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Abstract:

In this paper, a numerical and analytical treatment for the heat irreversibility of
thermal radiation and Ohmic heating on the Williamson fluid problem is
investigated with various physical parameters and the new initial conditions that
pose arbitrary constants. The governing equations are transformed into
dimensionless formulas, and the ordinary differential equations obtained are then
solved using the BVP4c and the differential transform method (DTM). The heat
irreversibility analysis is achieved by substituting the obtained results into entropy
generation and Bejan number expressions. The results of numerical solutions are
compared with the results of analytical solutions for various parameters. Fluid
motion is reduced by the increasing values of the thermal radiation parameter, the
magnetic parameter and the Reynolds number. In addition, it is worth noting that,
except for the Weissenberg and Prandtl numbers, all of the flow parameters under
investigation contribute to the augmentation of fluid temperature. Furthermore, it
should be noted that the formation of entropy is heightened near the upper wall of
the channel for all parameters, except for the magnetic field parameter.

Keywords: Williamson fluid, heat irreversibility, thermal radiation, inclined
channel, differential transform method.
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1. Introduction

Many scientists have recently become attracted to the study of viscous incompressible
non-Newtonian fluids due to their numerous applications in engineering and industry.
Newton's law of viscosity does not apply to non-Newtonian fluids. Numerous rheological
models, including the Ellis, Power-law, Carreaus, Cross, and pseudoplastic fluids, have been
proposed to overcome this problem since the Navier-Stokes equations alone are insufficient
to reflect the rheological properties of these fluids. Pseudoplastic fluids are more important
because they are used in many industries, like melting high-molecular-weight polymers,
making photographic films, and extruding polymer sheets Williamson, [1],. Khan and
Alzahrani [2] showed that the connection between velocity and the Weissenberg number is
inverse. On the other hand, it gets better as the combined convection parameter rises. The
Williamson flow of a stretching sheet was investigated by Nadeem et al [3]. As demonstrated
by Hayat et al [4]. Thermal radiation, magnetic and electric fields, and two-dimensional
Williamson fluid flow, all affect how the fluid moves. Krishnamurthy et al [5] explored the
continuous flow of Williamson fluid in a horizontally stretched sheet with simultaneous
melting heat transfer, chemical changes, and nanoparticles. Raza et al [6] studied
hydromagnetic Williamson fluid under slip conditions. It was suggested that there was a
direct correlation between the temperature profiles and the Williamson fluid parameter. Using
the Keller box approach, Malik et al [7] examined the stretched cylinder using the
Williamson fluid model. Al-Khafajy and Al-Delfi [8] conducted a study on the impact of an
elastic wall on the peristaltic flow of Williamson fluid within two cylinders that are arranged
concentrically. Monica et al [9] provided a method for analyzing the flow of non-Newtonian
fluids across a stretching sheet at their stagnation points. Nagaraja and Reddy [10] introduced
a model for Williamson fluids in two dimensions that flow via a cylinder. A study conducted
by Khudair and Al-Khafajy [11] examined the impact of heat transfer on the magnetic
oscillatory flow of a Williamson fluid through a porous material with two distinct geometric
shapes, namely Poiseuille flow and Kuwait flow. Siddiqui et al [12] uncovered a method for
analyzing Williamson fluid Blade coatings. Al-Khafajy [13] conducted a study on the
peristaltic flow of Williamson fluid through a porous medium. The study focused on the
combined impacts of magnetohydrodynamics (MHD) and wall characteristics, specifically
the variable viscosity model. Shashikumar et al [14] examined the steady flow of Williamson
fluid in a microchannel induced by viscous dissipation, magnetic effect, and Joule.
Dissipation Readers who are interested in learning more about flow accounting for the
viscoelastic shear-thinning features of non-Newtonian fluids should review the vast study. In
[15,16], Ohmic heating is a sort of heating method in which heat is produced in fluid
materials by electrical current. It results from the conversion of electrical energy to thermal
energy, which is created by the applied electric field and fluid electrical resistance. Many
academics have looked at difficulties with Newtonian and non-Newtonian fluid flow in the
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context of Ohmic heating and heat transmission. The investigation of boundary layer flow,
Ohmic heating, and chemical interaction with hydromagnetic heat transfer was carried out by
Rao et al.[17] submitted that increasing values of Joule the temperature as well as the
concentration distributions of the nanofluid are improved by the heating parameter. Prakash
et al [18] examined the effects of a changing magnetic field on the mixed convective flow of
an electrically charged nanofluid in a porous media. Furthermore, Muhammad et al [19]
presented a study that examined the impact of chemical processes and viscosity dissipation
on the electrical conductivity of Newtonian fluid flowing past an exponentially stretched
sheet with ohmic heating. Adegbie et al [20] examined the effects of Joule heating and a field
of magnets on airborne convection flow through a moving porous material. Numerous
researchers have also studied the ohmic heating impact on non-Newtonian fluids. Goud and
Nandeppanavar [21] conducted research on the impact of chemical processes and Ohmic
heating on the hydromagnetic flow of a micropolar fluid. Hasan et al [22] analyzed the effects
of a hall current with Ohmic heating is caused by waves of peristaltic in a non-Newtonian
channel flow. Gireesha et al [23] studied cross-diffusion when examining the impact of Joule
heating on Casson fluid hydromagnetic convection and mixed flow. Samuel and Olajuwon
[24] examined the interactions between Joule heating, thermal radiation, Lorentz and forces
of buoyancy in Maxwell fluid. Irreversibility analysis in gravity driven flows has applications
in nature including wire drawing, spaying, fiberglass in metallurgical technology, the printing
industry, during paper manufacturing processes, and the printing industry. Bejan [25] used
the second law of thermodynamics to help understand how fluid generation of entropy rate
and strategies for minimizing reversibility work. Furthermore, there have been reports of a
Newtonian film flowing along a heated inclined plate by Saouli and Aboud-Saouli [26] with
the intention of boosting the amount of energy available at work. Furthermore, researchers
looked at the continuous, reactive flow of a pair stress fluid through a porous material
Adesanya et al. [27] Adesanya and Makinde [28] investigated the entropy creation of third-
grade fluid flow through a channel that is vertical and the effect of internal heat generation
using the Adomian decomposition method. For more information see [29,32].In light of the
significant uses of flow powered by gravitational force can be pointed the importance of the
application as follows:

Food industries

Drying processes

The

applications
of the flow
fluid

Wire and glass
production

\l

Figure.l: The application of the flow fluid.
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In this paper, the heat irreversibility of thermal radiation and Ohmic heating on the
Williamson fluid problem is resolved by using two methods BVP4c and DTM to find the
numerical and analytical solutions respectively with a comparison between them. We have
applied the differential transformation method, which is one of the most well-known and
successful analytical techniques for dealing with nonlinear problems to find approximate-
analytical solutions. DTM is an analytical method based on the Taylor series. It constructs an
analytical solution in the form of a polynomial. Actually, DTM differs from the conventional
high order Taylor series method, which calls for the algebraic computation of any necessary
derivatives for the data functions. This method was initially used in the field of engineering
by Zhang and Wang [33]. Numerous researchers chose to utilize this method to solve the
nonlinear equations due to its advantages and capabilities. DTM is capable of solving any set
of connected nonlinear equations. Khundu et al [34] utilized DTM and looked into the
thermal analysis of exponential fins in the context of sensible and latent heat transfer. The
DTM is applied to address the problem of heat transfers in the context of nanofluids and the
outcomes are contrasted with those of the R-K approach by Usman et al [35]. Kanwal et al
[36] investigated DTM analysis of MHD flow on a non-linear stretched sheet. Patel and
Meher [37] analyzed the behavior of saturation profiles in fingers-imbibition processes
during two-phase fluid flow through porous media and utilized it to calculate the solution of
the Kolmogorov-Petrovskii-Piskunov equation. DTM was utilized by Yaghoobi and Torabi
[38] to resolve nonlinear problems, the accuracy of their solutions was checked by comparing
them to those obtained using the variational iteration method (VIM), homotopy perturbation
method (HPM) and perturbation method (PM).

2. Governing Problem
The Williamson Magnetic flow is a fully advanced flow and also incompressible, where
the fluid flows between two parallel and infinite panels at the distance of h, and it tends to an
angle € as shown in Figure2. The flow is along the x — axis whereas the y — axis is
perpendicular to the flow in the Cartesian coordinates system approach. Transverse to the
flow, a magnetic field of intensity B is applied. The magnetic Reynolds number is thought to
be low and it is assumed that the physical quantities rely exclusively on y, leading to a small
induced magnetic field in comparison to the applied magnetic field. Furthermore, it is
assumed that the electric field imparted is zero and that the hall effect is neglected. Using
Boussinesq's approximation, the following set of equations describes the fluid motion, when
hall currents ion-slip, thermoelectric effects and the electron pressure gradient are
disregarded, Ohm's law for an electrically conductive fluid is:
J=0(E+qB) (1)

where o represents the fluid's electrical conductivity, E signifies the electric field vector,
J is the current density vector, q is the velocity vector, and B is the magnetic field vector, the
total magnetic field B = (B- + b). B- and brespectively stand for the applied and produced
magnetic fields. For tiny magnetic Reynolds numbers, the induced magnetic field is not taken
into account. The energetic and momentum equations obtain the form [12] under the
conditions given above.

o Z—y + Z‘i a (1 ++2% du) d’u + pg(T — Ty) sin(e) + B-J, (2
dT r(dzT) T du) [du dar 1
POV T = o2 (1 + x/__E) (_) FEa A (3)
For the purpose of including Joule dissipation, the index A is set to 1. Taklng,
E;=0,E;,=0,leadsto J; = 0,]z = —pB-1, 4)
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Eq. (2) and Eq. (3) are changed by the assumption of (4)
AR A S
mn%+§§=d0ﬁwﬁf%)du+mﬂT—ﬂ)ﬂK@—p&E

dx?

at _ _ d®T | . T du\ [du\? dgr 22
pCp/()’od—y—Td)_lz +a(1+ﬁE)(E) —d—}_}+/1pBo u“,

The boundary conditions are as follows:
1(0)=0,u(h) =0, T(0) =Ty, T(h) =T,

(5)
(6)

(7)

The Rosseland approximation is used to calculate the net radiative heat flux gz for

optically thick material.
_ oot

Ef T 3%¢ ay b _
T* being expanded in Taylor series about T, as.
T* = T4 + 4T3 (T = T,) + 6T2(T — Ty)? + 4T, (T — Ty)3,
and without accounting for the higher order components, if follows that
T = Tg +4TST + T3,
In light of equations (4) and (6), equation (3), we get

dT _ #(d?T) | . T du) (du)? 2—9  16p°T3 d?T
PepV° 35 = Taye +a(1 +\/§d37) (d;‘z) +pB U+ 3%C dy? '
These similarity transformations are used to produce similarity equations.
— _ 3a _y _ (T-Ty)
u= ph‘y(f) &= hand , O = S
which yield

ay()\ a*y&) ay®) :
(1+mzﬁ) 22— R L E — MPY (@) + GrPsin(e) + 2 =0,
ae($)

(1+§&J£ﬂQ—RJ%——~+@R(L+%ﬂ&%(w®§?+M%y@D2=0.

agz ag
giving the pertinent boundary conditions as
Y0)=0,Y(1)=0,o(0) =1 and ¢(1) = 0.

where,
R, =

2 dé dg

voph

a2 dx ph?’ a

h3 ap avzz h2B.? 4p°TE
02 (22) g =B <2 T -
T

(8)

(9)

(10)

11)

(12)

(13)
(14)

(15)

p2h3B(T,-Ty)

(16)

Figure 2: Schematic Diagram of the Problem.
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3. The Ideal Basic of Differential Transform Method for Ordinary Differential
Equations

In 1986, Zhou created the differential transformation method. The method was created to
address initial value problems in the theory of electric circuits, both linear and non-linear. A
semi-analytical method is based on Taylor series expansion. In using this strategy, we have
put some transformation rules to use. The collection of basic equations is reduced to ODEs,
and then these equations along with boundary conditions are converted using the DTM's
prescribed procedures to produce the desired result. Basic definitions and operations of
differential transformation are introduced for the function Y (¢)as follows:

_ 1 (dy©

W) = (45 )HO, (17)
where Y (&) is original function and W (k) is the transformed function. The inverse transform
of the function W (k) gives, )
Y = o WK — §0)" (18)
In actual applications, the function Y (&) is expressed by a finite series and Eq. (18) can be
written as follows: .
Y = ZE:OW(k)(S( - fo)k,
Substituting Eq. (17) into Eq. (18), gives

_vn  E=&)F (dFy©)
Y©) = Xk=0—, ( )f=fo' (19)

agk
New, the basic mathematical operations of differential transform that are commonly used are
obtained and are listed in Table 1 as follows:

Table 1: The functions of differential Transformation

Original function Transformed function
Y@@ =t v W(k) =T(k) +V(k)
2 YE©) =€t(®) W(k) = eT(k), € is constant
k
3 Y@ = tw©) W) = ) TV (-0
i=0
_dme(§) (k + n)!
4 Y@ = & Tk +m)

4. The Application of Differential Transform Method and BVP4c

In order to solve the thermal radiation and ohmic heating effects on the entropy generation
of MHD Williamson fluid through an inclined channel, two schemes are implemented in this
section: Namely, the differential transform method and BVP4c. These solutions, are
approximate analytical and numerical solutions, and they can be summarized as follows:

4.1. Analytical Aspect
According to the differential transform method and Table.1 we obtain the iterative scheme
for Eq. (13) and Eq. (14) given below:
(k + Yw(k + 2)(k + 2)
k
+MZ((i + DG+ 2WGE+2)(1— i+ W(1 - i +k))-

R.(k + 1)w(k ii01) + G, sin(e) V(k) + 6(k)Q =0, (20)
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4R,

(1 +59) (& + 1)(k + 2) V(k + 2)- ER(k + D)V(k + 1)+ EP 35 (G +
DWGE + D(1-i + k) )
W(l- i+ K))+ 2225k S50 (G + DWG + DE + 1- )W(E + 1- j)(F +

1-i- )Wk + 1-i-j))=0, (21)
The boundary conditions can be written as follows:
w0)=0, W) =1,v0) =1,7(1) =A. (22)

Where IT and A can be determined using Y (1) = 0 and ¢(1) = 0 and using the iterative of
Egs. (13)-(15) and we get approximants for Y and ¢.

yl(f) = Hf; © Q
_ __ (Grsin(e)— Rea + 2
Yo(§) = Mg — (ot ¢,
Gy sin(e)— Rg + Q 1 . .
Ys(§) = ¢ — (TG o—Te2) 82 - —— s (SIn(e)TIPA G, W2 + sin?(e) GEW, +,

2MA sin(e) G W, — sin(e) 1G,.R W, + 2Qsin(e) G.W, — IQR, W, + Q*W, +
AG, sin(e)
+IQR W, + Q*W, + TG, sin(e) + sin(e) G.R, — TIRZ + QR,)é&3,
The required approximate analytical solution of Y (&) is,

Gy sin(e)— Rell + Q 1 . .
Y =g — ( SH;(?Ne+ 5 hi )EZ ~ WD (sin(e) a®bG,WZ + sin?(g) GZW, +,
2MA sin(g) G, W, — sin(e) [1G, R W, + 2Qsin(g) G,W, — [IQR W, + Q*W, +

AG, sin(g)

+IOQR W, + Q*W, + IIG, sin(g) + sin(e) G,R, — MR% + QR)E3 + ---. (23)
And,
‘b1(f) =1+ AE,

_  3(2RePy - 2E Pra®—a W, E.Py) .,
CDZ(f) - 1 + AE' 4(3 +4Ra) f ]
cb3(§) = ( )

3(2RoPyb - 2B Pra2—a3W,E.P;) 1 RePr(A RePy - I2E P12 —2E P WIT?
1+ 48 * 4(3 +4Ry) ¢+ 6(1 +%) < 3 +12R,
2E Py T1(Gysin(e)—MRe + Q) AE Py W,(Grsin(e)— TR, + 0)? B 2M%E P W, (Gy sin(e)— R I+ Q)) 53
MW+ 1 2(MWe+ 1)2 2MWe+ 1 !

The required approximate analytical solution of ¢ (¢) is,

D($) =
14+ 48+

3(2RePrA— 2E Py T —a3W,E,P;) g2 41 RePr(A RoPy - ZE P12 —2E P W, T3 )
6( 4Ra) 3 +12R,

4(3 +4Rq) 1 +T

2E Py T1(Gysin(e)—Re + Q) AE.PrW,(Grsin(e)- TR, + 0)? B 2M%E P W, (G sin(g)— R+ Q)) 5;3 g
MWe+ 1 2(IMW,+ 1)2 2[IW,+ 1

(24)

4.2 Numerical Aspect

Eq. (13) and Eqg. (14), which are nonlinear ordinary differential equations subject to Eqg.
(15) boundary conditions, are resolved using MATLAB's bvp4c solver. Other researchers
have frequently utilized this algorithm to resolve the boundary value issue. A finite difference
code with fourth order precision serves as the solution. The equations must be rewritten as a
collection of equivalent first order ordinary differential equations in order to apply the solver.

From Eg. (13), we have

ay()

aF; _ Rey(2)+My(1)+ Gry(3) sin(8)+ Q
& 1+ Wey(2)

, (25)
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From equation (14),

6O =Fs, 2= G = i (ReBY(®) ~ BB (14552 y2)? — My(1?)
(26)

From the boundary conditions (15), we obtain that
Fi(0)=0, F,(1) =0, F3(0) =1, F3(1) = 0. (27)

Egs. (25)-(27) have been numerically integrated into a predefined endpoint to create an initial
value problem. The MATLAB package had to be used, which necessitated all these
simplifications. With a 0.1 step size, this program is executed, and the range from 0 to 1 and
back is then solved.

5. Convergence Test

In order to evaluate the errors of approximate analytical solutions to Eq.(13) and Eq.(14),
we have applied the theorems from [39,40]. These theorems may be used to define the
convergence condition, which is introduced as follows:

Definition 5.1: If there exists 0 < m < 1and 0 < y; < 1 forj = 0,1,2,.., then ||[W,,|| <
m; |[Wi|| and ||Vis4|| < v; ||V3]| are the condition of convergent. Tables (2)-(5) show that the

convergence criterion is satisfied for all solutions as follows:

Table 2: The values of convergent for R, = 1.5,Q=0.1,W, =0.2,G, =1,R, = 0.2, Pr =
0.71,E, = 0.5and ¢ = g
| M=0.5 M =0.75 M=1 Y; M=0.5 M =0.75 M=1
T, 0'00080000 O'OOO%OOOOO O'OOO%OOOOO Yo| 0.6014787155 | 0.636702430 | 0.63680712
- 0.85154156 0.8937766982 0.9354;62213 va | 0.4281699754 0.4273;62787 T —
- 0.15852934 0.0978831072 0.0378885979 Y, | 02603940712 0.261257595 0.261657342
113 0.161;37613 0.208286356 0.749274612 va| 02403051562 0.25142176408 0.266614782
. 0.125;33413 0.030(114531 0.095%30381 va| 0.1667845831 0.118&;04678 0.059482599
Table 3: The values of convergent for M = 0.5,Q2=0.1,W, =0.5,G, =1,R, = 0.1,Pr =
1,E,=05and ¢ =%
T; R, =1 R, =1.5 R, =2 \ R, =1 R, =1.5 R, =2
T, 0'00080000 O'OOO%OOOOO O'OOO%OOOOO Yo | 0.6205465619 | 0.479421642 | 0.36684652
- 0.962223006 0.8098606899 0.678:;04031 vi | 0.4550331254 0.6779869768 0.901050664
“2 0.066689338 0.210%99166 0.352%04597 v | 02567776179 0.4162784856 0.560994683
. 0.22585733 0.1392189047 0.2888652574 vo | 02804777510 0.3491(1)63949 0.446284067
. 0.836(())1225 0.153%17431 0.190240039 ve | 0.1710042540 0.2739552432 0.358110075
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Table 4: The values of convergent for M = 0.5,0=0.1,W,=1,G,=1,R, =1,Pr =

0.71,E,=0.5and e = -

T
o

m | R,=0.1 | R,=0.5 Ro=1 |v| R.,=01 R,=0.5 R, =1
my | 0000000 | 0000900000 1 0.0000%0000 | 1 0 7175001456 | 0.800890731 | 0.85473003
y | 0S057273 | 0981093629 | 0997219147 | " op1pnepszs | OZTTH0L | 165p750s
vy | 005028630 | 0028016430 | 0009850860 | 1" 170455900 | OTISEITE | 770151z
wy | 0073TTE33 | 0170662705 | 04331856 | 1 p5e15cpep | 0222982196 | ppsgnrng
y | 049833714 | 0829459767 | 0668600868 | 1 pp4s507057 | 0904033350 | 061755000

Table 5: The values of convergent when M =0.75,Q2=0.1,G, =1,R, = 0.3,Pr =

71,E, = 0.5nd € = g
™| W,=01 | W,=05 W,=1 |v| W,=01 | W,=05 | W,=1
my | 00000000 | 0000000000 1 0.000000000 | 1 o 5570893889 | 0.557080027 | 055706772
vy | 089100656 | 0866810505 | 0842437341 | 1) sagoesony | 056209142 | g sqnpzess
y | 01560002 | 0126250045 | 0141955597 | 10 35000501, | 0957528 | 35724035
y | 012267795 | 0196603346 | 0263823107 |\ 1" 555017785 | 029890692 | p04s61355
y | 0ST066T | 0035746093 | 0203602103 | 10 1ocogranay | 0195901255 | 0605780

6. The Analysis of VValidation

In order to validate the differential transform method, the exact solution of the Newtonian
case W,=0 is compared with the presented result of DTM in Table (6). This table shows that
the results show full agreement between the exact solution and DTM. The exact solution as
presented by Makinde and Eegunjobi [36] as follows:

Y@ =

The momentum of Equation (13) at
>y

Q(1-&+geRe—efRe)

Re(eRe—-1)
W,=0,G,=0,M =0, gives

ay($)

agz

+R,

d¢§

)

+0=0,

The solution of the DTM of Equation (31) is written as

Y = ag + (F22) 82— R (22) 8 - RE(5) ¢ -
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Table 6: The comparison of Exact, HPM and DTM solutions of Equations (13) at Re =
1,Q=1,W,=0
G.=0and M = 0.

3 Exact [41] HPM [36] DTM
0.1 0.03879297 0.03879298 0.03879297
0.2 0.07114875 0.07114876 0.07114874
0.3 0.09639032 0.09639033 0.09639032
0.4 0.11376948 0.11376949 0.11376948
0.5 0.12245933 0.12245933 0.12245933
0.6 0.12154600 0.12154601 0.12154600
0.7 0.11001953 0.11001954 0.11001953
0.8 0.08676372 0.08676373 0.08676372
0.9 0.05054498 0.05054499 0.05054498

7. The Analysis of the Irreversibility

The values for temperature and velocity are used to compute the irreversibility rate inside
the flow. In the presence of a magnetic field and thermal radiation, the equation for heat
irreversibility is

) T (e B o) @

160°T3 [ dT \? . .
7 (—) is the thermal radiation
3t¢ ay

N4
Where,f—z(ﬂ) is heat transfer entropy generation |,
T{ \dy

. T du) (du\? . .. . . 2.2 ,
entropy generation, @ (1 + \/_EE) (;) is friction entropy generation and oBZu? is magnetic

field entropy generation . Applying the relations of the Eq. (16) yields the non-dimension
form of Eq. (33).

W= (14 300) (5 + o (1+24949) (497 - weuo)’),

g g
Denoting,
— 4 de(©))? ~ We dY©\ (AYON* 2 2
M= (1+3R,)(552) and N, = E.pL ((1 + 290 () - M (Y ©) ) (35)
- A —  E, Ty h? . .
Where, L = ——= and N, = ——— . Then the Bejan number is represented as
T,—Ty ©(T,—T1) _ .
N1 M
Be_ﬁ;_1+ﬁ’ﬁ_ﬁ£’ (36)

The expression is denoted by g is the distribution ratio of fluid irreversibility. The Bejan
number can have any value in the range of 0 to 1. Especially, there are three cases for the
Bejan number can be summarized as follows:

e Be = 0 irreversibility of fluid friction dominates.

e Be = 1 irreversibility of heat transfer predominates.

e Be = 0.5 both increase entropy production equally.
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8. Results and Discussion

The impact of several physical parameters is examined for velocity ,temperature profiles in
a range of 05<R,<4501<W,<1,6,=1,05<M<15,071< Pr<
7,15<R,<25'm/6 <e<7n/18 and 1.5<R,<25. when E,=050Q=1 and
L = 1,The comparison of the results for DTM with the numerical results generated using the
BVPA4c is provided in Tables (8)- (17). These tables show that the results of DTM and the
numerical solutions match well by finding the absolute errors. Tables (11)-(17) show the
convergence of values IT and A that become similar in decimal places and are constant as
continue to increment the iterative schemes. Also, the results of DTM and BVP4c are
compared with the exact solution in Eq. (30) in Table (18). This table shows the numerical
solution close to the exact solution of the DTM results as the Reynolds number decreases.

Table 8: Comparison between DTM and BVP4c for =1.50=0.1,W,=0.5,G, =
0.5M =0.5,R, =0.5,Pr=0.71,E, =05 and ¢ = g

BVP4c DTM Errors
e o) Y© o) | Erroryg | Errory
0.0 | 0.00000000000 1.0000000000 | 0.00000000000 | 1.0000000000 0.000000 0.0000000
0.1 | 0.00974859363 0.9262739525 0.00973675964 | 0.9262590993 | 1.1x 107> 1.4 %1075
0.2 | 0.01761262044 0.8476652344 | 0.01758701087 | 0.8476343780 | 2.5x 1075 3.0x107°
0.3 | 0.02350387485 0.7638581950 | 0.02346228968 | 0.7638100764 | 4.1 x 1075 48x107°
0.4 | 0.02732591013 0.6745147897 | 0.02726616814 | 0.6744484358 | 5.9 x 107° 6.6 x 107°
0.5 | 0.02897284594 0.5792729964 | 0.02889351382 | 0.5791884754 | 7.9 x 1073 8.4x107°
0.6 | 0.02832792897 0.4777450640 | 0.02897284594 | 0.4776447706 | 6.4 x 10~* 1.0x 1074
0.7 | 0.02526175503 | 0.3695155589 | 0.02832792897 | 0.3694062296 | 3.0x 1073 | 1.0x 10~*
0.8 | 0.01963002253 0.2541391745 | 0.02526175503 | 0.2540348714 | 5.6 x 1073 1.0x 1074
0.9 | 0.01127064349 0.1311382570 | 0.01963002253 | 0.1310646039 | 8.3 x 1073 7.3x107°
1.0 | 0.00000000000 | 0.0000000000 | 0.00000000000 | 0.0000000000 | 0.0000000 | 0.0000000

Table 9: Comparison between DTM and BVP4c for Re =1,Q0=0.3,W, =0.2,G, =
1,M =1,R, = 0.1

Pr=1,E,=05and e =—

T
6"

BVP4c DTM Errors
§ Y@ @) Y@ ® () Erroryg | Erroreg
0.0 | 0.00000000000 1.0000000000 | 0.00000000000 | 1.0000000000 | 0.00000000 | 0.00000000
0.1 | 0.02371956138 0.9354330563 | 0.02371003187 | 0.9351751224 | 5.2x107¢ | 25x 10™*
0.2 | 0.04233341495 0.8644816485 | 0.04231387503 | 0.8641478544 | 1.9x107° | 3.3x 107*
0.3 | 0.05581881724 0.7869547563 | 0.05578957312 | 0.7864253221 | 2.9x 1075 | 5.2 x 10™*
0.4 | 0.06403146075 0.7021901453 | 0.06409372918 | 0.7024484968 | 6.2 x 1075 | 2.5 x 10™*
0.5 | 0.06710473321 0.6085516546 | 0.06716077345 | 0.6085937577 | 5.6 x 107> | 4.2 x 107>
0.6 | 0.06494898975 0.5083243982 | 0.06490223108 | 0.5081744538 | 4.6 x 1075 | 1.4x 10™*
0.7 | 0.05725085462 0.3967076456 | 0.05720598944 | 0.3964424658 | 4.4 x 1075 | 2.6 x 107*
0.8 | 0.04397258698 0.2768050907 | 0.04393556598 | 0.2765897697 | 3.7 x 107> | 2.1x 10™*
0.9 | 0.02495156862 0.1446121667 | 0.02492937590 | 0.1447499975 | 2.2 x10™° | 1.3x 10™*
1.0 | 0.00000000000 0.0000000000 | 0.00000000000 | 0.0000000000 | 0.00000000 | 0.00000000
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Table 10: Comparison between DTM and BVP4c for Re=1,Q0=01,W,=1,G, =
1,M = 1.5,R, = 0.2

Pr=0.71,E, =0.5and = -

Vi
5 .

BVP4c DTM Errors
§ Y@ ®(§) Y@ P(§) Errorye) | Errorgg
0.0 | 0.00000000000 | 1.0000000000 | 0.00000000000 | 1.0000000000 | 0.00000000 | 0.00000000
0.1 | 0.01452225341 | 0.9234397975 | 0.01450520569 | 0.9232785625 | 1.7 x 1075 | 1.6 x 107*
0.2 | 0.02547887855 | 0.8424109662 | 0.02544300228 | 0.8420763349 | 3.5x 107> | 3.3 x 107*
0.3 | 0.03303406570 | 0.7566722420 | 0.03297779151 | 0.7561514443 | 5.6 x 1075 | 5.2x 107*
0.4 | 0.03733202925 | 0.6659597131 | 0.03725424309 | 0.6652445103 | 7.7 x 1075 | 7.1x 107*
0.5 | 0.03849625427 | 0.5699895100 | 0.03839688559 | 0.5690848017 | 9.9 x 1075 | 9.0 x 107*
0.6 | 0.03662871283 | 0.4684593154 | 0.03650969693 | 0.4673963905 | 6.4 x 10™* | 1.0x 1073
0.7 | 0.03180729013 | 0.3610475920 | 0.03167569524 | 0.3599043086 | 1.1x 1073 | 1.1x 1073
0.8 | 0.02408468418 | 0.2474132890 | 0.02395652956 | 0.2463407018 | 1.3x 1073 | 1.0x 1073
0.9 | 0.01348553282 | 0.1271937712 | 0.01339207011 | 0.1264509855 | 1.2x 1075 | 7.4x 107*
1.0 | 0.00000000000 | 0.0000000000 | 0.00000000000 | 0.0000000000 | 0.00000000 | 0.00000000
Table 11: The convergent of %éo) between DTM and BVP4c.
M BVP4c DTM Re BVP4c DTM
0.5 0.1853490449 0.1857856858 1 0.18734738816 0.1879012404
1 0.1774156943 0.1775242935 1.5 0.17729267679 0.1774430913
1.5 0.1660363999 0.1661157849 2 0.16666477381 0.1662916251
Table 12: The convergent of %ﬁf)) between DTM and BVP4c.
Ra BVP4c DTM Pr BVP4c DTM
0.1 0.1711028535 0.1711093849 0.71 0.14862861147 0.1481786244
0.5 0.1675323832 0.1673885926 2 0.16042257660 0.1609521259
1.5 0.1630022219 0.1637373049 4 0.16801051143 0.1690962489
Table 13: The convergent of %;0) between DTM and BVP4c.
M BVP4c DTM Re BVP4c DTM
0.5 -0.800930148 -0.8008846959 1 -0.7848177673 -0.7849803459
1 -0.800930148 -0.8013382819 1.5 -0.6912109272 -0.6915444953
1.5 -0.800734602 -0.803259159 2 -0.6060999399 -0.6068146285
Table 14: The convergent of %;0) between DTM and BVP4c.
Ra BVP4c DTM Pr BVP4c DTM
0.1 -0.6018108022 -0.6016038308 0.71 -0.6037313457 -0.6033277469
0.5 -0.7130593437 -0.7134758018 2 -0.2108081003 -0.2108138614
1.5 -0.8323107035 -0.8325678692 4 -0.0418339214 -0.0419023348
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Table 15: The convergence of values IT and A.

_ Re=1.5,ﬂ==13,We=0.5,Gr=1,M Re=1.50=1W,=1,6,=1,M =2,
Appg?ggpate Ra:o.S,Prz’Z,E,;:O.S ande =" R,=0.5,Pr=3E =05 ande="=
m A n A
Orderl 0.0000000000 -1.000000000 0.0000000000 ~1.0000000000
Order2 -3.331531822 0.2430547952 0.2913252597 -0.3913339011
Order3 0.3878530347 -0.5262507242 0.2252604167 -0.3790444981
Order4 0.4065859693 -0.5034448357 0.2569408256 -0.2866375901
Order5 0.4139701823 -0.4952525053 0.2565293076 -0.2921716017

Table 16: The convergence of values IT and A.

Re=150=01W,=1,6,=1M Re=1,0=0.1W,=1,6,=1,M

Approximate =0.5 . =0.75, .

Order R,=0.2,Pr=08,E.=05 ande=> | R,=0.1,Pr=1E,=0.5 ande ==

II A II A

Orderl 0.0000000000 -1.00000000000 0.00000000000 -1.00000000000

Order2 -1.907228470 -0.4169093458 0.1836320890 -0.6324463133

Order3 0.1712699789 -0.6139260037 0.1843388330 -0.6193322922

Order4 0.1737228598 -0.6003086815 0.1837228598 -0.6003086815

Order5 0.1742478597 -0.597451459 0.1840221637 -0.6168616742

Table 17: The convergence of values ITand A.

[Re=1,0=0.1,W,=0.5,G6,=1,M Re=150=01W,= 1,6, =1,M

Approxi =1 =0.75,

(g"rzt:r R,=0.2,Pr=08,E,=0. ande=> | R,=0.3,Pr=0.71,E,=0.5 ande ="

n | A I A

Orderl 0.0000000000 -1.00000000000 0.0000000000 -1.0000000000
Order2 0.1881176589 -0.7708963375 0.1572284704 -0.7184033024
Order3 0.1854431955 -0.747934427 0.1661351800 -0.6743590811
Order4 0.1849057364 -0.7413847967 0.1683161472 -0.6652208239
Order5 0.1843398768 -0.7407639248 0.1688642291 -0.6636336061

Table 18: The comparison of Exact, Bvp4c and DTM solutions at W,=0, G, = 0 and

M = 0.
R,=1.5and Q=1.2 R,=2 and Q=0.5
¢ Exact Bvp4c DTM Exact Bvp4c DTM

0.1 | 0.0428147741 | 0.0428147519 | 0.04260025998 | 0.01783948923 | 0.01633738218 | 0.01616744682
0.2 | 0.0796117054 | 0.0796116618 | 0.0791481976 | 0.03317154395 | 0.03075612657 | 0.03037957448
0.3 | 0.1094169011 | 0.1094168377 | 0.1086664266 | 0.04559037548 | 0.04283090397 | 0.04220553194
0.4 | 0.1310988584 | 0.1310987784 | 0.1300254678 | 0.05462452433 | 0.05204510707 | 0.05112510641
0.5 | 0.1433429592 | 0.1433428673 | 0.1419262018 | 0.05972623302 | 0.05776429978 | 0.05651595748
0.6 | 0.1446218357 | 0.1446217379 | 0.1428823180 | 0.06025909824 | 0.05921462481 | 0.05764085111
0.7 | 0.1331609387 | 0.1331608439 | 0.1312027677 | 0.05548372446 | 0.05545105393 | 0.05363489368
0.8 | 0.1068985366 | 0.1068984565 | 0.1049742124 | 0.04454105691 | 0.04532269275 | 0.04349276603
0.9 | 0.0634392391 | 0.0634391891 | 0.0620434770 | 0.02643301632 | 0.02741393507 | 0.02605595755
1.0 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.00000000000 | 0.000000000000 | 0.00000000000
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8 1. The Field of the Velocity

This section highlights the influence of the physical parameters such as the inclination
angle, the Prandtl number (P.), the Weissenberg number (W,), magnetic field (M), the
radiation parameter (R,), Reynolds number (R,), and the Grashof number (G,) on the
velocity profile. The effect of the inclination angle on fluid velocity is seen in Figure (3).
This figure shows fluid velocity increases with the angle_of inclination is increased. This
velocity leads to rising forces acting on the fluid flow. In Figure (4) rising trend is noticed for
the velocity profile as the Prandtl number increases. The Weissenberg number relative
velocity profile is shown in Figure (5) presents the relationship between the Weissenberg
number and the velocity profile. There is a noticeable upward trend in the bottom wall of the
channel, accompanied by a decrease in fluid velocity towards the upper wall. The velocity of
the fluid exhibits an increase as the Weissenberg number grows at the lower wall, which can
be attributed to the shear-thinning effect. Conversely, the reduction in velocity at the upper
wall can be attributed to the increased viscosity of the non-Newtonian fluid. The phenomenon
of shear thinning is a distinctive characteristic shown by the Williamson fluid. The fluid
under consideration exhibits the characteristic of being a non-Newtonian fluid, wherein its
viscosity diminishes as the applied shear stress increases. Furthermore, the Williamson fluid
parameter quantifies the impact of viscosity on elasticity. As a result, a decrease in the
velocity profile occurs as a consequence of the reduced resistance to flow. Figure (6) shows
how a fluid velocity responds to the effect of an external magnetic field. It shows that fluid
velocity experiences a loss of momentum. This is predicted because the used magnetic field
Lorentz force creates a resistive force within the flow, which slows the Williamson fluid
velocity. It is also noteworthy that the velocity boundary layers thickness reduces as M value
increases. Figure (7) indicates an increase in fluid velocity as the value of the radiation
parameter is decreased. This observation indicates an increase in the thickness of the
boundary layer, which causes more fluid flow. Figure (8) explains the velocity response to
changes in Reynolds number. It has been observed that fluid velocity decreases as Reynolds
number increases. This assertion is valid from a physical standpoint, as the Reynolds number
serves as an indicator of the relative importance of inertial effects compared to viscous
effects. Because of this, fluid velocity slows down as seen in the image. Figure (9) displays
that the fluid velocity rises when the Grashof number is raised.

8.2 The Field of the Temperature

The Sketches the behavior of the field temperature for different values of the inclination
angle parameter (¢), radiation parameter (R,), magnetic field parameter (M), Reynolds
number (R,) Ekartl number(E,), Weissenberg number (W,), and the Prandtl number (B.)
shown in Figures (10-16).

In general, the increasing values of each of the parameters increase fluid temperature
except the value of radiation parameter for which the opposite occurs. The effect of the angle
of inclination parameter is shown in relation to fluid temperature in Figure (10). The fluid
temperature looks to have slightly increased as the parameter fluctuates. This is because
increased fluid velocity, as seen in Figure (3), tends to increase the forces acting on fluid
flow, increasing fluid temperature. Figure (11) shows an increasing trend in fluid
temperature for growing radiation parameter values. This is explained by the fact that
reducing the fluid's Rosseland the absorption parameter (7€) while raising the parameter
radiation decreases the fluid's temperature. It is shown in Figure (12) how the magnetic field
parameter affects fluid temperature. As M's value increases, the temperature is shown to be
increasing as well. An electrically conducting fluid will interact with a magnetic field when it
is applied, creating the Lorentz force. The Lorentz force slows fluid motion, causing the
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kinetic energy to be transformed to heat energy (Joule heating), which increases the fluid's
temperature. The relationship between Reynolds number and fluid temperature is seen in
Figure (13), indicating a positive correlation as Reynolds number increases. The observed
phenomenon can be ascribed to an augmentation in frictional force, which in turn enhances
the thermal dispersion of the fluid, resulting in an elevation of the fluid's temperature. Figure
(14)- Figure (16) demonstrate that the temperature profile rises with increasing the values of

E., W, and P..
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8.3 The Graphic results of Bejan number and entropy Generation.

Figures (17-21) show how different controlling parameters affect the development of
entropy inside the channel. According to Figure (17), fluid entropy production increases at
the lower wall and reduces at the higher wall when the angle in the inclination parameter
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increases. The rise at the lower wall is due to the forces acting on the fluid flow being
increased by higher fluid velocity, which causes more entropy to develop.

Figure (18), shows how the Weissenberg number (W,) affects the production of fluid
entropy. Entropy generation is reduced as W, grows, but only somewhat so near the upper
wall of the channel. This is caused by the shear-thinning effect, which, as stated in Figure
(4), results in decreased flow velocity at the lower wall. Entropy generation is shown to be
decreasing in Figure (19) for the magnetic field increase. Figure (20) and Figure (20)
proved the effect of the Reynolds number and the Prandtl number on the fluid temperature
respectively. These figures displayed entropy generation is greatly reduced at the lower
channel but concedes to a strong surge at the upper channel.

The Bejan number response to changes in the angle of inclination parameter, Reynolds
number, Prandtl number, radiation parameter, Weissenberg number and magnetic field
parameter is shown in Figures (22)-(27). As the angle of inclination parameter grows in
value in Figure (22), the Bejan number drops at the bottom wall, making it clear that fluid
friction predominates entropy formation. According to Weissenberg number, heat transfer
predominates at both the middle and upper walls, whereas the friction of fluid is effective at
causing entropy production at the bottom wall, as shown in Figure (23). Figure (24) shows
that the main source of entropy generation is heat transfer since Bejan number values rise as
the magnetic field parameter rises over the whole channel. On the other hand, Figure (25)
represents a change in the pattern since entropy generation drops as Reynolds number
increases. Figure (26) shows that as the radiation parameter rises, heat transfer takes
precedence over entropy generation. However, Figure (27) displays the Bejan number rising
with an increase in the Prandtl parameter.
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Figure 24: M vs Bejan number, when

G, =1,R, = 1.5,P, = 2,R, = 0.5,
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Figure 26: Ra vs Bejan number, when

G =1,R,=1P. =2,M=2,W, = 0.5,

Q=1,E,=05 ande=-
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Figure 27: Pr vs Bejan number, when G, = 1,R, = 0.5,
We=05,R,=15M=3,0=1,E,=05and = g

9. Conclusions

This study investigates the heat irreversibility analysis of thermal radiation, Ohmic
heating, and angle of inclination on Williamson fluid. The derived flow model equations are
solved using the differential transform method and bvp4c. Plots show the flow characteristics
for the velocity, temperature, entropy generation, and Bejan number. The entropy generation
and Bejan number are examined using the data for the velocity and temperature profiles. It
also shows us that flow motion is reduced by the magnetic field parameter, Reynolds number,
and the radiation parameter whereas fluid velocity is increased by the angle of inclination
parameter and Prandtl number, with his note, the fluid temperature is increased by the angle
of inclination, the magnetic parameter, and the Reynold number. We got that the radiation
coefficient is the only variable that hinders the production of entropy at the upper wall. It also
turns out that fluid friction dominates the formation of entropy with increasing levels, the
slope coefficient, the Weissenberg number, the Reynolds number, and the radiation
parameter, while the magnetic field coefficient and the Prandtl number show the dominance
of thermal irreversibility.
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