machine 

(SVM), and Convolutional Neural Network (CNN). The results of this 

study showed that the CNN model was the most effective at classifying 

landforms. The CNN model achieved an overall accuracy (OA) of 

88.91% and a kappa of 0.883. The SVM model was the second most 

effective model, with an OA of 79.81% and a kappa coefficient of 0.781. 

The TPI model was the least effective model, with an OA of 67.12% 

and a kappa of 0.658. The field verification results showed that the CNN 

model was also the most accurate in terms of field mapping. The results 

of this study suggest that the CNN model is a promising tool for 

landform classification. 
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التحليل الطبوغرافي لتصنيف التضاريس باستخدام نظام المعلومات الجغرافية: دراسة حالة 
 لمدينة كركوك، العراق

  2نهاد داوود حسن  ،   *1جلال عبدالرحمن خضر

   .العراق ، كركوك ، قسم تقنيات هندسة المساحة ، الكلية التقنية كركوك ، الجامعة التقنية الشمالية ،21
 

 معلومات الارشفة  الملخص
تصنيف التضاريس هو عملية تحديد وتجميع أنواع مختلفة من التضاريس على 

ت أساس خصائصها الفيزيائية. تناولت هذه الدراسة استخدام نماذج الارتفاعا
( لتصنيف التضاريس في مدينة كركوك، العراق. استخدمت DEMsالرقمية )

: بعثة طبوغرافيا الرادار المكوكية DEMالدراسة نموذجين مختلفين من نماذج 
(SRTM ومقياس إشعاع الانبعاث الحراري والانعكاس الحراري المتقدم ،)

(. GDEMالعالمي ) DEM(، ومقياس ASTERالمحمول في الفضاء )
تخدمت ثلاثة نماذج مختلفة لتصنيف التضاريس: مؤشر الموقع الطبوغرافي واس

(TPI( وآلة ناقل الدعم ،)SVM( والشبكة العصبية التلافيفية ،)CNN .)
كان الأكثر فعالية في تصنيف  CNNوأظهرت نتائج هذه الدراسة أن نموذج 

% وكابا 88.91( قدرها OAدقة إجمالية ) CNNالتضاريس. حقق نموذج 
٪ 79.81هو النموذج الثاني الأكثر فعالية، حيث بلغ  SVM. كان نموذج 0.883

 OAهو النموذج الأقل فعالية، حيث بلغ  TPI. كان نموذج 0.781ومعامل كابا 

كان  CNN. وأظهرت نتائج التحقق الميداني أن نموذج 0.658وكابا  67.12%
ائج هذه الدراسة إلى أيضًا الأكثر دقة من حيث رسم الخرائط الميدانية. تشير نت

 يعد أداة واعدة لتصنيف التضاريس. CNNأن نموذج 
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Introduction 

The applications in the field of geomorphology require geospatial information about 

landforms as it defines the boundary conditions for the underlying processes operative in this 

field. According to Jacek (1997), a landform is a specific geomorphic feature on the Earth's 

surface. These features can be large-scale (such as plains or mountain ranges) or small-scale 

(such as individual hills or valleys), and they can also be composed of other landforms, such as 

hilltops, valley bottoms, exposed ridges, flat plains, or upper or lower slopes. Large-scale 

features and small-scale topography on the Earth's surface are examples of landforms that have 

an impact on human behavior in terms of habitation patterns. 

In geomorphological research, landform classification categorizes the surface of the Earth 

into several geomorphological kinds. Therefore, characterizing the topographic features of a 

particular place and comprehending their internal geomorphological development processes 

rely on proper landform classification. However, because of the complexity and dynamics of 

internal and external factors, landform types are not necessarily distinct from one another. On 

the surface of the Earth, transitional landforms with gradually altering surface morphologies 

are also extensively distributed. It is difficult to categorize these intricate and transitional 

landforms in this context using conventional landform classification. 

This study deals with automatic landform classification from remote sensing data based 

on advanced techniques such as deep learning. this research focused on developing new 

methods for the extraction of landforms based on deep learning techniques (multiscale CNN). 

https://doi.org/10.33899/earth.2023.142994.1139
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8441-3694
https://orcid.org/0009-0007-4213-1411
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The proposed model will be capable of identifying large-scale features and small-scale features 

through multiscale feature learning. The CNN architecture to be designed will also support 

efficient contextual feature learning and accurate classification of different landform types from 

DEM data. 

The methods of automated landform classification can be grouped into unsupervised and 

supervised classifications. Unsupervised landform classification (e.g., Irvin et al. 1997, 

Burrough et al. 2000, Adediran et al. 2004) can be conducted without a priori knowledge, while 

supervised classification (e.g., Brown et al. 1998, Hosokawa et al. 2002) requires it. DEM is 

the most common data required in landform classification tasks. Tunçay et al. (2014) used DEM 

to classify the Beypazari area (northern Turkey) landform. The DEM data were analyzed to 

determine landform classes. A strong correlation was found between landforms and land cover. 

The Landform classification with DEM analyses was very successful except for the narrow 

valleys located in hilly areas. To separate or identify narrow colluvial valleys in these hilly 

areas, the different resolutions and window sizes for neighboring must be tested for the 

landform classification. Higher spatial resolution (< 30 m) and multi-temporal data were needed 

especially in narrow valleys where irrigated areas and trees were not separated successfully. 

For the purpose of classifying landforms, supervised approaches have been developed to 

overcome the drawbacks of unsupervised methods. Prima et al. (2006) created a quantitative 

technique to categorize landforms using four morphometric parameters from slope and 

topographic openness thematic raster images obtained from DEMs. These factors may result in 

a genetic interpretation of topography since the many surficial processes and phases in the 

formation of slopes produce landscapes with various morphologies. The slope and topographic 

openness raster maps for Northeast Honshu, Japan, were created from 50-m DEMs. The Jennes 

algorithm was assessed for landform categorization in the salt dome of Korsia of Darab plain, 

Iran, in research by Mokarram et al. (2015). By employing least squares to fit a quadratic 

polynomial to a specified window size, Jennes' method employs a multi-scale approach. A 3x3 

and 10x10 window was employed in the investigation. DEM with a resolution of 30 m serves 

as the input data for classifying landforms. The findings demonstrated that the assessed 

approach can be useful for geology's predictive mapping. 

In recent works, deep learning methods were developed for landform classification. In 

the Chinese Loess Plateau, Li et al. (2020) created a deep-learning model for the automatic 

classification of landforms from DEM. Integrated data sources were used to train the algorithm 

to recognize and extract landform features. Different combinations of images, DEMs, and 

terrain derivatives are present in these integrated data sources. In order to compare how well 

the suggested deep learning system and the random forest (RF) method classified landforms, 

they were compared. The suggested method may obtain the greatest landform classification 

accuracy of 87% in the transitional area with a data combination of DEMs and images. 

Additionally, compared to the RF technique, the suggested deep learning method can classify 

landforms with higher accuracy and more clearly defined landform boundaries. Du et al. (2019) 

introduced a multi-modal geomorphological data fusion framework that enhances the 

performance of landform detection using deep learning-based techniques. In order to effectively 

represent landforms, it first uses a multi-channel geomorphological feature extraction network 

to generate various characteristics from multi-modal geomorphological data, such as shaded 

relief, DEM, and slope, and then it harvests joint features via a multi-modal geomorphological 

feature fusion network. To create the final representations of the landforms, a residual learning 

unit mines deep correlations from the properties of the physical and optical modality. To create 

labels for each sample of data, it uses a SoftMax classifier and three fully connected layers. 

According to experimental findings, this multi-modal data fusion-based method performs 

significantly better than traditional algorithms. The highest recognition rate was 90.28%, 

showing great potential for landform recognition. 
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Aim of study 

This research will focus on developing a detailed classification system that can be used 

to map and understand the distribution of different landform types in the study area. The 

classification system will consider factors such as slope, aspect, elevation, and land use, as well 

as the underlying geology and geomorphological processes. 
Materials and Methods 

Figure 1 describes the overall methodology of the proposed landform classification. The 

input data for landform classification are obtained from a variety of sources, including ASTER 

GDEM: which is a global digital elevation model (DEM) with a resolution of 1 arcsecond 

(approximately 30 meters), SRTM which is a global DEM with a resolution of 3 arcseconds 

(approximately 90 meters), and field data that are collected using GPS, surveying, and 

photography. The input data needs to be prepared and preprocessed before it can be used for 

landform classification. This research performed DEM filling which is the process of filling in 

gaps in the DEM data. DEM smoothing is the process of reducing noise in the DEM data. 

Filtering is the process of removing unwanted data from the DEM data. Resampling is the 

process of changing the resolution of the DEM data. This can be done using a variety of 

methods, such as nearest neighbor, bilinear interpolation, and cubic convolution. Terrain 

correction is the process of removing the effects of the Earth's curvature from the DEM data. 

In addition, this study used several landform factors: elevation, slope, aspect, plan curvature, 

profile curvature, mean curvature, tangential curvature, small neighborhood, and large 

neighborhood. For landform classification, three models were used including Topographic 

Position Index (TPI), Support Vector Machine (SVM), and Convolutional Neural Network 

(CNN). Moreover, the accuracy of a landform classification model is assessed using a variety 

of methods, including Overall Accuracy, Kappa Coefficient, and Confusion Matrix. 

 

Fig. 1. Overall landform classification methodology proposed in this study. 
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The study area for this research paper on landform classification is located in Kirkuk city, 

Iraq (Figure 2). Kirkuk is a historic and strategic city located in the north of Iraq, with a 

population of approximately 1.5 million people as of 2021 (World Population Review). The 

city has a semi- arid climate with hot summers and cool winters, and an average annual 

temperature of 22.6 °C (72.7 °F) (Climate-Data.org). 

Kirkuk is an urban center with a diverse population, including Arabs, Kurds, Turkmen, 

Assyrians, and others. The city has experienced significant growth in recent years, with a 

population increase of approximately 50% since 2003 (World Population Review). This rapid 

urbanization has led to significant changes in the natural landscape, with the expansion of built-

up areas and the conversion of agricultural land to urban use. 

The study area encompasses a range of landform types, including plains, hills, and 

mountains. The city is situated on the northern edge of the Mesopotamian Plain, which is a 

large alluvial plain formed by the Tigris and Euphrates rivers. To the north of the city, the 

landscape rises into the foothills of the Zagros Mountains, which form the boundary between 

Iraq and Iran. The hills and mountains in the study area are characterized by a range of 

geological formations, including limestone, sandstone, and shale (Iraq Geological Survey). 

The classification of landforms in the study area will be based on a combination of 

topographic, geological, and geomorphological characteristics. This research will focus on 

developing a detailed classification system that can be used to map and understand the 

distribution of different landform types in the study area. The classification system will take 

into account factors such as slope, aspect, elevation, and land use, as well as the underlying 

geology and geomorphological processes. 

 

Fig. 2. Location of the study area (Kirkuk City, Iraq). 
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This research will use and test two DEM data sources including SRTM and ASTER 

GDEM (Table 1). 

SRTM data sets are the outcome of cooperation between the National Aeronautics and 

Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA), as 

well as the involvement of German and Italian space organizations. With data points posted 

every 1 arc-second (about 30 m), this partnership seeks to create a nearly worldwide digital 

elevation model (DEM) of the Earth. The SRTM data sets' absolute height and geolocation 

errors, respectively, range from 5 to 10 meters. For example, voids in version 3.0 products have 

been filled using values from the ASTER GDEM version 2.0, the Global Multi-resolution 

Terrain Elevation Data 2010 GMTED2010, and the National Elevation Dataset. 

ASTER GDEM is a DEM that NASA and Japan's Ministry of Economy, Trade, and 

Industry (METI) collaboratively developed. Nadir and aft-looking near-infrared cameras can 

be used by ASTER to gather in-track stereo. With estimated accuracies of 20 m at 95% 

confidence for vertical data and 30 m at 95% confidence for horizontal data, these stereo pairs 

have been utilized since 2001 to create single scenes (60 x 60 km) that encompass land surfaces 

between 83N and 83S. GeoTIFF (georeferenced tagged image file format) files are used to 

distribute this model. The data grid is based on the WGS84/1996 Earth Gravitational Model 

(EGM96) geoid and has a resolution of 1 arc-second (about 30 m). Users must be aware that 

even though ASTER GDEM v. 002 is a better model than ASTER GDEM v. 001, the data may 

still contain anomalies and artifacts. One should be aware that these flaws might cause 

significant elevation errors on small scales. 

Table 1: Basic parameters of used DEMs. 

Institution, Year of release Official accuracy (vertical/ horizontal) Resolution (cell size) [m] DEM No. 
NASA and JPL, 2013 10 m / 13 m 24.7 × 24.7 SRTM v.3 1 

NASA and METI, 2009-2011 20 m / 30 m 24.7 × 24.7 ASTER GDEM 2 

The classification of landforms depends on the following: - 

A) Classification System 

This study used standard landform classification scheme. Nine landform classes were 

used as (1) Canyons, deeply incised streams, (2) Midslope drainages, shallow valleys, (3) 

Upland drainages, headwaters, (4) U-shaped valleys, (5) Plains, (6) Open slopes, (7) Local 

ridges, hills in valleys, (8) Midslope ridges, small hills in plains, and (9) Mountain tops, high 

ridges.  

B)  Preprocessing DEM Data 

DEM data often contains gaps, which can be caused by a variety of factors, such as sensor 

noise, occlusion, and data loss. These gaps can make it difficult to classify landforms accurately. 

There are a variety of methods for filling DEM gaps. One common method is to use iterative 

filling. Iterative filling works by filling the gaps in the DEM one at a time. The algorithm starts 

by filling the largest gap. Then, it fills the next largest gap, and so on. This process is repeated 

until all the gaps have been filled. 

DEM data can also be smoothed to reduce the noise and improve the accuracy of the 

classification results. Smoothing is done by averaging the values of the DEM data in a 

neighborhood around each point. There are a variety of methods for smoothing DEM data. One 

common method is to use moving average. Moving average works by averaging the values of 

the DEM data in a rectangular neighborhood around each point. 

Other necessary DEM preprocessing steps include resampling which is the process of 

changing the resolution of a DEM. This may be necessary if the DEM is not at the desired 

resolution for the classification task. Filtering which is the process of removing noise from a 

DEM. This may be necessary if the DEM contains a lot of noise. Terrain correction which is 
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the process of removing the effects of the Earth's curvature from a DEM. This may be necessary 

if the DEM is to be used for accurate landform classification. 

C)  Extracting Training Samples 

The training areas for machine learning classification models will be prepared based on 

a variety of sources, including existing landform classification maps of the study area, field 

observation, manual interpretation of contour data, relief appearances of the slope, and 

topographic openness maps. 

The existing landform classification maps will be updated based on the field data to be 

collected from the study area. This will ensure that the training areas are representative of the 

actual landforms in the study area. In addition to the existing landform classification maps, 

manual interpretation of contour data, relief appearances of the slope, and topographic openness 

maps will be used to collect landform samples. This will help to ensure that the training areas 

are diverse and representative of the full range of landforms in the study area. Based on the 

classification scheme, several samples for each landform class will be collected and prepared 

for training the landform classification models. This will help the models to learn to identify 

the different landform classes and to classify new data accurately. 

D) Data Normalization 

Data normalization is the process of converting data into a common scale. This is done to 

ensure that all of the data is treated equally when it is analyzed. Data normalization is an 

important step in landform classification. This is because it ensures that all of the data is treated 

equally when it is analyzed. This can help to improve the accuracy of the classification results. 

Min-max normalization: This method converts the data into a range of 0 to 1. This is done 

by subtracting the minimum value from each data point and then dividing the result by the 

difference between the maximum and minimum values. 

 

𝒙′ =
𝒙𝒊,𝒋 − 𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏
× 𝟐𝟓𝟓                                                           (𝟏) 

where 𝑥 is the attribute value; 𝑖 and 𝑗 are the numbers of rows and columns of the 

interpolated surface; xi,j denotes the normalization value. 

E) Landform Input Parameters 

The altitude was the first of these. It is regarded to be the vertical distance measured in 

meters above sea level from the reference level surface with a height of 0 (the mean sea level). 

The highest rate of value change from a cell to its neighbors is referred to as the slope, which 

is another parameter. The sharpest downhill fall from the cell, given in degrees, is determined 

by the highest elevation change over the distance between the cell and its eight neighbors (33). 

The slope's shape is described by the curvature parameter. Cell by cell, this tool determines the 

second derivative value of the input surface. A surface made up of a 33-cell window is fitted 

with a fourth-order polynomial of the following form for each cell. One employed standard 

curvature (measured in fractions of a meter), which combines the profile and plan curvatures. 

Typically, predicted values for a hilly area (moderate relief) range from 0.5 to +0.5, however 

the values might be substantially higher for steep and mountainous relief. Aspect (slope 

direction) shows the direction of the maximum rate of value change from a cell to its neighbors 

when measured downslope; values show the clockwise compass direction, expressed in 

degrees. Each cell in the input raster is visited by a moving 3x3 cell window, and for each cell 

in the window's center, an aspect value is computed using an algorithm that takes into account 

the values of the cell's eight neighbors. The Topographic Position Index (TPI) (Guisan, Weiss, 

and Weiss 1999) has already been used to detect gullies (Evans and Lindsay 2010). The TPI is 

defined as the difference between a cell elevation value z and the average elevation 𝑧𝑎 ̅ of the 
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neighborhoods around that cell within a specific kernel size. Positive values mean the cell is 

higher than its surroundings while negative values mean it is lower. If z is significantly higher 

than 𝑧𝑎 ̅, then the cell is likely at or near the top of a hill or ridge. Significantly low values of z 

(and then of TPI) suggest the cell is at or near the bottom of a valley. 
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                        Fig. 3. The list of landform factors used in this study. 
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F)  Classification Models 

This study used three classification models for landform mapping: 

1-  Topographic Position Index (TPI) 

The Topographic Position Index (TPI) is a simple method for classifying landforms based 

on their elevation and slope. The TPI is calculated as follows: 

TPI = (z - zmin) / (zmax - zmin) 

where z is the elevation of a point, zmin is the minimum elevation in the region, and zmax 

is the maximum elevation in the region. 

The TPI can be used to classify landforms into four categories: 

Hills: TPI > 0.5 Valleys: TPI < -0.5 

Plateaus: TPI > 0 and TPI < 0.5 Plains: TPI < -0.5 and TPI > -1 

The TPI is a simple and effective method for landform classification, but it can be 

sensitive to the presence of noise in the DEM data. 

2-  Support Vector Machine (SVM) 

Support Vector Machines (SVMs) are a type of supervised learning algorithm that can be 

used for classification and regression tasks. SVMs work by finding a hyperplane that separates 

the data points into two classes. The hyperplane is chosen so that the distance between the data 

points and the hyperplane is maximized. SVMs can be used for landform classification by 

training the algorithm on a set of labeled data. The labeled data consists of pairs of DEM data 

and landform labels. The SVM algorithm learns to identify the DEM data features associated 

with each landform class. Once the SVM algorithm is trained, it can be used to classify new 

DEM data. 

The SVM algorithm predicts the landform class for each point in the DEM data. SVMs 

are a powerful tool for landform classification, but they can be computationally expensive to 

train. 

3-  Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm that can 

be used for image classification and other tasks. CNNs work by extracting features from the 

input data. The features are then used to classify the data. CNNs can be used for landform 

classification by training the algorithm on a set of labeled images. The labeled images consist 

of pairs of DEM data and landform labels. The CNN algorithm learns to identify the DEM data 

features associated with each landform class. Once the CNN algorithm is trained, it can be used 

to classify new DEM data. The CNN algorithm predicts the landform class for each point in the 

DEM data. CNNs are a powerful tool for landform classification, but they can be 

computationally expensive to train. 

G)  Model Training 

The TPI can be calculated directly from the DEM data. There is no training procedure 

required. The SVM algorithm can be trained using a variety of methods. One common method 

is to use the SMO algorithm. The SMO algorithm iteratively optimizes the hyperplane that 

separates the data points into two classes. The CNN algorithm can be trained using a variety of 

methods. One common method is to use the backpropagation algorithm. The backpropagation 

algorithm iteratively updates the weights of the CNN algorithm to minimize the error between 

the predicted labels and the ground truth labels. 

H)  Field Observation and Accuracy Assessment 
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The field data collection procedure for validating landform classification models using 

handheld GPS and camera included selecting the study area, recording the location of each 

landform type using a handheld GPS unit, using a camera to take photos of each landform type, 

and identify the landform types in the study area. This can be done by consulting a map or by 

using your own knowledge of the area. For validation and accuracy assessment, the landform 

classifications from the model are compared to the landform types that you identified in the 

field. The accuracy of the model is then calculated using: 

Overall accuracy is the most common accuracy metric used to evaluate landform 

classification models. It is calculated as follows: 

Overall accuracy = (TP + TN) / (TP + TN + FP + FN) 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives. True positives are points 

that are correctly classified as the landform type, they belong to. True negatives are points that 

are correctly classified as not being the landform type, they belong to. False positives are points 

that are incorrectly classified as being the landform type, they do not belong to. False negatives 

are points that are incorrectly classified as not being the landform type, they do belong to. 

Kappa coefficient is a more robust accuracy metric than overall accuracy. It is calculated 

as follows: 

Kappa = (OA - E) / (1 - E) 

where OA is the overall accuracy and E is the expected accuracy. Expected accuracy is 

the accuracy that would be expected by chance. Kappa coefficient is a good metric for 

evaluating the accuracy of a landform classification model, even if the classes are not evenly 

represented in the data. 

Results and Discussions 

Statistics of Geomorphometric Parameters where table 2 shows the summary statistics of 

several geomorphometric factors used for landform mapping. The factors are: The minimum, 

maximum, mean, median, and standard deviation of each factor are shown in the table. The 

minimum value is the lowest value of the factor in the dataset, the maximum value is the highest 

value, the mean is the average value, the median is the middle value, and the standard deviation 

is a measure of how spread out the values are. 

Elevation is a fundamental factor in landform mapping. It helps identify and differentiate 

different landforms such as mountains, valleys, plateaus, or hills. Higher elevations generally 

indicate mountains or ridges, while lower elevations can represent valleys or depressions. Slope 

is crucial for identifying landforms such as hills, cliffs, or steep slopes. Steeper slopes typically 

indicate rugged terrain, while gentle slopes suggest flatter areas or plains. Small Neighborhood 

and Large Neighborhood: These factors represent local and regional variations in landform 

characteristics. They help identify subtle changes in the land surface, such as small-scale 

features like ridges, depressions, or localized landforms. Aspect provides information about the 

direction a slope face. It helps identify landforms influenced by sun exposure, such as slopes 

facing different compass directions. For example, south-facing slopes tend to receive more 

sunlight and may exhibit different vegetation patterns or erosion rates compared to north-facing 

slopes. Curvature factors (Mean Curvature, Plan Curvature, Profile Curvature, Tangential 

Curvature): These factors provide insights into the shape and curvature of the land surface. 

They can help identify landforms like ridges, valleys, or concave/convex features. Curvature 

values close to zero indicate relatively flat or gently sloping areas, while positive or negative 

values indicate convex or concave features, respectively. By analyzing these geomorphometric 

factors and their statistics, landform mapping studies can identify, classify, and understand the 
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spatial distribution of different landforms within a given area. These factors provide 

quantitative measurements that aid in the interpretation and characterization of landforms, 

allowing researchers to gain insights into landscape processes and make informed decisions 

related to land management, urban planning, or environmental assessment. 

The geomorphometric factors can be used to create a variety of maps, such as topographic 

maps, slope maps, aspect maps, and curvature maps. These maps can be used to study the 

physical characteristics of the land, to plan land use, and to identify potential hazards, such as 

landslides and flooding. More importantly, the geomorphometric factors can be used to map 

different landforms. For example, high elevations are typically associated with mountains, 

while low elevations are typically associated with valleys. Steep slopes are typically associated 

with cliffs, while gentle slopes are typically associated with hills. The aspect of a surface can 

be used to identify different directions, such as north, south, east, and west. The mean curvature 

can be used to identify different types of surfaces, such as convex surfaces (which bulge 

outward) and concave surfaces (which bulge inward). The plan curvature can be used to identify 

surfaces that are curved in a horizontal plane, such as hills and valleys. The profile curvature 

can be used to identify surfaces that are curved in a vertical plane, such as cliffs and slopes. The 

tangential curvature can be used to identify surfaces that are curved in a direction tangent to the 

surface, such as ridges and furrows. 

 Table 2: The summary statistics of several geomorphometric factors used for landform mapping. 
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Minimum 205.0 00.00 - 20.08 - 32.28 -1.00 -0.01 - 77.17 -0.01 -0.01 

Maximum 679.00 42.99 19.88 31.45 360.00 0.01 161.81 0.01 0.01 

Mean 356.87 3.73 0.00 0.00 193.06 0.00 0.00 0.00 0.00 

Median 327.00 3.40 0.00 -0.01 203.92 0.00 0.00 0.00 0.00 

Standard Deviation 98.62 2.95 1.19 2.87 99.26 0.00 0.10 0.00 0.00 

Table 3 presents the correlation matrix among different landform factors used in this 

study. The correlation matrix shows the relationships between the different geomorphometric 

factors. The correlation coefficient is a measure of the strength of the relationship between two 

variables. A correlation coefficient of 1 indicates a perfect positive correlation, a correlation 

coefficient of -1 indicates a perfect negative correlation and a correlation coefficient of 0 

indicates no correlation. 

The correlation matrix can be used to identify which geomorphometric factors are most 

important for landform mapping. The factors with the strongest correlations are the most 

important because they can be used to predict the values of the other factors. For example, if 

you know the elevation of a point, you can use the correlation between elevation and slope to 

predict the slope of the point. Similarly, if you know the slope of a point, you can use the 

correlation between the slope and a small neighborhood to predict the small neighborhood of 

the point. The correlation matrix can also be used to identify which geomorphometric factors 

are redundant. The factors with the weakest correlations are the most redundant because they 

do not provide any additional information that is not already provided by the other factors. For 

example, the correlation between elevation and plan curvature is very weak. This means that 

plan curvature does not provide any additional information about the landform that is not 

already provided by elevation. 

As can be seen from Table 4, the strongest positive correlation is between Elevation and 

Aspect, with a correlation coefficient of 0.075. This means that as Elevation increases, Aspect 

also tends to increase. The weakest positive correlation is between Elevation and Small 

Neighborhood, with a correlation coefficient of 0.001. This means that there is very little 



 Topographic Analysis for Landform Classification Using Geographic Information System: A Case Study…… 61 

correlation between Elevation and Small Neighborhoods. These correlations provide insights 

into the relationships between different geomorphometric factors. Positive correlations indicate 

that as one factor increases, the other tends to increase as well, while negative correlations 

suggest that as one factor increases, the other tends to decrease. It's important to note that 

correlation does not imply causation, but it can indicate associations or dependencies between 

variables. By examining these correlations, landform mapping studies can identify factors that 

are highly correlated and may have similar influences on landforms. It helps researchers 

understand how different factors interact and contribute to the formation and distribution of 

landforms, enabling more accurate interpretations and modeling in landform analysis. 

Table 3: The correlation matrix among different landform factors used in this study. 

 

E
le

v
a

ti
o

n
 

S
lo

p
e 

 

S
m

a
ll

 

N
e
ig

h
b

o
r
h

o
o

d
 

L
a
r
g
e
 

N
e
ig

h
b

o
r
h

o
o

d
 

A
sp

e
c
t 

M
e
a

n
 

C
u

r
v
a

tu
r
e 

 

P
la

n
 

C
u

r
v
a

tu
r
e 

 

P
r
o

fi
le

 

C
u

r
v
a

tu
r
e 

T
a

n
g

e
n

ti
a
l 

C
u

r
v
a

tu
r
e 

Elevation 1.000 0.075 0.001 0.002 0.075 0.002 0.000 0.000 0.004 

Slope 0.075 1.000 0.014 0.050 -0.003 0.028 0.006 - 0.004 0.055 

Small Neighborhood 0.001 0.014 1.000 0.330 0.001 0.555 0.142 0.488 0.477 

Large Neighborhood 0.002 0.050 0.330 1.000 -0.007 0.591 0.158 0.521 0.507 

Aspect 0.075 -0.003 -0.001 - 0.007 1.000 - 0.002 0.000 - 0.002  0.002 

Mean Curvature 0.002 0.028 0.555 0.591 -0.002 1.000 0.255 0.880 0.859 

Plan Curvature 0.000 0.006 0.142 0.158 0.000 0.255 1.000 0.148 0.301 

Profile Curvature 0.000 -0.004 0.488 0.521 -0.002 0.880 0.148 1.000 0.512 

Tangential Curvature  0.004 0.055 0.477 0.507 -0.002 0.859 0.301 0.512 1.000 

Table 4: Correlation strength among different landform factors. 

Variable Strongest Positive 

Correlation 

Weakest Positive Correlation Strongest Negative 

Correlation 

Elevation Aspect (0.075)  Small Neighborhood (0.001) Large Neighborhood (- 0.007) 

Slope Tangential Curvature (0.055) Profile Curvature (- 0.004) None 

Small Neighborhood Mean Curvature (0.555) Aspect and Large 
Neighborhood (0.001) 

None 

Large Neighborhood Mean Curvature (0.591) Aspect (-0.007) None 

Aspect Elevation and Slope (0.075) Large Neighborhood (-0.007) None 

Mean Curvature Profile Curvature (0.880) Elevation and Aspect (0.002) None 

Plan Curvature  Tangential Curvature (0.301) Elevation and Aspect (0.000) None 

Profile Curvature Mean Curvature (0.880) Slope (-0.004) None 

Tangential Curvature Profile Curvature (1.000) Elevation (0.004) None 

This research developed three models of landform classification according to accuracy 

including TPI, SVM, and CNN. The TPI model uses the elevation of a point to classify it into 

different landform classes. The SVM model uses a decision tree algorithm to classify landforms 

based on a variety of features, including elevation, slope, aspect, and curvature. The CNN 

model uses a deep learning algorithm to classify landforms based on their spatial patterns. The 

accuracy assessment of these models is shown in Table 5. Based on the results, the CNN model 

has the highest accuracy, followed by the SVM model and then the TPI model. This suggests 

that the CNN model is better at classifying landforms than the other two models. 

The TPI is a simple model that is easy to understand and implement. However, it is not 

very accurate, especially for complex landforms. The SVM model is more complex than the 

TPI, but it is also more accurate. This makes it a good choice for classifying landforms, which 

can have a variety of shapes and sizes. The CNN model is the most complex of the three models, 

but it is also the most accurate. CNNs are deep learning models that are specifically designed 

to learn spatial patterns. This makes them well-suited for classifying landforms, which are often 

characterized by their spatial patterns. There are a few possible reasons for this. First, the CNN 

model is able to learn spatial patterns that the other models cannot. Second, the CNN model is 

able to learn from a large amount of data, which the other models cannot. Third, the CNN model 

is able to learn from noisy data, which the other models cannot. 
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The results of this study suggest that the CNN model is a promising new approach to 

landform classification. However, more research is needed to confirm these results and to 

understand the limitations of the CNN model. Overall, the results of this study suggest that the 

CNN model is a promising new approach to landform classification. However, more research 

is needed to confirm these results and to understand the limitations of the CNN model. 

Table 5: Accuracy assessment of the three landform classification models. 

Model OA Kappa 

TPI 67.12 0.658 

SVM 79.81 0.781 

CNN 88.91 0.883 

Figure 4 present the geographic distributions of landform in the area based on the three 

classification models respectively. In general, flat areas are typically found in the central and 

southern parts of the area, where the underlying geology is composed of sedimentary rocks. 

Valleys are typically found in the northern and eastern parts of the area, where the underlying 

geology is composed of igneous or metamorphic rocks. Hills are typically found in the western 

part of the area, where the underlying geology is composed of a mixture of sedimentary, 

igneous, and metamorphic rocks. Meandrous areas are typically found along rivers, where the 

rivers have changed course over time. The geographic distributions of landform in the area are 

also influenced by the climate. The area has a warm, dry climate, which has led to the formation 

of deserts in the southern and western parts of the area. The deserts are characterized by flat, 

sandy plains. The geographic distributions of landform in the area are also influenced by the 

history of the area. The area has been inhabited by humans for thousands of years, and human 

activity has had a significant impact on the landscape. For example, humans have built roads, 

dams, and other infrastructure, which has changed the course of rivers and the shape of the land. 

The geographic distributions of landform in the area are a complex result of a variety of factors, 

including the underlying geology, the climate, and the history of the area. 

 



 Topographic Analysis for Landform Classification Using Geographic Information System: A Case Study…… 63 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Landform classification map of the study area based on three models. 

Table 6 shows the accuracy assessment of three models of landform classification based 

on two different DEM data, SRTM and ASTER GDEM. The CNN model is the most accurate 

on both DEM data sets. However, the accuracy of the other two models is slightly higher on the 

ASTER GDEM data set. This is likely because the ASTER GDEM data set has a higher spatial 

resolution than the SRTM data set. 

SRTM (Shuttle Radar Topography Mission): The SRTM was a joint mission of NASA 

and the Italian Space Agency. It used radar interferometry to create a global DEM with a spatial 

resolution of 1 arcsecond (30 meters). ASTER GDEM (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer Global Digital Elevation Model): The ASTER GDEM is 

a global DEM created by the Japanese Aerospace Exploration Agency (JAXA). It uses 

stereoscopic imaging to create a DEM with a spatial resolution of 30 meters. Overall, the results 

of this study suggest that the CNN model is the most accurate model for landform classification. 

However, the accuracy of the other two models can be improved by using DEM data with a 

higher spatial resolution. The CNN model is able to learn spatial patterns that the other models 

cannot. This is because CNNs are deep learning models that are specifically designed to learn 

spatial patterns. The CNN model is able to learn from a large amount of data, which the other 

models cannot. This is because CNNs can be trained on very large datasets. The CNN model is 

able to learn from noisy data, which the other models cannot. This is because CNNs are able to 

filter out noise from the data. The results of this study suggest that the CNN model is a 

promising new approach to landform classification. However, more research is needed to 

confirm these results and to understand the limitations of the CNN model. 

Table 6: Accuracy assessment of the three landform classification models based on two different DEM 

data sources SRTM and ASTER GDEM. 

 SRTM ASTER GDEM 

Model OA Kappa OA Kappa 
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TPI 67.12 0.658 66.91 0.651 

SVM 79.81 0.781 78.34 0.773 

CNN 88.91 0.883 87.91 0.878 

Table 7 presents a list of landform types taken in the field for several locations within the 

study area. The table shows that the study area is home to a variety of landform types, including 

flat areas, valleys, hills, and meandrous areas. The distribution of these landform types is likely 

due to a variety of factors, including the underlying geology, the climate, and the history of the 

area. For example, the flat areas in the study area are likely due to the presence of sedimentary 

rocks, which are typically deposited in flat areas. The valleys in the study area are likely due to 

the presence of rivers, which have eroded the surrounding land over time. The hills in the study 

area are likely due to the presence of igneous or metamorphic rocks, which are typically more 

resistant to erosion than sedimentary rocks. The meandrous areas in the study area are likely 

due to the presence of rivers, which have changed course over time. The table provides a 

valuable overview of the landform types in the study area. This information can be used to 

understand the natural environment of the area and to plan for future development. 

Table 7: Labels of landform type taken in the field for several locations within the study area. 

No. Zone Long. Lat. Type 

1 Tik-Kir Check Point 44.35726 35.44577 flat 

2 Almas 44.3863 35.48098 flat 

3 Sul-Erbil Road 44.41776 35.49975 valley 

4 Sul-Kir Road 44.46279 35.49183 valley 

5 Sul-Kir Road2 44.45671 35.47899 hills 

6 Kir Castle 44.3925 35.47289 valley 

7 City Center 44.39152 35.4682 Flat 

8 Baghdad Road 44.37884 35.44032 flat 

9 Kir-Erbil Road 44.3686 35.57294 flat 

10 Kir-Erbil Road2 44.3732 35.52974 valley 

11 Kir-Erbil Road3 44.3786 35.52222 Flat 

12 Arafa 44.3834 35.4877 hills 

13 Airport Road 44.37186 35.47045 flat 

14 Tik-Kir Rolling 44.2955 35.39336 valley 

15 City Center2 44.38522 35.47263 flat 

16 Askary Zone 44.398484 35.40776 flat 

17 Shoraw  44.398696 35.540406 hills 

18 Baghdad-Sul Road 44.437165 35.388113 flat 

19 Baghdad-Sul Road2 44.445065 35.464446 meandrous 

20 Saiada 44.330775  35.376501  flat 

Table 8: Accuracy assessment of three models of landform classification based on field verification. 

Model OA Kappa Field Verification 

TPI 67.12 0.658 60% 

SVM 79.81 0.781 75% 

CNN 88.91 0.883 85% 
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Fig. 5. Samples of photos taken during field data collection for landform classification model validation 

and accuracy assessment. 

Conclusion 

This study investigated the use of DEMs to classify landforms. The study was conducted 

in Kirkuk City, Iraq. The results of the study showed that the CNN model was the most effective 

at classifying landforms. The CNN model achieved an OA of 88.91% and a kappa coefficient 

of 0.883. The SVM model was the second most effective model, with an OA of 79.81% and a 

kappa coefficient of 0.781. The TPI model was the least effective model, with an OA of 67.12% 

and a kappa coefficient of 0.658. The field verification confirmed that the CNN model was also 

the most accurate in terms of field mapping. The CNN model correctly classified 85% of the 

landforms, while the SVM model correctly classified 75% of the landforms and the TPI model 

correctly classified 60% of the landforms. 

The results of this study suggest that the CNN model is a promising tool for landform 

classification. The CNN model is able to learn the complex spatial patterns of landforms and to 

classify them with high accuracy. The CNN model is also able to generalize well to new areas, 

as shown by the field verification results. 

The findings of this study have important implications for the use of DEMs in landform 

classification. The CNN model is a powerful tool that can be used to improve the accuracy and 

efficiency of landform mapping. The CNN model can be used to map landforms in a variety of 

settings, including areas that are difficult to access or that have complex terrain. The CNN 

model can also be used to map landforms at a variety of scales, from local to regional. The 
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findings of this study suggest that the CNN model is a promising new technology for landform 

classification. The CNN model is a powerful tool that can be used to improve the accuracy and 

efficiency of landform mapping. The CNN model can be used to map landforms in a variety of 

settings, including areas that are difficult to access or that have complex terrain. The CNN 

model can also be used to map landforms at a variety of scales, from local to regional. 
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