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ABSTRUCT 

This paper aims to study the behavior and strength of ferrocement beams under 

flexural loading. Seven specimens (four simply supported rectangular beams and 

three simply supported T-beams) are tested under flexural load. An analytical 

method is proposed to analyze the ferrocement beams. A three-dimensional finite 

element computer program is developed in this paper to study the nonlinear 

behavior of ferrocement beams. The quadratic 20-node brick elements are used to 

model the mortar. The wire mesh layers are considered as smeared layers 

embedded within the brick element. The skeletal bars are modeled as axial 

members embedded within the brick element. Material nonlinearity due to the 

response of mortar in compression, crushing, cracking in tension, tension stiffening 

and shear retention effect of cracked mortar and yielding of wire mesh and skeletal 

bar are considered. Good agreement between the experimental work results, the 

analytical and the finite element results are achieved. 

 

Keywords: cross section, type of wire mesh, layered of wire mesh, skeletal    

                   reinforcement. 

 

 التحليل اللاخطي وسعة تحمل الانحناء للعتبات الفيروسمنتية
 

 الخلاصه
ٌتضمن هذا دراسه سلوك ومدى سعه التحمل  للعتال ا المولهومه ملن السٌروسلمها تحلا تل  ٌر 

متالل ا اسللٌلاس الاسلله د  ذاا متلالل) مسللتلاٌ   و   لله مهه  الاهحهلل  ت تلل  وللن سللا) هملل ذ    اراعلله

(، وتل  ححوله  تحلا تل  ٌر الاهحهل  ت  Tمتا ا مجهحس اسٌلاس الاسه د ذاا مسلا) ملى شك  حرف 

وت  امتم د التحلٌ  الهظري، تلاوٌر اره مج ح سلواً ٌعتملد مللى لارٌتلس العه ولر المحلددل كوسلٌلس 
اسلتددما العه ولر    ٌلس الااعل د ذاا العشلرٌن متلدل لدراسس تورف الامض   السمها المعدهٌلست 

لهمذجس الموهلست تل  تم ٌل   المشلاك ا الحدٌدٌلس كلااتلس حدٌدٌلس اسلمك مكل حد مهتشلرل دادل  العهولر 
اللا اوقً  كم  ت  تم ٌ  حدٌد التسلٌح الهٌكلً ملى شلك  مه ولر محورٌلس ملاملورل دادل  العهولر 

د  تراالا كللً الٌن الموهلس و حدٌلد التسللٌح ت جلرى الادلذ اللا اوقً ال   ً الااع د م) احتراض وجو
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اهظللر الامتالل ر ال دلاٌللس للملل دل اله تجللس مللن تشللتن واهسللح ن الموهللس والتوللرف ال دلاللً لع قللس 
 الاجه د والاهسع   للموهستت  مت رهس الهت ئج العملٌس م) الهت ئج الهظرٌس وك ها متاولهت

 

 

 
INTRODUCTION 

errocement is a type of thin wall reinforced concrete commonly constructed 

of hydraulic cement mortar reinforced with closely spaced layered of 

continuous and relatively small size wire mesh. The mesh may be made of 

metallic or other suitable materials. Since advanced fiber reinforced polymeric 

meshes, such as carbon, Kevlar, spectra and the like are available for use in its 

construction, ferrocement can also be considered a high performance laminated 

cementitious composite. Most researches reviewed in this paper are found to be the 

analytical methods predicted the ultimate capacity of members. The nonlinear 

analysis methods of ferrocement members predicted the ultimate moment capacity 

in addition to different types of stress. Two main points were noticed from this 

review: Firstly most of the studies had neglected the tensile stresses of mortar in 

the analytical methods and secondly they have applied two dimensional element 

approaches only in the nonlinear analysis.  

A general methodology was proposed for the analysis and design of 

ferrocement flexural elements by Naaman and Homeric [1]; by considering the 

ferrocement beams as reinforced concrete members subjected to pure bending. The 

particular aspects of ferrocement such as mesh efficiency and mesh volume content 

has been integrated in the analysis, thus offering a method within the scope of 

converge of the ACI Building Code-83. A computerized evaluation was described 

and a comparison between experimental observation and analytical prediction is 

given. Mansur[2] presented analytical and experimental investigations of the 

ultimate load behavior of ferrocement in flexure. The predictions of the three 

methods A, B and C as outlined above have been compared with the available test 

data. The rigid-plastic analysis appears to be marginally better. Using this method, 

design charts have been developed for a typical ferrocement flexural member. 

The flexural rigidity and deflection characteristics of ferrocement "flanged" 

beams (I-and box- beams); number of wire mesh layers in flanges and webs; effect 

of skeletal steel; and beam length have been considered. Mathematical methods to 

predict flexural rigidities and deflections of ferrocement" flanged" beams at service 

load level were also presented by Alsulaimani and Ahmad [3]. The ACI and CEB 

methods for deflection calculations were used to predict the deflection of 

ferrocement "flanged" beams. The flexural rigidities in the uncracked and cracked 

stages for box-beams are larger than those for I-beams for the same steel-

reinforcement.  

Bin-Omar et al. [4] developed a computational model based on the Timoshenko 

beam finite element formulations for predicting the entire nonlinear behavior of 

ferrocement beams of I-type and box type under monotonically increasing loads up 

to failure using a layered approach. Quadratic isoperimetric elements with three 

degrees of freedom were used. The ferrocement material adopted in this work was 

treated as a single material whose properties represent the integrated response of its 

F 
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constituents; mortar and wire mesh. The uniaxial stress- strain relationship has 

been adopted during the analysis.  

Anisotropic elastoplastic models to simulate the mechanical behavior of 

ferrocement plates were proposed by Arif and Kaushik [5]. These models used 

elastic and inelastic properties derived from simple in-plane tension and 

compression experimental tests. Mindlin plate theory in conjunction with a layered 

approach was employed for analysis. Two different mathematical models, the 

homogeneous layered model and the mortar-ferrocement layered model, were 

considered. The former assumes all the layers to process identical an isotropic 

material property.  

In the present study the analytical procedure is proposed to analyze the flexural 

members under general case of loading and with different cross sections 

(rectangular section and T-section). The nonlinear analysis methods of ferrocement 

members predicted the ultimate moment capacity in addition to different types of 

stress. The tensile stresses of mortar in the analytical methods are computed. The 

layering approach for wire mesh reinforcement and embedded approach of skeletal 

reinforcing bar are used in three dimensional nonlinear analyses. The results of the 

proposed method and finite element method are compared with experimental work 

study.   

 

FINITE ELEMENT FORMULATION AND MODELS 

The finite element method is a numerical technique for obtaining approximate 

solutions to a wide variety of engineering problems. Although the method was 

originally developed to study the stresses in complex airframe structures, it has 

been extended and applied in continuum mechanics. Because of its flexibility as an 

analysis tool, it has received much attention in engineering schools and in industry 

[6]. In the present work, a three dimensional isoparametric finite element model 

has been used to analyze the ferrocement slabs and beams. The three-dimensional 

isoparametric element was used to represent the mortar, and the two-dimensional 

layered approach was used to model the wire meshes in addition to the one-

dimensional representation of model skeletal reinforcing bars. The three-

dimensional isoparametric quadratic brick element with 20 node and curved 

boundaries    Figure( 2.1) was used throughout this study to represent the mortar. 

In the brick element, each node has three translational degrees of freedom u, v, 

and w along the Cartesian coordinates x, y, and z respectively. The Cartesian 

coordinates (x, y, z) at any point within the isoparametric elements can be obtained 

by the interpolation shape functions [7, 8, 9]. For three-dimensional finite 

elements, the strain components are usually be defined in terms of the Cartesian 

coordinate system (x, y, z). The coordinate system is the most convenient system 

for expressing the strain and stress components, Therefore the strain vector and 

(the three normal stresses and three shear stresses) at each Gaussian point are 

calculated using the constitutive relation given by Ref.[10] 

Smeared Representation of Wire Mesh Reinforcement 

Smeared representation of steel wire mesh may be used both when the wires are 

placed in one or two directions. In this formulation, the layer thickness is 

equivalent to the area of the actual steel per unit length with uniaxial stress 

characteristics in the direction of the wires. So that in the case of two way steel 

reinforcement, two different layers are assumed for steel in two directions. Each 
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layer is located at a constant depth from the mid-surface through the thickness of 

the element, as shown in Figure (2.2).  

The Cartesian coordinates (x, y, z) at any point of the wire mesh can be 

obtained by the interpolation shape functions that are used to define the geometry 

of the element and the displacement field as Ref.[11]: 

Perfect bond is assumed to occur between the mortar and the wire meshes, so 

that the steel strain-displacement relation is: 

  









































































x

v

y

u

y

v

x

u

xY

y

x







'

         (2.1) 

 

In this approach the wire mesh is represented by a number of smeared layers to 

be distributed over the element with an equivalent thickness in any specified 

direction in ξ and η plane with an equivalent thickness. The stresses are determined 

at the Gauss points laying on the mid surface of each layer and these stresses are 

assumed to be constant over the thickness of the layer, as shown in Fig. (2.3). The 

layers may have different thicknesses and they can be of different number of layers 

for different elements. Each wire mesh deforms only in the direction of the mesh 

and having strength and stiffness characteristics in the mesh direction only. 

Therefore, it exhibits a uniaxial response. The wire mesh strains and the strains of 

the surrounding mortar are the same. 

The stresses can be determined as   
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The stress  K  along the layered element is determined from the strain 

and stress components in the local coordinates of the element in the mesh direction 

as 

 

  sin.cosXYsin2
Ycos2

XK        (2.4) 

 

where    is the angle between the mesh axis and the element local axis x' 
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The stiffness matrix  wK  is computed by summing up the contribution of each 

layer at Gauss points and may be written as: 

 

       
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where NL is the number of layer, [B]I is the strain matrix calculated at the mid-

surface of each layer,  wiD the material matrix of wire layer,| J | is the determinant 

of the Jacobian matrix for layer I, and 
hl

hi2
i


   ,(hl is defined the thickness of 

element). 

 

 

 

 

 

 

 

 

 

 
a)  Local coordinates.    (b)  Cartesian coordinates. 

Figure (2.1): Twenty-node isoparametric brick 

element used to model the  mortar. 

 

 

Figure (2.2): Three-dimensional solid      Figure (2.3): Layered model and 

element with layered system.                corresponding stressof wire mesh. 

                 representation. 
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Figure (2.4):  Embedded representation of reinforcement. 

 

Embedded Bar Reinforcement Idealization 

In the present study, the embedded bar representation of skeletal steel 

reinforcement bars was represented. The reinforcing bar is considered to be an 

axial member built into the is oparametric mortar element, Figure (2.4). The 

assumption of compatibility of displacements and strains between the steel and 

mortar allows the reinforcing bars to be treated as integral part of the element. In 

this approach perfect bond is assumed to occur between the reinforcing bars and  

The surrounding mortar. The reinforcing bars are assumed to be capable of 

transmitting axial forces only [11, 12].  

Numerical Integration 

The numerical integration is required to set up the stiffness matrices and the 

equivalent nodal loads. For the elements adopted in this study, the Gauss 

quadrature method has been used. The integration points are also the sampling 

points for stresses and material state determination. 

The integration rules which have been used in this study for two and three-

dimensional elements are, 

 The 2 or 3 Gauss-integration rule for embedded bar. 

 The 9 (3x3) Gauss-quadrature for smeared layered wire mesh. 

 The 27 (3x3x3) Gauss-quadrature integration rules for brick element. 

The distribution of sampling points in the 9 point rule and 27 point rule of 

integration and the weights and locations of the gauss points are given in Refs.[10]. 

Modeling Of Material Properties 

Ferrocement is a composite material consisting of mortar and steel (mesh and 

skeletal) reinforcement. These materials have widely different properties. The 

present section describes the theoretical developments and the numerical models 

used for the analysis of ferrocement members. 

Models Used For Mortar 

The material model used in this study is suitable for the nonlinear static analysis 

of three dimensional ferrocement members under monotonically increasing load. 

The material models for mortar in compression and in tension that are used in this 

study are given in the following sections. 

Modeling Mortar In Compression 

The behavior of mortar in compression is simulated by an elasto-plastic work 

hardening model followed by a perfectly plastic model, which is terminated at the 

onset of crushing. The plasticity model will be illustrated in terms of the following 

constituents [10]. 

a- The Yield Criterion 

The yield criterion determines the stress level at which the plastic deformation 

begins. For an isotropic material, the initial yield criterion should be independent of 

the orientation of the coordinate system in which the stress state is defined and 

therefore it should be a function of the three stress invariants only [10]. However, a 

yield criterion dependent on two stress invariants has proved to be adequate for 

most practical situations and it can be expressed as: 



Eng. & Tech. Journal, Vol.31, No.2, 2013                                Nonlinear Analysis of Ferrocement   

                                                                                                                           Flexural Beams 

       

351 
 

      o
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where: 

 

zyx1       I                                               (2.7) 

 

 

 

                 (2.8) 

 

Where c, β are  material parameters, I1 is the first stress invariant ,J2  is the second 

deviatoric stress invariant  and o  is the equivalent effective stress taken from 

uniaxial tests. The parameters c and β, can be determined from the uniaxial 

compression test and the biaxial experimental results under equal compression 

stress [13]. A relation between the biaxial compressive yield stress ( cbf ) and the 

uniaxial compressive yield stress ( cf  ) can be used as ( cbf =1.16 cf  ) then the 

value of the constant c and β are. 

 

                                17734.0c                   (2.9) 

35468.1  

 

According to the experimental results obtained in the present research work, 

the initial yield surface in the strain hardening model is attained when the effective 

stress o  reaches (25%) of the ultimate stress ( cf  ). 

 

cpo fC                                                           (2.10) 

 

Where pC is the plasticity coefficient which is equal to 0.25 for mortar. 

 

b- Hardening Rule 

The hardening rule defines the expansion of subsequent yield surfaces during 

plastic loading. A number of hardening rules have been proposed to describe the 

growth of subsequent loading surfaces for a work hardening material [10]. Since 

only a monotonic loading is considered, the assumption of isotropic hardening 

model has been adopted in the present work. The initial yield surface is assumed to 

expand uniformly without distortion as plastic deformation occurs. 

The effective stress and the effective plastic strain are used to allow for 

extrapolation from the results of a uniaxial test to the multiaxial states. The 

equivalent stress-strain relation beyond the limit of elasticity can be obtained from 

the uniaxial compressive stress-strain curve. In the present study a parabolic stress-

strain relationship has been used in which a zero magnitude is assumed for plastic 

strain component at the initial yield point equal to cp fC   . At the peak compressive 

     2
xz 

2
zy 

2
yx xzzyyx

2
z

2
y

2
x3

1
2J  



Eng. & Tech. Journal, Vol.31, No.2, 2013                                Nonlinear Analysis of Ferrocement   

                                                                                                                           Flexural Beams 

       

352 
 

stress cf  , the total strain has a value o , The stress-strain relationship adopted in 

the present work is expressed as follows [10]. 

c- Flow Rule  

To construct the stress-strain relationship in the plastic range, an associated 

flow rule will be employed. This means that the plastic deformation rate vector will 

be assumed to be normal to the current loading surface. The plastic strain 

increment is then defined as [10]. 

 

 

d- Crushing Condition  

The crushing type of mortar fracture is a strain controlled phenomenon. A 

failure surface in the strain space must be defined in order to take this type of 

failure into account. Lack of available experimental data has resulted in the failure 

surface being developed by simply converting the yield criterion described in terms 

of stresses directly into strains [10].  

 

TENSION BEHAVIOR AND CRACKING MODEL 

a - Cracking Model 

In the finite element analysis two mainly approaches have been employed for 

crack modelling. These approaches are discrete cracking model and smeared 

cracking model. The discrete cracking model can appear only at the element 

boundaries [10]. In the smeared cracking model, the mortar is assumed to remain a 

continuum that is the, cracks are "smeared-out" in a continuous fashion. For most 

structural engineering applications the smeared cracking model is used. 

Modeling of Reinforcement 

The mechanical properties of reinforcement (wire meshes and skeletal bars) are 

well-known in comparison to mortar. The reinforcing bars and wire meshes are 

homogeneous and have usually the same yield strength in tension and compression. 

A bilinear uniaxial stress-strain relationship allowing for strain hardening and 

elastic unloading is used [10]. 

Analytical Modelling 

 The purpose of this analytical study is to develop a model that accurately 

predicts the flexural behavior of ferrocement cross sections. The model can also be 

used to predict the nominal moment and ultimate load. The finite difference 

technique is used to obtain the deflection at each section of the member. 

The model employs strain compatibility, force and moment equilibrium and the 

following assumption. 

1- Plane section remains plane after bending. 

2- Small flexural deformations and linear strain distribution through the cross 

section. 

3- Perfect bond between mortar and wire mesh reinforcement or skeletal 

reinforcement bar is assumed to occur. 

4- Axial deformation, shear deformation and torsional effects are neglected. 

The model was based on the internal forces, internal moments, strains, and 

stresses in the cross section as shown in Fig. (3.1).The forces in the compression 

mortar section and in the tension mortar section will be calculated by direct 
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integration. For each level of strain the cross section divided into several layers and 

determines the strain in each layer from a linear distribution of strains and an 

assumed position for the neutral axis. The stress in each layer is then obtained from 

the calculated strains and stress-strain relationships specified for the mortar and 

wire mesh reinforcement and skeletal bar reinforcement. The assumed position of 

the neutral axis is then adjusted until section equilibrium is reached and the internal 

moment is calculated. The moment of inertia of cross section is calculated to obtain 

the deflection in each section. The process is repeated for several levels of 

compression strain including first cracking, maximum moment strength, and 

ultimate strength until the compressive strain of mortar exceed the ultimate 

compressive strain of mortar. 

 

 

 

 

 

 

 

Figure (3.1): Strain force distribution in ferrocement 

 section at ultimate. 

 

Constitutive Relationships for Materials under Stress 

 

Compression and Tensile Stress-Strain Relationship of Mortar  

In the present work the plain concrete stress-strain behavior in compression is 

described for mathematical mortar stress –strain curve. Namman [1] proposed the 

significance of the experimental stress-strain curve for mortar with the 

mathematical curve for plain concrete. The Hognestand's stress-strain relation of 

concrete in compression is employed in this study, which is one of the most 

generally used equations to model the constitutive behavior of concrete. Fig.(3.2) 

exhibits the typical stress-strain relation of concrete in compression [14]. 

The Hognestad parabola describing the ascending branch of the stress-

strain curve shown in Fig.(3.2) can be expressed as follows: 

 

 

(3.1) 

   

 

The descending branch as follows: 

 

  

 (3.2)   

 

 

 

         (3.3) 
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Where, 

cf = the maximum cylinder compressive stress of concrete. 

c = concrete strain at any given point. 

o  = the strain at the maximum compressive stress of concrete.   

u  = ultimate concrete strain. 

cE = the modulus of elasticity of concrete. 

The average (or smeared) Stress- strain curve of concrete in tension [15] is 

shown on Fig. (3.3) where ascending and descending branches are given as: 

 

 

     

 

 

 

 

 

 

 

 

 

           

    

 

 

 

Figure (3.2): Stress-strain               Figure (3.3): Average tensile stress- 

relationship of concrete                             strain   curve for concrete [15]
. 

   in compression [14]. 

 

Tensile Stress-Strain Relationship of Steel Reinforcement 

A typical bilinear elastic-perfectly plastic behavior is assumed for wire mesh 

reinforcement and skeletal bar reinforcement, as shown in Fig. (3.4). However, in 

the present study, which aims to analyze cracking in the serviceability state, it is 

appropriate to consider the initial elastic slope only, and not the plastic branch. 

Therefore, to describe the actual behavior of the steel a typical linear relationship 

can be considered: 

 

 

 

 

Where, sf , s   tensile stress and strain of reinforcement respectively, y yield 

strain of reinforcement, and yf yield stress of the reinforcement. 

 

Internal Forces and Moments Contributed by Mortar 
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The force and moment in the mortar section will be calculated by direct 

integration. In order to perform the integration, the compression and tension zone 

of the cross section has been divided into several layers (parts) [16]. 

 

Strain Distribution of Wire Mesh and Skeletal Bar Reinforcement  

To calculate the forces in each layer of wire mesh the steel area for each layer 

will be needed. There are two assumptions to obtain the area of each layer. The 

first will be depended on the repeating section for each type of mesh. This 

assumption is used in this study. The second will be depended on the volume of 

friction [17]: 

By using strain compatibility, the corresponding strains for the tensile 

reinforcing of wire meshes, compressive reinforcing of wire meshes, tensile 

reinforcing of skeletal bars and compressive reinforcing of skeletal bars are 

calculated by Ref. [16]. The tensile and compressive (forces and moments) for wire 

meshes and skeletal bars in tension and compression zone are calculated by Ref 

[16]. 

 

 

 

 

 

 

 

 

 

Figure (3.4): Stress-strains of wire mesh and skeletal bar 

reinforcement. 

 

Calculation of Sectional Deflection 

In order to calculate the deflection at a certain stage of loading and at any 

position of section, the fourth order differential equation given by: 

IE

q

dx

Wd

c4

4

            (3.8) 

 

IE

M

dx

Wd

cm2

2 
             (3.9) 

 

 

                                  steelmtmc IIII   

  

These equations have been solved using the finite difference method where: 

W: vertical deflection 

M: the bending moment. 

q: applied load. 
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I : average moment of inertia about the neutral axis of the cross section at any 

segment of the beam length, and at any level of loading where the deflection is 

to be calculated. 

cmE : modulus elasticity of the mortar. 

mcI  : the moment of inertia of compression mortar zone.  

mtI  : the moment of inertia of tension mortar zone. 

steelI : the moment of inertia of wire meshes and skeletal bars reinforcement.  

Numerical Applications 

This section presents the numerical applications on ferrocement members 

using the suggested analytical and finite element models. The finite element 

analyses are carried out to investigate the behavior of ferrocement flexural 

members by using the algorithm procedure presented in section 2 through the use 

of (3DLFERRO) computer program developed in the present research work. The 

results obtained using both the analytical and finite element models are compared 

with the experimental results through the load-deflection curves. An investigation 

has also been carried out to study the distribution of normal strains and normal 

stresses along the depth of midspan cross section of the flexural members. Also 

moment-curvature plots obtained using the analytical and numerical models were 

compared with the experimental results carried out in this study work. 

Analysis of Rectangular Beams of Group A 

For the simply supported rectangular beam specimens of group A. details of 

wire mesh reinforcement and geometry for each beam are based on (Table.4.1). 

Material properties adopted for the proposed analytical and finite element models 

are listed in Table (4.2). 

Results of Analysis of Rectangular Beams of Group A 

a)Load Deflection Curves 

For all rectangular beams of group C which were analyzed using the proposed 

analytical and finite element methods, the experimental and predicted load-

midspan deflection curves are shown in Figs. (4.1) to (4.4). For all analyzed beams 

the finite element solutions are generally in good agreement with the experimental 

results throughout the entire range of loading. The arrangement of reinforcement 

within the cross section indicates slightly softer results for the proposed analytical 

method as compared with the experimental data. The comparison between the 

analytical and finite element predicted ultimate loads with the experimental 

ultimate loads is shown in Table (4.3). 

b)Moment Curvature Response 

This study has been conducted to find out the moment-curvature response 

throughout the entire loading history by applying the proposed analytical and finite 

element methods. The results are shown in Figs. (4.5) to (4.8)  for rectangular 

beams of group A. 

All the specimens have almost the same predicted linear moment curvature 

relations before cracking. After cracking the curvature increases at an increasing 

rate as the applied loads are increased up to failure. The analytical response shown 

in the figures at early stages is similar to the finite element response. For stages 

after cracking and stages close to the ultimate load the analytical moment curvature 

response is softer than the corresponding finite element response. 
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Table (4.1) Details of testing specimens. 

Group Type of members 
Specimen 

designation 

Diameter of wire 

mesh (mm) 

No. of wire 

mesh layers 

A 

Rectangular beam 

section ,L=1200mm 

R1 0.6 2 

R2 0.8 2 

R3 0.8 3 

R4 0.8 3+Skeletal bars 

 

 

 

 

Table (4.2) Material properties used for rectangular beams of group A. 

  R1 R2 R3 R4 

Mortar 

cE  Young's modulus (MPa) 22647 22647 22647 22647 

 Compressive strength (MPa) 
30.0 29.0 27.8 28.5 

rf  Modulus of rupture (MPa) 3.65 3.65 3.65 3.65 

 Poisson's ratio 0.2 0.2 0.2 0.2 

Wire mesh reinforcement 

SE  Young's modulus (MPa) 175000 85000 85000 85000 

yf  Yield stress (MPa) 
350 170 170 170 

Skeletal bar reinforcement 

SE  Young's modulus (MPa) -- -- -- 200000 

yf  Yield stress (MPa) 
-- -- -- 400 

* Assumed value 

 

 

Table (4.3) Comparison of ultimate load uP (kN) for  

rectangular beams  of group A. 

Specimens Exp. uP  

Analytical model FEM 

uP  

expu

u

P

P
 

uP  

expu

u

P

P
 

R1 4.75 4.32 0.909 4.8 1.011 

R2 4.125 3.68 0.892 4.08 0.989 

R3 6.375 5.82 0.913 6.35 0.996 

R4 10.5 9.48 0.903 9.7 0.924 

 

 


cf


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Figure (4.1): Experimental and predicted      Figure (4.2): Experimental    

  load-midspan deflection curves                         and predicted load- midspan  

of rectangular beam R1                      deflection curves  of rectangular beam R2    

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Figure ( 4.3): Experimental and predicted               Figure (4.4): Experimental  and 

predicted load-midspan deflection 

curves of rectangular beam R4 
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          load-midspan deflection curves                          

                of rectangular beam R3                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

                                                                               

                                 

                            

                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.6): Numerical and 

analytical moment-midspan 

curvature response of 

rectangular beam R2 

Figure( 4.5): Numerical and 

analytical moment-midspan 

curvature response  of 

rectangular beam R1 
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FINITE ELEMENT ANALYSIS OF T-BEAMS OF GROUP B 

Finite Element Idealization and Material Properties 

For the simply supported T-beam  specimens of group B. details of wire mesh 

reinforcement and geometry for each beam are based on (Table.4.4). Material 

properties adopted for the proposed analytical and finite element models are listed 

in Table (4.5). 

 

Results of Analysis of T-beams of Group B  

a) Load Deflection Curves 

Figure (4.9) indicates that both the proposed analytical and the finite elements 

results for T-beam specimen T1 depart from the experimental results. The finite 

element solution indicates that the wire meshes located at bottom face of the beam 

had yielded and then crushing of mortar took place at the ultimate load. At ultimate 

stages the analytical response is slightly stiffer than the experimental curves. On 

the other hand good agreement for both analytical and numerical methods has been 

noticed as compared with the experimental results of beams T2 and T3 as shown in 

Figures. (4.10) and (4.11). The comparison between the analytical and finite 

element predicted ultimate loads with the experimental ultimate loads is shown in 

Table (4.6) 

b) Moment Curvature Response 

By applying the proposed analytical and finite element methods the moment 

curvature curves are shown in Figures. (4.12) to (4.14) for T-beams of group B. 

This study has been conducted to find out the moment-curvature response 

throughout the loading stages.  

The specimens have almost the same behavior linear moment curvature 

relations before cracking. After cracking, the curvature increases at an increasing 

rate as the applied loads are increased up to failure. The finite element results 

showed a response softer than the proposed analytical results for beam T1. While, 

the analytical responses for beams T2 and T3 shown in Figures. (4.13) and (4.14) 

respectively, are softer than the corresponding finite element responses at early 

stages after cracking stages and stages close to ultimate load. 

 

 

 
Table 4.4 Details of testing specimens. 

 

Figure( 4.7): Numerical and 

analytical moment-midspan 

curvature response  of 

rectangular beam R3 

Figure (4.8): Numerical and  

analytical moment-midspan 

curvature response  of 

rectangular beam R4 
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Group  
Type of 

members 

Specimen 

designation 

Diameter of wire 

mesh (mm) 

No.of wire mesh 

layers 

B 
T-section beam , 

L=1200 mm 

T1 0.8 2 

T2 0.8 3+Skeletal bars 

T3 0.6 3+Skeletal bars 

 

 

 

 

 

 

Table (4.5) Material properties used for T-beams of group B. 

 

  T1 T2 T3 

Mortar 

cE  Young's modulus (MPa) 22647 22647 22647 

 Compressive strength (MPa) 
29.0 28.5 28.8 

rf  Modulus of rupture (MPa) 3.65 3.65 3.65 


*
 Poisson's ratio 0.2 0.2 0.2 

Wire mesh reinforcement 

SE  Young's modulus (MPa) 85000 85000 175000 

yf  Yield stress (MPa) 170 170 350 

Skeletal bar reinforcement 

SE  Young's modulus (MPa) -- 200000 200000 

yf  Yield stress (MPa) -- 400 400 

*Assumed value 

 

Table (4.6) Comparison of ultimate load uP (kN) for T-beams of group B. 

 

Specimens Exp. uP  

Analytical model FEM 

uP  

expu

u

P

P
 

uP  

expu

u

P

P
 

T1 4.15 3.96 0.954 4.04 0.973 

T2 12.0 11.48 0.956 11.8 0.983 

T3 14.0 12.79 0.914 13.2 0.943 

 

 

 

 

 

 


cf



Eng. & Tech. Journal, Vol.31, No.2, 2013                                Nonlinear Analysis of Ferrocement   

                                                                                                                           Flexural Beams 

       

362 
 

0.0 1.0 2.0 3.0 4.0

Deflection (mm)

0.0

1.0

2.0

3.0

4.0

5.0

L
o

a
d

 (
k
N

)

T1 2L 0.8mm

Exp.

Analytical

FEM

0.0 2.0 4.0 6.0 8.0 10.0

Deflection (mm)

0.0

4.0

8.0

12.0

16.0

L
o

a
d

 (
k
N

)

T3 3L 0.6mm+skl.

Exp.

Analytical

FEM

0.0 0.1 0.2 0.3 0.4

Curvature (1/mm)*10^3

0

400

800

1200

m
o

m
e
n

t 
(N

.m
)

T1 2L 0.8mm

Analytical

FEM

0.0 2.0 4.0 6.0 8.0 10.0

Deflection (mm)

0.0

4.0

8.0

12.0

L
o

a
d

 (
k
N

)

T2 3L 0.8mm+skl.

Exp.

Analytical

FEM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure (4.9): Experimental and predicted              

   load-midspan deflection curves of                      

 

 

           T-beam T1                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.9): Experimental and 

predicted predicted load-midspan 

deflection curves of T-beam T1 

Figure (4.10): Experimental 

and load-midspan deflection 

curves of T-beam T2 

Figure (4.11): Experimental and 

predicted load-midspan deflection 

curves of T-beam T3 

Figure (4.12): Numerical and 

analytical moment-midspan 

curvature curves of  reeponse T-

beam T1 
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CONCLUSIONS  

By comparing of proposed analytical and numerical results with corresponding 

experimental data, the following conclusions are drawn. 

1. It is found that the predicted response obtained using the proposed analytical 

and finite element models are close to experimental response at early stages 

before cracking. The post cracking response and the behavior close to the 

ultimate load obtained using the proposed analytical methods is relatively softer 

than the experimental behavior, while the predicted finite element response all 

stages after cracking is close to the experimental behavior. 

2. The moment-curvature response throughout the entire loading history of one 

way slabs, rectangular beams and T-beams is predicted by applying the 

proposed analytical and finite element models. At early stages of loading, the 

analytical response and the finite element response are almost similar. For 

stages after cracking and stages close to the ultimate load, the analytical 

moment curvature response is relatively softer than the corresponding finite 

Figure (4.12): Numerical and 

analytical moment-midspan 

curvature curves of  T-beam T2 

Figure (4.12): Numerical and 

analytical moment-midspan 

curvature curves of  T-beam T3 
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element behavior this can be attributed ignoring the effect of residual post 

cracking tensile stress of mortar in the analytical model.  

3. The load carrying capacity of the tested ferrocement members is closely 

predicted using both the proposed analytical method and the finite element 

analysis. For the rectangular beam specimens, the ratio ranged loads to the 

experimental ultimate loads between 0.892 and 0.913 for the proposed 

analytical method and ranged between 0.924 and 1.011 for the finite element 

analysis. While for the T-beam specimens, the ratio of ultimate loads ranged 

between 0.914 and 0.956 for the proposed analytical method and ranged 

between 0.943 and 0.983 for the finite element analysis. 
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