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Introduction Let X = {a. b, c,d}and
My = {®.X, {a} {c}}. Then My is an m-
One of very important concepts in structure on X and (X, My) is an m-space

geometrical topology is the concept of group
actions and there are several types of these
actions . In 1950 Maki H., Umehara J . and
Noiri T . introduced the notions of minimal
structure and minimal spaces They
achieved many important results compatible
by the general topological case. In [8] Popa
V . and Noiri T., introduced the notion of
minimal structure. They also introduced the
notion of my-open sets and m,-closed sets
and characterized those sets by using mj-
closure and m,-interior operators,
respectively .

The applications of minimal structure are
found inNakaoka F . and ONA N., as an
application of a theory of minimal open
sets, they presented a sufficient conditions
for a locally finite space to be a pre-
Hausdorff space. Bourbaki in [3] defined the
proper map and proper actions. And the
other hand , Palais in [6] defined proper G-
spaces . In this work , we introduce the
definition of Minimal Group which is
Considcred as a hasis of our main definition
to Construed the definition of Minimal
Group space "mfG-space ". we give the
definitions of Certain types of minimal
group space and investigate their properties .
Finally , we introduce the definitions of
Minimal limit sets and use it to characterize
Certain types of Minimal G-spaces .

1.3. Remarks:

(i) The m-structure My is called indiscrete
m-structure if it contains only @, X and is
called discrete me-structure if My = P(X) =
{A:AcX}.

(ii) Every topological space is an m-space,
but the converse is not true in general as
shown in example (1.2).

1.4. Definition [7]:

Let X be a nonempty set and My be an
m-structure on X . A set A€ P(X) is
said to be a minimal open (briclly m-
apen) set if A4 € My , The complement of
m-open is called minimal closed (briefly
m-closed ) .

1.5. Remark [4]:

Let (X, My ) be an m-space. If 4 and B
are an m-open sets, Then AMNB and AUB
are not necessarily m-open sets  as the
following example shows .

1,6. Example:
LetX ={a, b, e d} M, =

{@,X,{a.b}.{d},{b,d}} , be an m-structure
on X. Then {a, b} {b,d} € My
but{a, b}U{b,d} = {a, b, d} & My and

1. Preliminaries {a,b}N{b,d} = {b} & My.

In this section, we introduce some elementary

: ‘ 1.7. Definition|[4]:
concept which we need in our work.

An m-space (X, My ) is said

1.1. Definition][§]:

Let X be a nonempty set and P(X) the
power set of X A subfamily M, of
P(X) 1s called a minimal structure
(briefly m-structure ) on X 1if @, X € My .
In this case (X, My ) is said to be minimal
space (briefly m-space).

(i) um-space if the union of m-open sets is
an m-open set

(ii) im-space if the finite intersection of m-
open sels 15 an m-open set .

1.8. Remark:
The intersection and union of two m-closed
sels 15 nol necessarily m-closed set as the
following  example shows. Let X =
{a,b,c,d}and
My ={®,X, {c,d},{b,d}, {a,c d}} be an m-

1.2.Example:
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structure on X .Then {a,b} {a c} are m-
closed setsin X but {a b}U{ac}=
{a,b,c}, {a,b}N{a,c} = {a} are not m-
closed.

1.9. Proposition [8]:

Let (X,My) be an um-space . Then the
intersection of m-closed sets 15 an m-closed.

1.10. Definition |5]:
Let X be a nonempty set and My be an m-
structure on X, For a subset A of X, the

minimal closure of 4 (brieily A") and the
minimal interior of A (briefly A"™ ), are
defined as follows:

A =N{F1ACF.FC €My
AM=UIV:VCAV €M)

1.11. Remark [4]:

e .
A is not necessarily an m-closed set and

A" is not necessarily an m-open set . As
the following example shows.

1.12. Example:

Leth = {a,b,c.d, e} My =

{0,% {e}{c.dl{a,c.d}, {b.c.d,e}} be an
m-structure on X and let A = {¢, d,e}, B =
{a,blthen A™" = {¢,d, e}is not m-open set
i B = {a, b} is not m-closed set.

1.13. Proposition [10]:

Let(X,My) be an um-space thend"™ is
T
m-open set and A 15 m-closed set.

1.14. Remark:

Let (X, My) be an m-space, and 4 be a
subset of X , if A = Aand B = B. Then
A and B are not necessarily an m-open and
m-closed sets respectively . Asthe {ollowing
example shows .

1.15. Example:

LetX = {1,2,3}, My ={0,X,{1},{3},{1,2}}

@@)A™ = 4 , but A isnot m-open setin X ;
P
—n
(ii)f =B .but B is not m-closed set in X,

1.16. Proposition [8]:
Let (X, My ) be an um-space. and A be a

subset of X' then:

{i) A€ Myifandonlyif 4™ =4

{ii) A 15 an m-closed if and only if ﬁm ==
4.

1.17. Definition [4]:

Let X be an m-space and B be any subset
of X . Anm-neighborhood of B iz any
subset of X that contains an m-open set
containing B . The me-neighborhoods of a
subset {x} consisting ol single points are
also called m-neighborhoods of the point
x

The collection of all m-neighborhoods of
the subset B of X is denoted by N, (8). In
particular  the collection of all
neighborhoods of the subset {x} is denoted

by Ny, (x).

1.18. Definition [9]:

Let (X, My) be an m-space. A subset Kof
X is said to be m-compact if every cover
of Kby subsets of My has a finite
subcover. & 1s called m-compact space if
every m-open cover has a [inite subcover.

L1.19. Definition:

(i)A subset A of m-space Xis called m-
relative m-compact if A is an m-compact
(ii)An m-space Xis called m-locally m-
compact if every paint in X has m-relative
compact m-neighborhood .

1.20. Proposition:
Let X' be an m-locally m-compact space and K

be an m-compact subset of X . Thenk has m-
compact m-neighborhood .

be m-structure on X and let A ={13} , B = Proof: Clear .
{2} then:
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1.21. Definition [12]:

A set D is called a directed set f there is
relation = on Dsatistying

(i)d =d foreach d € D.

(i) If dy = dy and dy = dy then dy = d;
(iii) If d,,ds € D then taere is somedy €D |
with I'ig = I':Lrl and I‘ig = I'iz "

1.22. Definition [12]:

Anetinaset X i1sa [unction y : D — X where
D directed set . The point yid) is usually
denoted by y; .

1.23. Definition [11]:

A subnetofanet y:D — X isthe
composition yo@ where ¢ :H — D and H
directed set such that:

(Dep(hy) = w(h:) whenever hy= hs .

(ii) foreach d € D there is some i € H such
thatd = @(h), the point (yo@lih) is often
WIItten ¥y -

1.24. Definition |4]:

Let (¥4)gep be anetin an m-space X, x € X.
Then;

() (¥4 )gepls an m-converges to x if
(¥d)aep is eventually n every m-

neighborhood of X ( written yy, i x) . The
point x is called an m-limit point of (¥4) sen.
(i) Grg)aep said to have x as an m-cluster
point it' (¥4)aen is frequently in every m-

. i : m
neighborhood of x { written y, o X )

L "
(iii)yy — =0 if the net (¥g)gepn hias no m-
convergent subnet .

1.25. Example:

Let X={-1,0,1}, My=1&,X, {-1.1}, {0,
1}} be an m-structure on X . and let {(-1)"}
beanetin X then {(-1)"} 1s not m-converge
to 1 but its m-converge to -1 .

1.26. Remark [1]:

Let f: X— ¥ be a lunction from a set X into
aset ¥, then:

(i) If(xglyep i1sanetin X
15 anetin¥,

(ii) I (y4)aen isanetin Y then there is a net

(X )aep in X suchthat f(xy) =yq foreach
debl,.

then {f (xa)}aen

104

1.27. Proposition [4]:
Let X be an m-space and let ACTX |

x€EX.Thenx €A

net (¥alaep A andyy = > 2

if and only 1l there is a

1.28. Corollary [4]:
Let X be an m-space . xEXand ACKX.
Thenx €4 ifand only if there s anet

. m
(Xadaep in A such thatyq x

1.29. Proposition:

Let Xbe an um-space. Then X is an m-
compact if and only if every net in X has an
m-cluster point in X,

Proof: Clear .

1.30. Remsnrk 14):
Let (x4)els be anet in an m-space X and
xE X, Tl

M
(i) It yy=—x  then everv subnet @il fry)gen 15
an Mm-convergence to x .

(ii) If ¥y = x forall € D, thenyy e S

1.31. Proposition [4]:
Let (¥4)qep be anetin anm-space X . Tehn

m oL P ;
Xd o X if and only 1f there exisis a

, £
subnet(ran Janenol (xa)aen such that x4, +—x

2.32. Propasition [4]:

Let X,Y betwom-spaces and {(x4.¥a)}laco
m

be a net m XxY such that (xa. ¥a) = (x, %)

then x4 i x and ¥, 3 Vs

1.33. Definition [4]:
Let (X, My ) be an m-space. Then X is said to

be m-T,-space if for every two distinct
points x and ¥ in X | there exist two disjoint
m-open sets U and V such that x € U and
yEV.

1.34. Propuosition:

A minimal space X is an m-T--space if and
only if every m-convergent netin X has a
unique m-limit point .
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Proof: related concepts such as, minimal orbit,
Let X be m-space and (x4)4ep i5 a net minimal stabilizer and minimal kernel . Also we

in X such that yy—+x. xgq—y .and
x#=y.5mece X be anm-T.-space . There
are UJE N, ({x) and V € N, (y) such that
UnvV =p. Since ng—;x.mere is dyeD
suchthat y, €U for all d>d,.since
Xa 5 v, thereis dy € D such that x4, €V
forall d = d; . since D is directed set and
dyg .dy €D , then thereis dy € D such tha
d; =dy and d3 = dy . Then x4 € U for all
d=d;, and y4 €V for all d =d; . thus
UnV =0, this is a contradiction.So x =y .

Conversely:

Suppose that X is not m-T,-space , there
are x,¥ EXandx # y,forall U € N,(x)
. VENL(Y) suchthat UnV =0 . put
NY={UNV:UEN;(x) and V € N, ()}
, where NJ is directed set , Thus for all
DeN ,there is xp € D then {.t’n]'gmff

is net in X .
m m

To prove yp = x Jqp—¥ . let G € Ny (x)
then GEN) .GNX =6 Thus y, €6 for
m
all D=6 ,s0¥p—x. Also, let H € Ny, ()
then HEN;, HNnX=0@ . Thus yp€H
n

for all D=6 .
contradiction .

so xp—y. this is a

1.35. Definition [2]:

Letf:X — ¥ bhe a function from m-
space (X, My) o m-space (¥, My). Then f
is called mimmal continvous (briefly m-
continuous)if f~1(B) € My, for every B €
M, .

1.36. Definition [11]:

A function f: (X, M) — (¥, M) 1s said to
be minimal closed (briefly m-closed) if for
each m-closed set B of X . f(B) is m-closed
setin Y.

1.37. Proposition|[4]:
Let f:& — ¥ bea function, x € X then fis
an m-continuous  if and only if whenever a

then fixq)

m
net (¥glgep in Xand yz—x

if;‘_x}l :

2. On Minimal Action:
In this section, we introduce the definition of
minimal group, minimal group action and its
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introduce  the  definitions of A" (x)and
J"(x)and give some properties of these
concepts .

2.1. Definition:

A minimal group is a set {x with two structures:
(i)(G, 1) isa group .

(i) (&, M) is a minimal space .

Such thar the two structures are cormpatible ,
i.e; the multiplication function TR
G — G which is defined by u(gy,82) = g8
, for every g,,g; € & and the inversion function
N: G — G which is defined by N(g) = g™* for
all € & . are both m-continuous function .

2.2. Definition:

Let & be a minimal group and X be a minimal
space . A left minimal action of & on X isa m-
continuous map @: Gx X — X such that:

{i)g@ (e,x) =x , for all x € X where e is the
identity element in G .

(ii) (g, (g2 x) = (g1, 82). %),
x€X and z4,8. €06,

for all

The m-space X together with minimal action £
is called minimal group space and denoted by
m(i-space , more precisely (left mfi-space) . In
similar way one can define a right mG-space .

Note that the difference between the left and
right minimal action is not a (rivial one ,
however there is a one to one correspondence
between them as follow : if ¢ is a left minimal
action of & on X . then " Xx G — X defined
bye'(x.2) = @(g™!, x) is a right minimal action
of &+ on X, and similarly for right minimal
action .

Thus for every left minimal action there is a
conjugate right minimal action and vice versa ,
so every theorem that is true of left minimal
action has a conjugate theorem for right
minimal action . Because of this , we will
usually use a left action .

2.3. Example:
Let i be a minimal group, then & is mi-space

by  multiplication @=mGxG—0G
(81.82) — E18> , 15 an m-continuous
(because ¢ 1s minimal group)
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2.4. Proposition:
Let & be minimal group and {g4)4ep be a net

in &5, Then;
Loy 8 T
@ If gg—e.then ggg—g (or gge—g)
foreach g € & .
mn m m
(i) If gg—e=.then g gy — ofor gyg— = )

foreach g € (7.

[ o]
(iii) If g, = o0, then g

—4 O .

Proof:
(i) Since Ry G — G is an m-continuous and
an m-open ,where R, is right translation by g .

m
thus by proposition (1.37) g g4 —¢ for each g
€.

(ii] l-'ﬂ! gt‘f ﬂ [+a] I:'I[ld g E 'r; guppose that
m
ggi =+ g, for some

g, € G, Since g~' is an m-continuous , Then
o —_— Flr! —
by prupu:llhnn (1.37)R; l{ggq) = Ry Mo .
Then g4 — .87, a contradiction .Thus g
I
gy o .

e
(i) Let ' — g . Since N:G — G i5 an m-

. mo o i m
continuous Then g4 — g%, Thus if g4 — 0 ,

M
then g~ = =0,

2.5. Definition:
Let (X, @) be an mG-space and x € X .then :

{i) The minimal arbit of x defined to be the set
G = {p(g,x) : g € G}, the set of all minimal
orbit denoted by X/ and called it minimal
orbit space .

(ii) The minimal stabilizer of x € X' defined
to be the sel

Sy ={seG:¢(g,x) = x}

(iii) The minimal kernel of the minimal action
is defined o be the set (kerg)" ={g€

Grplg,x) =x,¥Vx € X].

2.6. Preposition:
Let (X, ) be mir-space, then:

(i)The minimal stabilizer of x€X is a
subgroup of G .
(i (kerg)™ = Nyex Sy

(iii)(kerg)™ is a normal subgroup of & .

Proof:
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(i)Letgy, g2 € 57 then

g x) =x.
=p(2182:%) = @(u(gy,82). X)) =

o(g1 (g2, %)) = @lgnx) = x

Hence g.g, € 57,

@lg,,x) =

Now . letg € S then @(g, x) = x

o™ %) = e(g 0l x) = 9(s'8 %)
=@le,x) =x

Hence @(g™',x) =x

Therefore g~ € 51" .

So 57 isa subgroup of G .

(ii) Let g€ (kerg)™ = @(gx)=x for all
xEeEX.

o gesSMtforallx e X.
S gE NMyeex Y.

Then (kerg)™ = MNyex Si°.
(i)

Let g € (kerg)™ . then p(g.x) =x , ¥Vx X
andg(agh™%,x) = g(h, e(gh™',x))

From (i} (kerg)™ subgroup of G .

=g(h  @lg.eh™ 1)
= p(h, @(h™',x))
=g@(hh™, )= gle.x)=x

Hence (p(hgh ™' x))=x for all xEX.
Hencehgh™ € (kerg)™ . Therefor
hikerg)"h™' € (kerg)™ for all x € X .Since
(kergp)™ € h{kerg)™h™'.

Thush(ker@)"h™' = (kere)™.

Therefor (kerg)™ is a normal subgroup of

2.7. Theorem:

Let (X,@ ) be a m-Hausdorft mG-space, where
X is anum-space and G is an m-compact
minimal group . Then the minimal action
s ®x X — X isan m-closed map .

Praol;
letAC G xX be avmclosedsetins X X .

Lety € qu{fi}mthcu taewe exist a net (Wylgep €
i
ip{A) such that y, -;—I-by {proposition 1.27)
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this implies there exist (gq.Xg)aen € A such
that @ (8q, X)) = Ya -

Sinal & is m-compact then the net (g4 )qgep

has wm-convergent wﬂuﬂ (8na) such that
i

Sna—~——§ and Yngy _‘}'
Now x5 = @y, ‘xt[r} = "rﬂ(g;r%r Ene o Xna)

= @(gna Bty X)) = P(Enas Vng)
And then xn,,——h;t g L.y)

Therefor (Ene . Xne) Wiisk (g.(g".y))and
since 4 is m-closed then (g, 9(g " ¥)) €4 .
Thus e(g. @™ y) =elEe.y) =
@ple,v) =y € @A) therefore @(4) = p(A)
and then @{A) 15 m-closed since X 15 an um-
space (praposition 1.1.19) .

2.8. Corollary:
Let (X, ) be a m-Hausdorft mG-space, where

X 15 anum-space and G is an m-compact
minimal group . Then the natural projection
mX — X /G is an m-closed map .

Proof:

Let AS X be an m-closed set in X. Then
n(m(4)) = G.A = @(G x A) is m-closed set
m X { Theorem 2.7y, S0 m(A) is an m-closed
set in X .

Therefore m is an m-closed map .

Dydo in [6] . developed the concept of the sets
A(x)-and f(x) in any space and used only [(x)
as a characterization of Cartan G-space as
following:

For any point x in a G-space

Jx)={ye

X:thereis anet (g4)42p in G and there is anet (y

with g; — o andy,; — x such that gy, —
yix)={y €

X:there isanet (B4)gep in G with gy

— w such that g4 x4 — ¥}Also it is clear that
the set A(x) 15 a subset of (x) .

Now, we introduce the following definition and
prove some results.

2.9. Definition:
Let (X, ) be an mdi-space and € X . Then:

ﬂ"l{x} —
{¥:thereis anet {Ed}afn inGwith gy

"
— oo such that g4 x4 5 v} is called minimal

limit setmdrr

J"(x) =

{Y:themisanet (B4 )gepn in G and there is a net (¥g)geipin
L 1] m

with g, «—+wandy, — x such thatg,x,

[ ! i 5} .l .
=+ ¥} is cailbd minimal first prolongation limit
set.

It is clear that the set A™ (x) is a subset of

fm {x} i}

2.10. Proposition:
Let(X, @) be an mG-space and x € X, Then:

()A™(x) is an invariant sets under G,

(ii) The m-orbit GJ" is m-closed if and only if
A" (x) S 6.

(i)  MWx g A"(x) then the m-stabilizer
subgroup SI7 of' G is an m-compact.

(GE = GIUA™(x).

W)gA™(x) = A" (gx) = A" (x)loreach g€ G,

Proof;
(i) Let y € A" (x) and ,g,E {i. Then thre is a net

(gn-j}ﬂﬂ, in G with g4 D andgaxa i y and .
It is clear that (ggg)gep is a net in G with
n

ggq —+&o . by proposition (2.4.ii) Since the

action is minimal continuous . thus gg,,x e BY
which is implies thatgy € A" (x) and hence
A" (x) is invariant . The prool off™(x) is
similar.

(i) Let G)'be an m-closed and let ¥ € A" (x),
then there is a nei (84)den in G such that g,

(1
—oand g,xg 3 ySince 2, €GN and

(8a)uepis a net in ;' then by
——=1rl

proposition( 1.27)ye GIF =G,  Therefore

A" (x) € Gyt

Conversely;

A )gg 9& Eﬁ.‘m. then by proposition (1.27) there
L

15 (Vg)ges 18 a net in Gy'such that vy =y |

then ¥ d €D there 15 g4 €06 such that

Ya "E.-Il' . Then (84l)azo is a net in G
m
dndgaqu Now either g{.—:g or g4 =,
m

If g;—g ., then gdx-rgdx =¥,

L
implies that y€ Gy'. I g4 -«
A" (x) = G, thus G2 1s an m-closed .

which
then €
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(iii) Let x € A" (x) and suppose that 87" is
not mi-compact. then there is anet (g4)4ep in

m
G such thatgy —«. Since g4 €5, then
m

gax =x; ie gax = xg. thenx € A" (x)
which is a contradiction, thus 57 is anm-
compact.

—sn L
{iv) If Gy" is an m-closed , then GIF = 6"
from {ii} , GI* = GPUA™(x) . Let
y &G and € A™(x) . then there is a net
m m
(8q4)aep In G withgy; = such that g xq — ¥
m
. Since (hggi)aep is a net in G with hgy == |
L
So hggx — hy which implies that hy € A™(x)
,but hy € GI" then A™(x) € G2F, therefore by

m

() , G is m-closed , hence EE =
GIUA ().
(v) Clear.

2.11. Proposition:
Let{X, @) be an mG-space and x € X. Then:
(i)/™(x) is an invariant sets under G.
(ii)y € J™(x) if and only if x € [™(y).
(i) g/™(x) =" (gx) = J™(x)for cach gE G.

Proof:
Similar to prove of proposition (2.10) .

2.12. Proposition:
LettX, ) be an mG-space and x € X. Then:

(i) If x€/™(x) then for each yE€
G theny € ™ (y)
(iiy If ye A"(x) for some y EX.theny €

™).

(i) If x & /™(y) for each x €X, then
A" (x) =0,

Proof:

(i) Let x € [™(x) end y € GI" . Since /™(x)
is an invariant , then x € /"™(x)  for each
y E Gy, by proposition(2.11.ii) , x € J™(x).
But /™ (x) is an invariant , thus y € /™ (x)

(i) Let yeEAN'(x) . then there is a
net(gy)aep 0 G withg, D, such that
gax E-:-..' Put ¥y = gux'—ri}r . Then it 15 clear
that g, Tr.?x-,

L
g4 Hyg) = Bg lggx =x = x thus x € [™(y)
which is closed and invariant , then we have

propositioa(2.3.19-1i1)  and
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[
gq% € J™(y) . sincegyx 5 y.then y € [™(y)

(i) Let x & /"(x) foreech x€X . To
prove AM(x)=0. If y € A" (x), then from
(i) v € ["(y) it is a contradiction, thus
A"(x)=0foreachx € X .

2.13. Definition:

Let f: X — ¥ be a function from m-space X
into m-space ¥ . then f is said to be a minimal
praper ( brietly m-proper ) if :

(i)fis an m-continuous function ;

(ii)f 1s an m-closed function ;

(iii}f ~'{yHs an m-compact set in X , for every
yEVY.

2.14. Theorem |5]:
Let f: X — ¥ bea continuous function . Then
the following statements are equivalent:

()f is proper function .

(i) H(xqliepisanctinX and Yy €Y isa
cluster point of the net f(yq) then there isa
cluster point ¥ € X of (¥4)qep Such that

flx)=y.

Simple verification shows that this result
remain valid when X and ¥ are minimal
spaces as tollowing:

Let f:X — ¥ be an m-continuous function
from um-compact m-T -space X ino m-T-
space . Then the following statements are
equivalent:

(i)f is en m-proper function,

(ii) If (¥q)qep isanet in Xand y €Y isan
m-cluster point of f(yy) then there is an m-

cluster pointx € X' of{(xy)qep such that f{x)

=Y

Bourbaki in [3] defines a proper i-space as
follows

2.15. Definition [3]:
LetXbe G-space . Then X is said to be proper

{i-space if the function @ : GxX — XxX |
defined by ¢@ig,x)=(x. g,x) . ¥(g, x) e GxX .
is proper .

Now, we introduce the following definition.
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2.16. Definition:

An mb-space (X, ) is called an minimal
praper mi-space (m-Bourbakiproper m(-
space) if the function 8: GxX — XxX | 8{g,x)
=(x.¢{g,x) ) ,V(g,x) e GxX .15 an m-proper
funetion .

2.17. Proposition:

Let (X,@) be an mi-space , where X and G
are um-compact T;-space , then X is an m-
proper mi-space if and only if /" (x) =@ for
eachx E X.

Praof:
Suppose that € [™(x) , then there is a net
m
(8i)den m G with g, —o and there is a net
I m
(xda)aep i X with ¥y = x such that gy —y
. since (g4, xa)) = (rasBaxa) . but X m-
Bourbakiproper mi-space , then there is
m

(h.x,) € G x X such that (84, xa), (R %;) .
Thus by proposition (1.31) then{gq)gep has

m-convergent subnet , say itself . this is a
contradiction , thus /" {x) = @ for each x € X.

Conversely:
Let (Bas ¥a)aephe a net in & X Xand (x,¥) €
X xX . since ({gd, Xa) )= G B0.xq) » thus by
proposition (1.31) (8,48 4k Jaeptihas a siume: ,
m
say itself , such that (j/;.84xu) — (2, F. by
§m

el
proposition(1.32) x4 ok and, Taxy =—y
m :
suppose that g; = then y € f™iix) this is a
contradiction . Then there is h €5 such that
L bl
g4 e h therefore (8. xu) == (h,¥)and
(h,x) =(xv) . Thus X m-Beiuwrbakiproper
mdi-space .

3. On Minimal Small Sets:

In this section, we introduce the definitions

of m-small, m-thin relative and m-cartanm -
spaceand introduce a new types of minimal (-
spaces . Also we study the proper mi-spaces in
senses ofboth Plasis and Bourbaki .

3.1. Definition [6]:

Let (X, @) be an G-space, A subset A of X is
said to be thin relative to a subset 8 of X if the
set{{,-fl, E)) ={g € G| gANB # @} has
neighborhood whose closure 13 compact in & .
If 4 is thin relative to itself then it is called thin.

Now, we introduce the following definitions,

3.2. Delinition:

Let(X, p) be an mG-space, A subset 4 of X is
said to be minimal thin relative to a subset B
ofX iftheset((4, B)) = {g € G| gANB #

@} has an m-neighborhoodwhose m-closure is
an m-compact in & . If 4 is an m-thin relative
to itself then it is called m-thin.

3.3. Propuosition:
Let (X,@) bea mG-space and K, , K, be an m-
compact subset of X. Then:

() ((Ky, K5)) 1s an m-closed subset of i .
(i) ((K7, Kz)) is an m-compact when KjandK;
relatively m-thin

Proof:
—
(i) Let g € ((Ky, K:)) " Then by theorem
(1.27) there is a net (gq)qen 0 (K, K2))
m
such thatgy — g , since gy €((K.Ky)) . then
there is a net (kj)gep in Ky which is anm-
compact , such thatg kel € K, . since K, is an
m-compact ., then there exists o subnet
™Moo
(gdntkﬁ,m} ofigqkl) such that gdmkém — ki .
wherekg € Ky , but(ky yin Ky and Ky s m-
compact , thus there is a pointk] € K; and a
m
subnet o f kj say itself such thatkj — kg,

[
then by proposition (1.37) gg, ki, = gks= kg,

which mean that g €((K.K;)) , therefore
(K LK ) 1s an meclosed .

(if) Let K, and K; are m-compact subset of
mi-space X such that Ky and Kjare m-
relatively thin . then ((Ky, K3)) has anm-
neighborhood — whose mi-closure s an m-
compact , sincek; and K, are m-compact by
@) ((K;,K3)) is an m-closed , thus
((Ky,K3z)) 15 an m-compact .

3.4. Definition [11]:
Afli-space X is called Cartan G-space if every
point in X has a thin neighborhood.
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Now, we introduce the following definitions.

J.5. Definition:

A mUi-space (X, ) is said to be an m-cartan
mGi-space if every point in X has an m-thin m-
neighborhood.

3.6. Remuark:

It is clear that a mG-space (X, ¢) is an m-
cartan mdi-space if (i 15 an m-compact and um-
space.

3.7. Definition [6]:

A subset § of an (f-space X isa small subset
of X ifeach point of X has a ncighborhood
which is thin relative to §.

3.8. Definition [6]:

A Gi-space X is said to be a palais proper (-
space il every point x in X has a small
neighborhood .

Now, we introduce the following definitions.

3.9.Definitiomn:

A subset § ofan mG-space X is an minimal
small (briefly m-small) subset of X if each
point of X has an m-neighborhood which is
m-thin relative to § .

3.10. Definition:

An m@G-space X is said to be an minimal palais
proper mG-space (ri-palais proper mG-space)
if every point x inm( has an m-neighborhood
which is anm-small set .

3.11.Theorem:
Let X be an mG-space. Then:

()If X be im-space then m-small neighborhood
of a point x contains an m-thin neighborhood
of x.

{ii)A subset of an m-small set is an m-small.
(iii) If X be wm-space then a finite union of an
m-small sets 15 an m-small.

(iv)If' X be um-space then § is 2n m-small
subset of X and K is an m-compact subset of
X then K is an m-thin relative to 5.
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Proof:

(i)Let § be an m-small neighborhood of x .
Then there is an m-neighborhood U of x which
is m-thin relative to§ . Then ((I7, 5)) has m-
neighborhood whose closure is m-compact, Ler
V' = UMS. sinceXis an m-space, then V' is

an m-neighborhood of x and ((V,V)) €

(U, 8)) , therefore V is m-thin neighborhood
of x .

(ii)Let § be an m-small set and K £ 5.

let x € X . then there exists an m-neighborhood
U of x , which is m-thin relative to 5. Then
(LK) < (7, 8)), thus (U, K)) has m-
neighborhood whose closure 15 an m-compaet .
Then K is #n mi-small.

(iii)Let{S; ]}/, be a finite collection of m-small

sets and ¥ € X, Then forithere is m-

neighborhood K; of w such that the

set ((5;, K;)) has m-neighborhood whose

closure is anm-compact. Then UL, ({5, K;))

has m-neighborhood whose ¢losure is an m-

compact. Bt

(U ;, Uy K9)) € UTL4((SpKD). thus
i1 8 15 an m-small set.

(iv)Let 5 be an m-small set and K be m-
compact . Then there is an m-neighborhood U
of K, U, € K, such that Uy, 15 an m-thin
relative to 8. Since K © Upeg U e {U beex
{is an m-open cover of k , which is an m-
compact , so there is a finite sub cover
Uiy of {Upyex » since (Uy, 5)) has m-
neighborfiood whose closure is an m-compact ,
thus((UL, U/;;.5)) sois . But ((K,5)) €
(Ui, Up.5)) therefore K is an m-thin
relative ta 8,

3.12.Proposition:
Let X be an um-spaceand(X, @) be an mG-
space. Then:

(i)If Xis an m-palais proper m{7-space, then
every m-compact subset of Xis an m-small sei
(i)If X 15 an m-palais proper mé -space and K
is an m-compact subset of X . then ((K, K)) is
an m-compact subset of G .

Proof:

(i)Let A be asubset of X such that 4 is an m-
compact . let x €X, smce X is anm-
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proper mi-space then there is an m-
neighborhood U which is m-small of x . Then
for every a € A there exist an neighborhood
U, which is an m-small , then 4 € U4 Uy,
since A is an m-compact , then there exists
@y,8z,..,08, €A suchthat A € UL, U, .
thus by theorem(3.11.1i-ii1) A is an m-smzll
setin X.

{ii)Let X m-palais proper mir-space and K is
an m-compact , then by (i) K is an m-small
subset of X, and bytheorem (3.11.iv) K is an
m-thin . so ({(K,K)} has m-neighborhood
whose m-closure 1s an m-compact . Then by
proposition ( 3.3.i ) ((K, K)) is an m-closed in
G . Thus ((K,K)) is an m-compact.

3.13.Proposition:
Minimal palais proper m;-space is an mi-
cartan mb-space.

Proof;

LetX be an m-palais proper mii-space and
let x € X. Then there is an m-small
neighborhood S of x. since 5 is an m-small
neighborhood of x. Then there is an m-
neighborhood U of x which is an m-thin
relative to S. Thus ((1/, 5)) has m-
neighborhood whose m-closure is an m-
compact, therefore U is an m-thin
neighborhood of x. Then X has an m-thin
neighborhood of . Therefore X is anm-
cartan ma-space .
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