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A B S T R A C T 

In this article, numerical method based on Laguerre-Krall polynomials for solving nonlinear 

integral equations (NIE) of the first type which is a malignant problem is discussed. This 

method reduces the operation of solving the problem and turns it into simple systems of 

obvious algebraic equations that are easily solvable. Four examples were presented to 

analyze the numerical method, applicability degree and accuracy of the method. Numerical 

results showed that the accuracy of this method is acceptable and good compared to other 

methods. 

MSC.. 

https://doi.org/10.29304/jqcsm.2024.16.41794 

1. Introduction 

One of the most widely used mathematical tendencies, which is widely used in various engineering, 

medical and physics problems, is integral equations. Today, solving and checking an equation with a 

special method apart from other available methods is almost without validity and there is a need to check 

the relationship between methods in different sources. Various schemes have been derived to solve one-

dimensional and multidimensional linear and nonlinear integral equations, for instance including 

operational matrix method *, covariance method *, use of wavelet, square method *, and discrete image 

method *. Two-dimensional ordinary integral equations are an important tool for modeling many 

problems in engineering. The most important problem for solving different equations in higher 

dimensions is one of the most complicated of mathematical operations. 

https://doi.org/10.29304/jqcsm.2024.16.41794


2 Bashar Najm Abdullah Hussein, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.16.(4) 2024,pp.Math 14–22

 

The present study proposes a new method for the numerical solution of nonlinear integral equations. It 

should be mentioned that the given method is based on the approximation of unknown functions by using 

the Laguerre-Krall polynomial. 

Nonlinear multidimensional equations of Volterra with Legendre wavelets and singular integral 

differential equations are discussed in the articles [1, 2]. Delay and fractional equations with polynomials 

and orthogonal wavelets have been investigated in [4, 5, 6]. Piecewise fuzzy interpolation and rabid 

wavelet are used for delayed differential and integral equations in articles [7, 8, 9]. Volterra functional 

equations are also used with Euler and trapezoid discretization methods in [10]. For differential equations 

with different orders and integral equations, coexistence methods are mentioned in articles [12, 16]. 

Spectral Legendre method and Runge-Kutta method for multidimensional equations are given in articles 

[17, 18]. Nonlinear equations of Volterra and Fredholm have been analyzed and approximately solved in 

papers [14, 22] such as Hammerstein by quadrature Nystrom-based methods. 

Also in new research, we can refer to article [25] in which smoothness properties and regularity of 

solutions to nonlinear second kind Volterra integral equations on a bounded interval [0,b ] with probable 

singularities of the derivatives of the equation answer at near the zero point of the interval [0,b ]. Article 

[26] is investigated to the solution of nonlinear second kind Volterra equations with high oscillatory kernel 

by using discrete collocation equation and a Filon-type quadrature rule. In [27], the authors organized a 

numerical scheme for an overall type of nonlinear Volterra equations. They discussed conditions that 

under them the equation has solutions by employing Quasilinearization scheme in which solving a 

nonlinear equation is reduced a sequence of linear system. An iterative numerical model based upon 

Nystrom method and Quasilinearization procedure to find the approximate acceptable solution of the 

nonlinear second kind Fredholm equations under some suitable assumptions is reduced to a sequence of 

linear Fredholm equations in [32]. The application of Laguerre-Krall polynomials in optimal control 

problems is proposed in [33]. It involves transforming the original integral equation problem into a 

manageable form that can be solved using prescribed optimization procedures. 

In this paper, the important aim is to present an effective direct numerical method, using operational 

Laguerre-Krall matrices obtained based on properties of these polynomials, to solve the following non-

linear ill-posed Volterra equations of the first type: 

 ( )   ∫  (   ) ( ( ))            ,     -
 

  
  *                                                           (1) 

where the given functions K,f are smooth and a non-linear function  is in terms of sentences of unknown 

functions.  

This article is organized and written as follows: we brought a brief introduction of CP and HCP 

polynomials and their properties. As a key idea, of this type of polynomials and their operational vectors. a 

general scheme for solving the nonlinear Volterra equations is presented.  the error analysis is done and 

an upper bound for the error of the proposed method is obtained. some numerical examples have been 

presented and in these examples, the numerical results of presented method have been calculated in 

comparison with two other methods, including the Taylor series method and the Violet Legendre method, 

which is a confirmation of the appropriate error level of the existing method. 

2. Laguerre-Krall Polynomials 

Laguerre-Krall polynomials   ( ) 
of degree   in the some articles are defined as follows: 
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  ( )  ∑
(  ) 

(   ) 

 
   .

 
 
/ , (     )   -                                                                                            (2) 

A family of *  ( )+   
  polynomials is also orthogonal to the measure of  . 

where 

                                                                     ( )d w x dx                                                                           (3) 

Therefore, the weight function is: 

                                                          ( )  
 

 
 ( )      ( )                                                                                        ( )

   

Where  H(x)
 
is the heavy side step function and measure   refers to the weight of the Laguerre 

xe 
 on the interval  0 ,  . 

The first six terms of this polynomial are listed as follows: 

  ( )   , 
  ( )         
  ( )         

 , 

  ( )          
  

   

 
, 

  ( )           
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  ( )           
  

    

 
 
    

  
 
   

   
      

For any function   ,   -   
 
the Krall- Laguerre approximation  ( ) is considered as follows:          

  ( )( )  ∑  .
 

 
/    ( )

 
    ,                                                                                                                                (5) 

Where     ( ) is the polynomial of degree m as follows: 

    ( )  ∑
(  ) 

(   ) 

 
   .

 
 
/ , (     )   -                                                                                                   (6) 

3. Solving a Nonlinear Volterra Integral Equation of First Kind 

In this section, the aim is to provide an efficient direct numerical method, using operational Laguerre-
Krall matrices, for solving the following Volterra nonlinear first type integral equations: 

 ( )   ∫  (   ) ( ( ))            ,     -  
 

  
                                                  (7) 

where the given functions    are smooth and a non-linear function h is in terms of sentences of 
unknown functions u(x).  

We also assume that    

 ( )  ∑  .
 

 
/
(  ) 

(   ) 
.
 
 
/ , (     )   -   

    ,                                              (8) 

Also by vector representation, we can write 

 ( )  ∑      ( )   
  ( )           

 
                                                         (9) 
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in which T is the transduction and C is vector coefficients of Laguerre-Krall unknown coefficients and 
vector L(x) will be as follows: 

  ,          -
      ( )  ,  ( )   ( )     ( )-

       ,                     (10) 

In the last relation,     is the following vector: 

    ,     
      -                                                                                             (  ) 

and   is a     coefficients matrix that can be approximately derived by   . 

If we put,  ( )   ( ( ))              then we will have: 

 ( )   ∫  (   ) ( )            ,     -
 

  
 .                                               (12) 

And also, 

                                                                           
 ( )    ( )   

  ( )                                                                            (  ) 
                                                                          

 (   )    (   )   
 ( )  ( )                                                               (  ) 

                                                                          
 ( ( ))     ( )                                                                                        (  )

 By inserting in the equation(12) , we will have: 

                                                                              ( )    ( ) ∫    ( )   
 

  
 ( )                                                  (16) 

Using the operational matrix and the product, we will have: 

                                                                              ( )    ( )      ( )                                                                    (17) 

Suppose: 

                                                                                                                                                                                  (18) 

As a result, we will have:                                                                                                                                        

It can be said that without the operation vector, the usual collocation procedure is also used to solve 
above equation is unable. 

Here we consider h to be invertible, then obtained from H and by 

 ( ( ))      ( )
                                                                           (19)

 

The unknown function can be obtained. 

4. 4. Analysis of Error 

In this section, we obtain the error estimate of the desired approximate solution to find the error 
bounds of the new numerical approach by applying the Logger-Kroll polynomial. Consider Volterra's 
type of nonlinear integral equations from the form of equation (1). 

Here we can suppose that: 

    ,   -  *  ( )   ( )     ( )+   ,       *  ( )   ( )     ( )+.                                               (20) 
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We consider the arbitrary function  ( ) as the best approximation of      

Let        so we can write: 

                      ‖    ‖ 
  ‖   ‖ 

                                                                                                    (21) 

Where  ‖    ‖ 
  ∫ | ( )|   

 

 
.                                                                                                                             ( 22) 

 

Here we find an upper bound for the relation (16) that is error term. 

We set,   ( )   ( )    ( ), where  ( )  is the exact analytical solution and   ( ) is the approximate 
proposed solution of equation (1). 

Therefore, we can write as follows: 

                                             ‖  ( )‖ 
  ‖ ( )    ( )‖ 

  ∫ | ( )    ( )|
   

 

 
                                                   (23) 

                                           ∫ |∫  (   ) ( ( ))   (   ) (  ( ))  
 

  
|
 

  
 

 
                                                          

(24) 

                                         ∫ |∫  (   )( ( ( ))   (  ( )))  
 

  
|
 

  
 

 
                                                                     

(25) 

On the other hand,  ( ) is continuous in considered interval and so it is locally Lipchitz continuous in 
   , then, there is a constant   such that 

                                           | ( ( ))   (  ( ))|   | ( )    ( )|.                                                                      (26) 

Then by relations (25) and (26) we can write, 

                                             ‖  ( )‖  
   ∫ |∫  (   ) | ( )    ( )|  

 

  
|
 

  
 

 
                                                    (27) 

                                         = ∫ |∫  (   ) | ( )  ∑     ( )
 
   |  

 

  
|
 

  
 

 
                                                                (28) 

                                         = ∫ |∫  (   ) |∑     ( )
 
     |  

 

  
|
 

  
 

 
                                                                         (29) 

                                          ∫ |∫  (   ) ∑ |  ||  ( )|
 
       

 

  
|
 

  
 

 
                                                                     (30) 

                             ∫ |∫  (   ) ∑ |  | ∑
(  ) 

(   ) 

 
   .

 
 
/ , (     )   -   

       
 

  
|
 

  
 

 
 ,                        (31) 

                                 

And so,  

             ‖  ( )‖  
  √∑ ∑

(  ) 

(   ) 
|  |

 
   .

 
 
/ , (     )   -   

       .                                       (32) 

5. Results and Numerical Examples 
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Example 1. The first example is a non-linear integral problem with a trigonometric kernel: 

                    
0
cos( ) ( ) 6 1 cos( ) , (0) (0) 0,

t
nt s y s ds s y y                                                    

(33) 

This equation has the following exact answer:   ( )       

The approximate solution using the proposed design by orthogonal bases is in high precision 

compared to the exact solution. The approximate results of this example using the Legendre 

wavelet method, Taylor Series method and proposed method are listed in Table 1 for  N=4, 6, 8, 

10,12,14,16. 

Table 1. Numerical results of example 1 

2

( )

N N

Legendr

e y y

Wavelet te Me hod

 
 

2

( )

N Ne y y

Taylor Series Method

   
2N Ne y y 

(Presented 

Method)

 
N  

33.202 10  
210834.2   

42.159 10  
42.834 10  

83.415 10  
81.325 10  

4 
6 

33.366 10  
46.162 10  

93.914 10  8 

44.369 10  
43.321 10  
45.661 10  
44.277 10  

58.024 10  
53.214 10  
56.251 10  
56.187 10  

92.369 10  
93.251 10  
95.243 10  
95.254 10  

10 
12 
14 
16 

Example 2. The second example is a nonlinear equation with an exponential kernel: 

                                           

∫  (   )   ( ( ))
 

 
                                                                                                 (  )

 

This equation has the following exact answer: ( ) .sy s e  

The approximate results of this example using the Legendre wavelet method, Taylor Series method 
and our desired Laguerre-Krall method are listed in Table 2 for                       In the 
numerical results we see that the error of  proposed method has better than both Legendre wavelet 
scheme and Taylor Series method. 

Table 2. Numerical results of example 2 

2

( )

N Ne y y

Legendre Wavelet Method

 
 

2

( )

N Ne y y

Taylor Series Method

   
2N Ne y y   

(Presented 
Method) 

N  

33.822 10  

36.353 10  

53.579 10  

53.147 10  

93.421 10  

91.645 10  

4 

6 
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45.313 10  

41.676 10  

42.612 10  

41.676 10  

42.525 10  

42.714 10  

42.198 10  

54.212 10  

52.411 10  

52.012 10  

94.510 10  

95.326 10  

98.522 10  

102.137 10  

103.354 10  

8 

10 

12 

14 

16 

 

Example 3. The third example is also a nonlinear equation with an exponential kernel: 

                                                         ∫  (   )
 

 
  ( )         ,                                                                                 

(35) 

This equation has exact solution as  ( )      

The approximate results of this example using the Legendre wavelet method, Taylor Series method 
and proposed Laguerre-Krall method are listed in Table 3 for                       In this 
example, The error of the mentioned method is more suitable than the other two methods. Also, 
Legendre wavelet 's method has closer error results to our research method. 

 

Table 3. Numerical results of example 3 

2

( )

N N

Legendr

e y y

Wavelet te Me hod

 
 

2

( )

N Ne y y

Taylor Series Method

   2N Ne y y 

(Presented 

Method)

 

N  

75.214 10  

76.184 10  

41.354 10  

42.645 10  

82.425 10  

83.545 10  

4 

6 

73.310 10  
43.154 10  

92.587 10  8 

71.798 10  

73.626 10  

83.365 10  

81.932 10  

52.159 10  

56.012 10  

52.197 10  

53.210 10  

96.179 10  

103.547 10  

102.223 10  

104.421 10  

10 

12 

14 

16 

 

Example 4. The fourth example is also a non-linear equation with a sine trigonometric kernel: 
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                                         ∫ (   (   )   )    ( ( ))
 

 
   

    

 
                                                                         

(36) 

The exact solution of this equation is  ( )     

The approximate results of this example using the Legendre wavelet method, Taylor Series method 
and proposed Laguerre-Krall method are listed in Table 4 for                       In this 
example, the absolute error of the obtained results and comparing them with other selected 
methods is a confirmation of the high accuracy of our method. We can see that as the value of   
increases, the absolute error decreases. 

Table 4. Numerical results of example 4 

2

( )

N N

Legendr

e y y

Wavelet te Me hod

 
 

2

( )

N Ne y y

Taylor Series Method

   2N Ne y y 

(Presented 

Method)

 

N  

33.364 10  

21.021 10  

46.152 10  

46.264 10  

82.155 10  

83.261 10  

4 

6 

32.004 10  
44.153 10  

94.415 10  8 

43.108 10  

43.058 10  

43.099 10  

42.084 10  

56.131 10  

51.212 10  

52.369 10  

51.745 10  

93.251 10  

96.258 10  

96.951 10  

97.357 10  

10 

12 

14 

16 

 

Conclusions  

Explicit formulas for approximating operation vectors for different equations have been proposed with 

Laguerre-Krall polynomials. These vectors allow us to find our suitable and simple numerical scheme 

that can be used for all types of integral equations. Finally, the problem is reduced to solving a set of 

algebraic equations with few operations. The main advantages of this method include ease of 

implementation, simplicity of understanding, high accuracy and appropriate convergence rate. The 

absolute error of the obtained results and comparing them with other selected methods is a 

confirmation of the high accuracy of our mentioned method. 
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