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 ABSRTUCT 

      A theoretical analysis based on the numerical solution of the slab impact 

integral equation is carried out to determine the impact force and deflection time 

histories, the strain energy absorbed by the slabs and the maximum bending 

moment. 

Effect of slab boundary conditions on impact response of slab is also discussed. 

The theoretical results obtained in the present analysis are compared with 

experimental and theoretical works previously done. A good agreement is found 

between theoretical and experimental results. This indicates that the impact 

resistance of relatively large slabs may be predicted by using the theoretical 

approach based on equation of undamped slab vibration. All the derivations 

required to predict the effect of boundary conditions are performed for both forced 

and free vibrations. For the same falling mass and the same applied kinetic energy 

(height of drop) for all cases, the maximum central deflection and the maximum 

impact force are affected by the boundary conditions of the slabs 

 

Keywords: Boundary Conditions, Deflection – Time Histories, Force – Time  

                   Histories, Free and Forced Vibration, Impact, Slab, Striker. 

 

 

 تـأثير الشروط الحدية على مقاومة البلاطات الكونكريتية للأحمال الصدمية

 

 ةالخلاص
مستندة الى الحل  الدلددل لمدلدللة ال لدب لاب لاللا  يلللد الت يلر دراسة نظرية يتضمن البحث     

الزمني لقوة ال دب والهلاو  واللالقة الممت ه ملن قبل  الب لاللا وكلالص اق لى تلزب تتدلر  لله 
 الب لاه. كالص تضمن البحث دراسه تأثير الشرولا الحديه تاى استللبه الب لاه لقوى ال دب.

ستح اه من الدراسلة تملا مقلرنتهلل ملا نتللئج تمايلة ونظريله سللبقه وكلنلا النتلئج النظرية الم
النتلئج متقلربه بشك  ليد. ان التقلرب في النتلئج ات ه يؤكد امكلنيه اسلتدداب ا سلاوب المدتملد فلي 
هاه الدراسة،  يللد مقلومه الب لاللا الكبيلره لقلوى ال لدب. لميلا ا شلتقلقلا الملااوبله لمرحاتلي 

القسرل والحلر مقدمله فلي الدراسله ولكلفلة الشلرولا الحديلة لاب لاللا وللنال مقلدار الكتاله ا هتزاز
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السلقلاه وارتالع السقولا، ولد ان الت ير الزمني لقلوة ال لدب وكلالص الهلالو  يتلأثر بنلوع الشلرولا 
 الحديه لاب لاه.

 

INTRODUCTION 

mpact loads may be applied to many structures which have been designed only 

to resist their own dead loads in addition to the conventional static live loads. If 

the probability of impact loading is very small, it may be uneconomical to 

design against impact loads, but if the structure is subjected to impact the results 

could be very serious. Under these circumstances, it is useful to check the impact 

resistance of structures which have been designed to resist static loads. Some 

structures such as shelters and buildings of nuclear plant must be designed to resist 

impact loads. Missile impact, fragments impact, ship collision, vehicle impact with 

structures, and falling masses in industrial buildings are some examples of impact. 

      Local response and overall (structural) response are usually associated with 

impact. The structural responses are in the form of flexural and shear deformations, 

and the structure is to be dynamically analyzed under the applied force-time 

history. The effect of impact loading on concrete structures has received a 

considerable amount of attention of many researchers [1], [2], [3], [4], [5], [6], [7]. 

      The objective of this study is to present a theoretical analysis based on the 

numerical solution of the slab impact integral equation. Based on equation of 

undamped slab vibration, the effect of boundary conditions on the slab response to 

impact force is also presented for both stages of vibration (forced and free 

vibrations). 

      The impact force and deflection-time histories, the strain energy absorbed by the 

slab and the bending moment are all determined. Concrete slab models of 

dimensions (500 x 500 x 20) mm are used in the present research. These slabs were 

tested experimentally by Hussain (12), with different falling masses (6, 9, 12 and 18) 

kg. dropped from different falling heights (300, 600 and 1000) mm. 

 

IMPACT INTEGRAL EQUATIONS 

      The structural dynamic response of structures subjected to impact can be 

determined if the impact force time history is known. Therefore the main purpose 

of the impact analysis is to determine the impact force-time history F(t), deflection 

W (x, y, t). A slab is struck transversely by a mass (ms) having a spherical surface 

at the point of contact and striking velocity (Vo), Fig. 1. 

 The formulation of this problem can be effected only under certain assumptions:- 

a) All assumptions of the classical theory of beams and plates are applicable. 

b) Hertz law of impact is valid (8) , (9), hence 

c)  

 3/2
a(t).KF(t)       … (1) 

Where: 

F (t): the impact force at any time (t) within the duration of impact. 

a (t): the relative approach of striking bodies, Figure (1). 

K  : the Hertz (deformation) constant which depends on the elastic mechanical 

properties and the shapes of the two bodies at the contact zone. 

 

I 
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Figure (1) Displacement at Impact Zone 

 

 

Timoshenko and Young [8] formulated a nonlinear integral equation for central 

impact of a sphere on a simply supported beam considering the striker and the beam 

displacement as shown in Figure (1) and using Hertz law at the point of contact. The 

deformation equation is:- 

 

  
(t)Y(t)Ya(t) sst 

  
                    … (2-a) 

 

Where 

         (t)Yst : The displacement of the striker under the action of (F(t)) 

         (t)Ys  : The deflection of the beam at the point of contact.      

                                              


T

0

t

0st
ost d)(Fd

m

1
t.V(t)Y T

        

… (3-a) 

      Where (Vo), ( stm ) and (T) denote the velocity, the mass of the striker and the 

impact duration, respectively.                                                            

Substituting of equation (3-a) into equation (2-a) and making use of   equation (1) 

leads to: 

 

(t)Yd)F(d
m

1
t.V

K

F(t)
s

T

0

t

0st
o 








 T

3/2

  … (4-a) 

 

Three different cases were discussed to determine the displacement function Ys 

(t) of the beam [1], [9], [11], [23]. These cases are 

(a): Impact between striker and a massive beam. 

(b): Impact between striker and beam of effective mass. 

(c): Impact between striker and a beam of distributed mass.  

 

For the slab impact, equations (2-a) , (3-a) ,and (4-a) can be rewritten as 
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(t)W(t)Wa(t) sst                             …  (2-b) 


T

0

t

0st
ost d)(Fd

m

1
t.V(t)W T               … (3-b) 

(t)Wd)F(d
m

1
t.V

K

F(t)
s

T

0

t

0st
o 








 T

3/2

 … (4-b) 

Where 

Wst (t): The displacement of the striker under the action of (F (t)). 

Ws (t):  The displacement of the slab at the point of contact. 

The case of impact between striker and a slab of distributed mass is discussed in the 

present research. The other two cases were discussed elsewhere [22]. 

Impact Between Striker and a Slab of Distributed Mass. 
      To get more accurate solution of the slab impact problem, a more accurate 

description of the slab vibration than that given by the effective or rigid mass models 

should be considered. This means that the free and forced vibration of slabs should 

be considered. 

Partial Differential Equation of Rectangular Slab Vibration. 

      The well – known equation of rectangular slab due to impact is [13], [14], [15]   

t)y,F(x,
t

W
m

y

W

yx

W
2

x

W
D

2

2

4

4

22

4

4

4


































… (5) 

where 

)μ(112

Eh

μ1

EI
D

2

3

2 



                            … (6) 

 

which denotes the flexural rigidity of unit width of the slab.  

and: 

           I : The moment of inertia of the slab per unit width. 

           h : Thickness of the slab. 

           E : Modulus of elasticity.  

           μ : Poisson's ratio. 

           m  : The mass of the slab per unit area. 

           F( x,y,t) : The external load intensity. 

      Equation (5) can be solved for W(x,y,t) ,the slab deflection as a function of both 

time and position.  

Free Vibration. 

      For free vibration, the external dynamic load (F(x,y,t) = 0) in equation (5). Four 

cases will be given below, in all cases the deflection is represented by (W(x,y,t)) and 

the natural circular frequency is represented by (ω).  

Square Slab Simply Supported at All Edges. 

      The deflection along each edge must be zero and there is no bending moments 

along each edge.  

 The slab displacement W(x,y,t) can be represented by [16] 
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  

















1i

ijij
1i 1j

ij
1j

(t)Ty).(x,wWt)y,W(x,           … (7) 

 

Then two differential equations can be yielded:   

    

0y)w(x,β
y

w

yx

w
2

x

w 2

4

4

22

4

4

4















 … (8) 

 

0T(t).ω(t)T 2 
          … (9) 

β
m

D
ω                                … (10) 

 

The solution of equation (8) may have the form of [8], [15], [16]   

L

yπj
sin

L

xπi
sinay)(x,w ij

1j1i
ij 









                                  … (11) 

 

Which satisfies the boundary conditions of the slab, substituting equation (11) 

and the corresponding derivatives into equation (8), gives: 

 

    22

2ij jπiπ
L

1
β                               … (12) 

 

For each mode of vibration and equation (10) becomes: 

    
m

D
jπiπ

L

1
ω

22

2ij                      … (13) 

 

      If f1(x,y) and  f2(x,y) are the initial function of displacement and velocity for the 

slab, then  [16], [22] 

   









1i 1j

L

0

L

0
1ij2

dydx
L

yπj
sin

L

xπi
siny)(x,ftωcos[

L

yπj
sin

L

xπi
sin

L

4
t),y,W(x  

                         ] 
L

0

L

0
2ij

ij

dydx
L

yπj
sin

L

xπi
siny)(x,ftωsin

ω

1
… (14)     

Timoshenko [8] applied equation (5) on square plate simply supported at all edges, 

and found: 
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 
t)(ωcos

jiDπ

L

yπj
sin

L

xπi
sin

L4Pt)y,W(x, ij
1i 1j

2224

22

2
o  







 



                

(15) 

Where ( ijω ) can be obtained from equation (13). 

 

Square Slab Simply Supported at Two Parallel Edges and Fixed at the Other 

Edges 

      The solution of equation (8) may have the form of [15]: 

  

  

 

 

 

 

 

y)αsinh
α

yβ(sinycosyαcoshy)(x,w
1j1i

ij


  







   

 (16) 

 

Lsinhα
α

Lsin

LcosLcoshα
β









       (17) 

2

1

222
ij )πiL(β

L

1
α         (18) 

2

1

222
ij )πiL(β

L

1
        (19) 

 and  can be found from the equation [15] : 

L)αsinh
α

L(sinL)αcoshL(cos 2 
   0)LsinhL(sin  




   (20) 

      Then use can be made of equation (18) or (19) to obtain ( βij ) and the frequency 

( ijω ) using equation (10). 

 

Square Slabs With Combination of Fixed and Free EdgesSolved By Ritz 

Method. 

      An exact solution of the differential equation of a vibrating slab is known for the 

case of a rectangular slab which is simply supported at all four edges and for a 

rectangular slab which is simply supported at two parallel edges and fixed at the 

other edges. For other combination of edge conditions the solution is more 

complicated, and it has been necessary to use an approximate method. Ritz method 

Fixed 

 Fixed 

 Simply Simply 

x 

y 



Eng. & Tech. Journal, Vol.31, Part (A), No.5, 2013       Effect of Boundary Conditions on Impact     
                                                                                       Resistance of Concrete Slabs 

 
 

847 
 

has been found to be very useful (8) , (17) . The analysis herein is for a homogeneous 

slab of uniform thickness and is based upon the ordinary theory of thin plates. 

For a uniform slab, the maximum potential energy is given by [8], (15) , (17) , (22). 

 

𝑼𝒎𝒂𝒙 =  
𝑫

𝟐
∬ [(

𝝏𝟐𝒘

𝝏𝒙𝟐 )𝟐 + (
𝝏𝟐𝒘

𝝏𝒚𝟐 )𝟐  + 𝟐𝝁
𝝏𝟐𝒘

𝝏𝒙𝟐

𝝏𝟐𝒘

𝝏𝒚𝟐 +  𝟐(𝟏 − 𝝁)(
𝝏𝟐𝒘

𝝏𝒙𝝏𝒚
)𝟐] 𝒅𝒙𝒅𝒚. . (21) 

 

And the maximum kinetic energy is: 

 

(K.E)max  = 
1

2
 𝑚 ̅̅ ̅ 𝜔2 ∬ 𝑤2 𝑑𝑥𝑑𝑦    …(22) 

The integrations are to be taken over the domain of the slab surface. Equating these 

two expressions yields: 

 

𝝎𝟐 =
𝟐

�̅�
 

𝑼𝒎𝒂𝒙

∬ 𝒘𝟐𝒅𝒙𝒅𝒚
                                                  … (23) 

 

For a rectangular slab, with edges parallel to the x and y axes, w(x,y) can have the  

form [8], [17]: 

(y)Y.(x)X.Ay)(x,w jiij

q

1j

p

1i



          … (24) 

   where Xi(x) and Yj(y) are the normal functions of vibration for beams. When 

w(x,y) as given by equation (24) is substituted in equation (23), the right-hand side 

becomes a function of the coefficients ijA   . This minimized by taking the partial 

derivative with respect to each coefficient and equating to zero. Thus a set of 

equations each of which has the form[17],[22]: 

 

𝜕𝑈𝑚𝑎𝑥

𝜕𝐴𝑚𝑛
−  

𝑚 ̅̅ ̅𝜔2

2
 

𝜕

𝜕𝐴𝑚𝑛
∬ 𝑤2  𝑑𝑥 𝑑𝑦 = 0         … (25) 

 

Where Amm is any one of the coefficients Aij . Equation (25) represents a system of 

linear homogeneous equations in the unknowns Amm. The natural frequencies 

𝜔1, 𝜔2, ….are determined from the condition that the determinant of the system must 

vanish. 

As discussed before, the appropriate characteristic functions for vibrating beams will 

be used for Xi  and  Yj .The different types of beams will be identified by a 

compound adjective which describes the end conditions. Thus a (fixed – fixed) beam 

is one which is rigidly fixed at both ends; a (fixed – free) beam is fixed at the end x = 

0 and free at the end x = L; a (free – free) beam is free at both ends. 

For each type of beam, there is an infinite number of normal modes in which the 

beam can vibrate laterally. The characteristic functions for the three types of beams 

are as follows[13],[8], [17]. 

1. Fixed-fixed beam 

 

  𝜑𝑟 = 𝑐𝑜𝑠ℎ
𝑎𝑟𝑥

𝐿
− 𝑐𝑜𝑠

𝑎𝑟𝑥

𝐿
− 𝜓𝑟 (𝑠𝑖𝑛𝑠ℎ  

𝑎𝑟 𝑥

𝐿
− 𝑠𝑖𝑛

𝑎𝑟 𝑥

𝐿
) … (26)     
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𝑎𝑟 =  
𝑟 + 0.5𝜋

𝐿
 

 

𝜓𝑟 = (cosh 𝑎𝑟𝐿 − 𝑐𝑜𝑠 𝑎𝑟𝐿)/(𝑠𝑖𝑛𝑠ℎ 𝑎𝑟𝐿 − sin 𝑎𝑟𝐿) 

The boundary conditions for this case are: 

 

𝜑𝑟 =
𝑑𝜑𝑟

𝑑𝑥
= 0) 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐿 

 

2. Fixed-Free Beam 

𝜑𝑟 is as given in  equation                                             …(26) 

𝑎𝑟 =  
𝑟 − 0.5𝜋

𝐿
 

𝜓𝑟 = (cosh 𝑎𝑟𝐿 + 𝑐𝑜𝑠 𝑎𝑟𝐿)/(𝑠𝑖𝑛𝑠ℎ 𝑎𝑟𝐿 + sin 𝑎𝑟𝐿) 
The boundary conditions for this case are: 

𝜑𝑟 = (
𝑑𝜑𝑟

𝑑𝑥
= 0) 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑(

𝑑2𝜑𝑟

𝑑𝑥2
=

𝑑3𝜑𝑟

𝑑𝑥3
= 0)𝑥 = 𝐿 

       

3. Free – Free Beam  

)
L

xa
sin

L

xa
(sinhψ

L

xa
cos

L

xa
cosh rr

r
rr

r 
 … (27)

 

L

π0.5r
ar


  

L)asinLa(sinh/L)acosLa(coshψ rrrrr   

The boundary conditions for this case are: 

( 0/dxd/dxd 3
r

32
r

2   ) at x = 0 and x = L 

Where (r) is the mode of vibration and ( r ) is the normal functions of vibration for 

beam. The boundary conditions satisfied by the functions in each set are the same as 

the end conditions of the corresponding beam. Each set of the functions is 

orthogonal in the interval (0 →  𝐿 ), that is for   any functions (  sr ,  ) in the 

same set, the following relations hold [17]:  

 

s)r(for0

s)r(forLdx
L

0
r



 s
              … (28) 

The second derivatives of the function in each set are also orthogonal and satisfy the 

relations (17):  

 

s)r(for

s)r(for
L

a
dx

dx

d

dx

d

3

4
r

2

s
2L

0
2

r
2





0



  …(29) 
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Numerical values of 𝜑𝑟 and r
4a  are given in Ref.[17], [22] 

In addition to the integrals defined by equations (28) and (29), it is necessary to 

evaluate. 

 

xd
dx

d

dx

d
and,dx

dx

d s
L

0

r

2

s
2L

0
r


   

 

Values of these integrals have been computed and given in Ref.[17], [22].  

Consider a square slab bounded by the lines x = 0, x = L, y = 0, y = L. and 

assume, for example that the slab is fixed along the edge x = 0 and free along the 

other three edges. In this case the fixed – free functions, equation (26) should be 

used for Xi , and the free – free functions, equation (27) should be used for Yj.  

      With the three sets of function given herein, solutions can be obtained for 

rectangular slabs having any combination of free and fixed edges [17]:   

 

dx
xd

Xd
XLE,dx

xd

Xd
XLE

2
m

2L

0
iim2

i
2L

0
mmi            … (30) 

 

dy
yd

Yd
YLF,dy

yd

Yd
YLF

2

n
2L

0
jnj2

j
2

L

0
njn             … (31) 

  

yd
yd

dY

yd

dY
LK,dx

xd

dX

xd

dX
LH

jL

0

n
jn

i
L

0

m
mi            … (32)  

     Since the appropriate φ – functions are to be used for Xi and Yj . The numerical 

values of integrals can be taken directly from Ref.(17), (22). Using equation (24) and 

(21), and taking into account the orthogonality relations, equations (28) and (29), the 

set of equations (25) can be reduced to the form [17]:  

0A]δλ[C ijij

mn

ij

q

1j

p

1i




         … (33) 

Where: 

                 /DL.ω.mλ 42
ijij           … (34)              

mnijfor0

mnijfor1δij





  

And for ij ≠ mn  

 

njmijnminjim
(mn)

ij Kμ)H2(1]FEF[EμC 
                 

… (35) 

 

For ij = mn the coefficient is 
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jjiijjii
4

j
4

i
(ij)

ij Kμ)H2(1FE2μaaC 
                    … (36) 

 

 

In eq.(36) ai is taken corresponding to the φ- function represent Xi while aj is to be 

taken from data for the φ-function that represent Yj 

According to the Timoshenko’s equation [18], the deflection – time history of square 

slab due to impact load is: 

 

)t(ωcos
ω.m

)y,x(w.y)(x,w

L

P
t)y,W(x, ij

1i 1j
2

ij

ijij

4

o
 










   

(37)  

 

Where the initial displacement is caused by the concentrated force Po acted at the 

point ( y,x ).and Po is the magnitude of impact force at the beginning of last time 

increment. 

Two cases will be discussed here, using Ritz method [8], [17] to evaluate the 

frequency and the deflection. 

Square Cantilever Slab 
      Consider the case of a square slab which is fixed along one edge and free along 

the other three edges. Therefore, let take x = 0 as the fixed edge. For Xi the fixed – 

free functions, equation (26), and for Yj  the free – free functions, equation (27) are 

used. The frequency for fifth modes and the coefficients Aij for each frequency have 

been calculated and the results are given in (22). Making use of equation (24) and 

(37) can be determined the deflection – time history of square slab due to impact 

load. 

Square Fixed Slab 
      Consider the case of a square slab which is fixed along all four edges. For this 

case the fixed – fixed functions equation (26) for both Xi and Yj is used .The 

frequency for sixth modes and the coefficients Aij for each frequency have been 

calculated and given in (22).  Equation (24) and (37) can be used to determine the 

deflection–time history of square slab due to impact load. 

Forced Vibration 

      For the case of forced vibration (the initial displacement and the initial velocity 

are equal to zero). The external dynamic load (F(x,y,t)) is included in equation (5). It 

should be noted that the forced vibration occurs before the free vibration. 

Square Slab Simply Supported at All Edges. 

      The deflection at the point of contact is given by [15]       

  








t

0
ij

1i 1j ij

ij

s

d)](t[ωsin.)F(
ω

Cr

m

2
t),y,(xW TTT            … (38) 

 

ijy)(x,
2

ijij 2b/A.wCr             … (39) 
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L

yπj
sin

L

xπi
siny)(x,wij     ,    /4Lb 2

ij   

 

      where ωij is from equation (13), and A is the total area of the slab, and ms is the 

total mass of the slab.    

      The solution of equation (5) for midspan deflection of this case resulting from 

central impact is given by [8], [9], [15]: 

)40(...d)](t[ωsin.)F(
ω

1

m

4
t),L/2,(L/2W

t

0

ij

1,3...i 1,3...j ijs

o   








TTT     

 Substituting equation (35) into equation (4): 

 








 T

0

t

0st
o.

2/3

d)F(d
m

1
tV

K

F(t)
T     

             








t

0
ij

1,3...i 1,3...j ijs

d)](t[ω.sin)F(
ω

1

m

4
TTT        … (41)  

     This equation can not be solved in a closed form, but it may be solved 

numerically to give the impact force and the deflection – time histories. A 

computer program was written for this purpose. After that, it was possible to 

determine the following quantities, the displacement, the central bending moment, 

the total kinetic energy and the total strain energy. All these are given in Ref.[22] 

 

Square Slab Simply Supported at Two Parallel Edges and Fixed at the Other 

Edges. 

Equations (38) and (39) are used to find the deflection at the point of contact, but bij 

for this case is [15] : 
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
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To calculate midspan deflection for this case, it should be calculate Cij for each mode 

of vibration at (x = y = L/2) and substituting the results in equation (38). Therefore 

the displacement at midspan of the slab can be determined using equation (38) and 

substituting in equation (4):  
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                    








t

0
ij

1,3...i 1,3...j ij

ij

s

d)](t[ωsin.)F(
ω

Cr

m

2
TTT   … (42) 

 

      As mentioned before, the above equation may be solved numerically to give the 

impact force and deflection – time histories and the following may be computed; the 

displacement, the central bending moment, the total kinetic energy and the total 

strain energy and are given in Ref.[22] 

 

Square Slabs Have Combination of Fixed and Free Edges Solved By Ritz 

Method. 

      As mentioned in section (1.1.2.3), for other combination of edge conditions the 

solution is more complicated, and it has been necessary to use an approximate 

method. For these cases, Ritz assumed: 

 

γ)t(ωcos.Zt)y,W(x, ij    … (43) 

 

 







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1i 1j

2
ij

ijij

2
ω

)y,x(w.y)(x,w

L

g
y)Z(x,

   … (44) 

 

Where g is the acceleration due to gravity, wij can obtained from equation   (24) and 

ωij from equation (23) and: 

4

ij

LmD/

ω
γ 

                          … (45) 

 

Solutions are obtained for three specific slabs. 

1. Square cantilever slab. 

2. Square fixed slab. 

      For these two cases (γ) are given in Ref. [17], [22]. 

 

Dynamic Flexural rigidity 

It is difficult to determine an effective flexural rigidity for the slabs, equation (6), 

because the amount of cracking varies along the span since it depends on the 

deflection caused by the applied load which means that the moment of inertia also 

varies during the period of impact. To estimate the moment of inertia, the following 

approaches will be discussed:    

1- A fully cracked transformed section is used for computing the 

moment of inertia. The flexural rigidity of the slab is assumed 

constant during the period of impact [9], [13], [22], [23]. 
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2- The average moment of inertia of cracked and gross 

transformed sections is considered [13], [14] , [22], [23] . 

3- A Constant moment of inertia within the duration of impact 

using the dynamic effective moment of inertia given [19], [20], 

[22], [23]  : 

      

crcrα
u

cr
deff I)I(I)

M

λM
(I         … (46) 

Where: 

Ideff : Effective dynamic moment of inertia of the section. 

Mcr : Static cracked moment capacity of the section. 

Mu  : Ultimate static moment capacity of the section. 

Iα    : Moment of inertia for the gross section. 

Icr   :  Moment of inertia for the transformed cracked section. 

λ    : A constant equals to (o.6 – 0.8) [19] , (1) [20]. 

4- A variable moment of inertia within the duration of impact[1] is to be 

considered. This depends on the dynamic deflection at any time within the 

impact duration and assuming that the static and dynamic load resistance-

deflection curves are similar. 

 

VALIDITY OF PROGRAMME 

Steel ratio (ρ = 8x10-3), thus amount of steel reinforcement is (As =136mm2/m). 

Based on the effect of moment of inertia discussed in section (1.1.4), four 

approaches of moment of inertia are used to determine the maximum deflection – 

time history, and the maximum impact force – time history, by using the computer 

program. For the present research the input data in the computer program are: 

mst : Striker mass, ms : Slab mass, D : Flexural rigidity of slab, Vo : Impact 

velocity of striker,  K  : Deformation constant, L  : Span of slab. 

a) To check the accuracy of the developed program solution, Figure (2) show the 

force – time history of a simply supported square slab subjected to a central 

impact load which is compared with the solution given by Eringen [15] . The 

following parameters were used: 

mst: striker mass = 0.03334 kg. 

ms: slab mass = 2.55 kg. 

Vo: impact velocity of striker = 1 m/sec 

K: deformation constant = 1.4 E6  N/m 1..5 

ω1:  62.2 rad/sec 

      A comparison is made between the present research and Eringen [15], Figure (2), 

from which it can be concluded that the theoretical results based on a dynamic 

effective moment of inertia [21], have a reasonable agreement with Eringen [15].  

b) Also a comparison is made between the present approach and Hussain [12] (the 

dimensions of slabs used are (500 x 500 x 20) mm), Figure (3). A good 

agreement is found between results of present study and Hussain[12] results. 

Maximum experimental deflection (2.30mm) found by Hussain [12] is 

conformable with the present theoretical results using dynamic effective 

moment of inertia. The model dimensions and properties used by Hussain (12) 

are adopted in present work for other slabs. 
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CONCLUSIONS 

1. The theoretical maximum central impact force of the slabs obtained from the 

solution of the impact integral equation of the present study is found to have a 

good agreement with Eringen (15) and Hussain [12], Figures (2) and (3). 

2. For the same falling mass and the same applied kinetic energy (height of drop), 

the slabs stiffened with steel pads (K = 1.72 x 10 9 N / m 1.5) exhibit smaller 

central deflection by about (32%) in comparison with unstiffened slabs (K = 24.7 

x 10 6 N / m 1.5) for square slab simply supported at all edges, fig. (6). 

3. For the same falling mass and the same applied kinetic energy (height of drop), 

the slabs stiffened with steel pads (K = 1.72 x 10 9 N / m 1.5) exhibit higher impact 

force by about (73%) in comparison with unstiffened slabs(K= 24.7 x 10 6 N / m 

1.5) for square slab simply supported at all edges, fig. (6).  

4. The calculated impact duration is longer for heavier falling mass. 

5. For the same falling mass the calculated peak impact forces, central deflection 

and the absorbed strain energy are all increased as the impact velocity (height of 

drop) is increased. 

6. The calculated impact duration is found independent of the impact velocity 

(height of drop). 

7. For the same applied kinetic energy (height of drop) the calculated peak impact 

forces, central deflection and the absorbed strain energy are all increased as the 

falling mass being heavier. 

8. For the same falling mass and the same applied kinetic energy (height of drop) 

for all cases, the maximum central deflection and the maximum impact force are 

affected by the boundary conditions of the slabs. The maximum central impact 

force for square fixed slab is higher than other cases by about (61%) for simply 

supported square slab, (38%) for square slab simply supported at two parallel 

edges and fixed at the other edges and (2%) for square cantilever slab, the 

maximum central deflection for square cantilever slab is smaller than other cases 

by about (67%) for simply supported square slab, (60%) for square slab simply at 

two parallel edges and fixed at the other edges and (51%) for square fixed slab, 

Figure (7). 

9. For the same falling mass and the same height of drop the free end deflection is 

greater than the central deflection by about (36%), for the case of the case of 

square cantilever slab, Figure (8). 
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Figure (2) typical theoretical impact force – time history 

for simply supported slab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (3) typical theoretical central impact force and  

deflection – timehistories for simply supported slab. 
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Figure (4) Typical theoretical central         Figure (5) Typical theoretical  

             impact force and                                  central impact force and 

            deflection –time histories.                     deflection – time histories. 

 

 

 

Figure (6) Typical theoretical                      Figure (7) Typical theoretical central 

central impact force and                          impact force and  

deflection – time histories                         deflection – time histories. 

 (based on dynamic effective                      (based on dynamic effective 

 moment of inertia, λ=0.8).                         moment of inertia, λ=0.8). 
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           Results based on a dynamic effective moment of inertia, ( λ=0.8). 

Figure (8) Typical theoretical impact force – time history. 

 

 
Figure (9) Typical theoretical maximum       Figure (10) Typical theoretical 

deflection – time history.                              impact strain energy – time history. 

(based on dynamic effective                         (based on dynamic effective 

moment of inertia, λ=0.8).                              moment of inertia, λ=0.8). 
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Based on a dynamic effective moment of inertia, (λ=0.8). 

Figure (11) typical theoretical central impact force and dflection – time histories 

 

 

Based on a dynamic effective                    Based on a dynamic effective  

moment of inertia, (λ=0.8).                                   moment of inertia, (λ=0.8).                                   

Figure (12) typical theoretical                    Figure (13) Typical theoretical 

Central impact moment–time history.       Impact kinetic energy–time history. 
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LIST OF SYMBOLS 

a  Relative approach of striking bodies 

D Flexural rigidity of the slab 

Dcr Cracked flexural rigidity of the slab 

Ddeff Dynamic effective flexural rigidity of the slab 

F Impact force. 

h Slab thickness 

I Moment of inertia 

K Hertz (deformation) constant. 

K E Kinetic energy 

L  Length 

mb   Total mass of the beam 

ms   Total mass of the slab 

mst  Mass of the striker  

T  Impact duration 

t Time. 

U  Strain energy 

W  Deflection 

Wo  Central deflection of the slab 

Ws  Displacement of the slab 

Wst  Displacement of the striker 

    m  Mass per unit length of the beam or mass per unit area of the slab 

ωij  Angular frequency of free vibration of the slab 

α e Mass ratio (ms/mst ) 

 Poisson's ratio 

ρ:  Steel ratio 

π Independent dimensionless Buckingham's pi – factor 

S.S. Simply Supported edge 

F. Fixed Supported Edge 

Fr Free edge  

 

 

 


