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ABSTRACT 
In this work a pack cementation of germanium-doped aluminum and silicon coatings on 

low alloy steel type-T21 has been applied. This gives significant improvement in the oxidation. 

Steel-T21 was coated with germanium-doped aluminizing-siliconizing. Diffusion coating was 

carried out at 1050oC for 6 h under an Ar atmosphere by simultaneous germanium-doped 

aluminizing-siliconzing process. Cyclic oxidation tests were conducted on the coated steel-T21 

alloy in the temperature range oxide 300-900oC in air for 102 h at 3 h cycle. The results showed 

that the oxidation kinetics for coated system in air can be represented by parabolic curve .Oxide 

phases that formed on coated system are SiO2 and Cr2O3.  A neural network model of oxidation 

kinetics has been proposed to model the oxidation kinetic. The neural model shows good 

agreement with the experimental data. 

 

Keywords: Steel-T21; Oxidation; Aluminizing-Siliconizing; Pack cementation; neural     

                     Network. 

 

 

-المغلّف بطريقة الألمنة T21نمذجة حركيات الأكسدة في الهواء للفولاذ نوع 
 باستخدام الشبكة العصبية سلكنة الآنية المحورة بالجرمانيوم
 

 الخلاصة
خذبيوتن -يتضمن هذا   بحثذا  خذتم  ر قةياذت  بت بيذس حتبخذمحتت ببثىذتغ يبذ  ت قيذتم   بمحيذتر

 بتذذت تذذا ى  بذذ  تثخذذن وحيذذة  ذذت  T21ض  بخذذحتيويت حذذت   بمثذذتةب حتبمةمذذتحيتر يبذذ   بلذذتفا  بمذذحمل
خذبوحت  بمثذتةب حتبمةمذتحيتر.تر -  وخ ب.ثيا أن  بلتفا ق  مضع  بذ   بت قيذت حتخذتم  ر يمبيذت   بمحذت

خذتيت تثذم أمذت ا  وةوذتن حتخذتم  ر قةياذت  6ت بمذ ب  Co1050تحليذا  بقذ ا  فحترذتةى يحذ   ةمذت 
حتبمةمتحيتر .  متحتة م   وخ ب  ب تةيت أحمزم يبذ   بلذتفا  ذت  بمذ    خبوحت  وحيت  بمثتةب–  بمحت 

خذتيت بوذغ  تةبأ أرهذةم  بحتذتي  أن ثةويذتم  3خذتيت   102 ت  بهت ا بم ب  Co900-300 بثة ةى 
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  وخ ب بحرتر  بق ا  ت  بهذت ا وتحذم مذن حذت   باقذع  بموذت  . أمذت أقذت ة   وخذ ب  بتذت توتحذم يبذ  
تذر  قتذة ن حمذتاب رذحوت يىذحت بحمامذت ثةويذتم   وخذ ب. .  3O2, Cr 2SiOتحهت وتحم أحرمت  بق ا  

  رهةم  برحوت  بعىحيت حتتي  متت  ات مع  بتمتةب  بعمبيت.
INTRODUCTION 

ow alloy steels are generally considered to comprise plain carbon steels and 

steels with a total alloying content of up to 12%. As such, they are much 

cheaper than more highly alloyed materials and are often used in large 

quantities in heavy engineering industries. These materials are generally selected for 

resistance to high temperature corrosion (the material choice is largely dictated by cost, 

ease of fabrication and mechanical properties) they are often required to operate in 

high temperature aggressive environments. For instance, the power generation, refuse 

incineration and chemical process industries use many miles of low alloy steel heat 

exchanger tubes. Hence, the high temperature oxidation properties of low alloy steels 

are often important in determining component life[1]. 

The development of a surface oxide scale limits the degradation of a pure metal or 

alloy in a hot oxidizing environment. The addition of reactive elements which have a 

high affinity for oxygen (such as Ge,Y, Ce, Hf) may further improve the oxidation 

resistance through various effects [2]: 

 Promotion of the selective oxidation of an element which forms a stable oxide of 

low diffusivity (such as Al2O3).  

 Reduction of the growth rate of oxide scale. 

 Inhibition of scale failure (i.e. through thickness cracking and scale/substrate 

interfacial decohesion) [2]. 

Reactive-Element (RE) additions may be provided either as metallic or oxide 

dispersoide components in bulk alloy, or as surface produced by coating. They are used 

predominantly with Cr2O3- and Al2O3-forming alloys to resist aggressive environment 

[3].Provenzano and coworkers [4]  proposed a model of mechanical keying due to the 

formation of oxide pegs rich in active elements, the role of these peg being to anchor 

the oxide scale to the coating alloy. It was found that the addition of germanium 

prevents the sulfur segregation to the alloy/scale interface, either by reacting with 

sulfur to form stable sulfides or by tying up the sulfur by segregation to internal oxides 

surfaces [5]. Thus, the addition of small amount of reactive element [ Y,Ge, La, Hf, Zr, 

Th] to an alloy resulted in substational improvements in the adherence of their oxide 

scales during thermal cycling [6].  Previous work[7], [8], [9], [10] and [11], have 

shown that such reactive element additions are effective in improving the high 

temperature corrosion of iron-base alloys by improving the resistance of protective 

scales to spallation.It was found that the scale formed on yttrium-free alloy is typically 

convoluted or wrinkled and poorly adherent, the yttrium-containing alloy produces a 

flat and adherent oxide. In recent years yttrium has become the most commonly used 

of these reactive elements. The amount of the reactive element needed to produce the 

beneficial effect is small, (typically 1wt.% or less). Heat-resisting alloys depend on the 

formation of a protective oxide on the metal surface to limit section loss by oxidation. 

Generally, this protective oxide is chromia (Cr2O3), or silica (SiO2). In practice, the 

L 
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most common way that a protective oxide fails is by exfoliation or spalling from the 

metal surface. This spallation may be induced by stresses arising from the oxide 

growth process itself, strains resulting mechanical flexing of the component in the 

service, or from stresses arising from thermal cycling because of the difference in the 

coefficients of thermal expansion of the oxide and the metal. Spallation of oxide may 

involve fracture in the oxide adjacent to the metal surface, fracture in the metal 

immediately below the interface, or by separation at the interface itself. In the last case, 

failure involves not only the magnitude of the stresses, but also a consideration of the 

interfacial adhesion.   

In this study, the applicability to deposit germanium-doped aluminum and silicon 

on the surface of steel-T21 alloy using single step pack cementation to enhance the 

oxidation resistance in steel-T21 was examined. The cyclic oxidation behavior of 

coated steel-T21 alloy is studied at temperature rangesfrom 600oC to 800oC under air 

environment, in addition a neural networkmodel of oxidation kinetics has been 

proposed. 

 

EXPERIMENTAL PROCEDURE 

 The substrate alloy used in this study was low alloy steel (Type T21-ASTM 

A200-94). The nominal composition and the spectrochemical analysis of low alloy 

steel (Type T21-ASTM) are shown inTable (1and Table (2, respectively. The low alloy 

steel samples were cut into squares shapes with dimensions (20mm× 20×mm×5mm) 

with small hole of 2mm diameter was drilled in each sample for holding. All surfaces, 

including the edges were wet ground using 120, 220, 320, 600, 800, and 1200 grit 

silicon carbide papers. These samples were then cleaned with water, degreased with 

acetone, and then ultrasonically cleaned for 30 minutes using ethanol as a medium. 

After drying, the samples were stored in polyethylene zip-lock bags. The dimensions 

of all samples were measured. The pack mixture used for aluminum-silicon diffusion 

coating consisting of 16 Wt.%Al powder (50-60m in particle size) as an aluminum 

source, 6 Wt.%Si powder (50-60m in particle size) as a silicon source, 2Wt.% NaF 

and 2Wt.%NaCl as activator and the balance was silica-powder (70-120m in particle 

size). All pack powders was sized by sieving method and 1Wt.% of the pack silica 

filler was replaced by germanium . Low alloy steel was placed in a sealed stainless 

steel cylindrical retort of 50mm in a diameter and of 80mm in a height in contact with 

the pack mixture. The retort was then put in another stainless steel cylindrical retort of 

80mm in a diameter and 140mm in a height. The outer retort has a side tube through 

which argon gas passes and second in the top cover for argon gas outlet. Type-k 

calibrated thermocouple was inserted through the cover of the outer retort for recording 

real temperature near inner retort. Pack cementation process was carried out at 1050oC 

for 6 h under an Ar atmosphere. After coating, the samples were ultrasonically cleaned, 

and weighed. It was found that the diffusion coating time of 6 h at 1050oC give a 

coating thickness of 66-m.  

Alloy with germanium-doped aluminum-silicon diffusion samples were 

accurately weighed and then placed into ceramic coating crucible. Cyclic oxidation 
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tests were carried out attemperature between 300-900oC in air. Each heating cycle 

includes heating in the furnace for 3 hours and cooling heating in still air. 

 

 

Table (1)Nominal composition of low alloy steel (Type T21-ASTM). 

Element Fe C Mn Pmax Smax Si Cr Mo 

Wt.% Rem. 0.05-0.15 0.3-0.6 0.025 0.025 0.5max 2.65-3.35 0.87-

1.13 

 

Table (2)Spectrochemical analysis of low alloy steel T21. 

Element Fe C Mn P Sm Si Cr Mo V Ti 

Wt.% Rem. 0.04 0.34 0.014 0.012 0.35 2.96 0.10 0.002 0.01 

 

NEURAL NETWORK MODELING  

A neural network is a parameterized non-linear model which can be used to 

perform regression, in which case, a very flexible, non-linear function is fitted to 

experimental data. The details of this method have been reviewed in [12] and [13]. 

Neural networks are basically connectionist system, in which various nodes called 

neurons are interconnected. A typical neuron receives one or more input signals and 

provides an output signal depending on the processing function of the neuron. This 

output is transferred to connected neurons in varying intensities, the signal intensity 

being decided by the weights. Feed forward networks are commonly used. A feed 

forward network has a sequence of layers consisting of a number of neurons in each 

layer. The output of neurons of one layer becomes input to neurons of the succeeding 

layer. The first layer, called an input layer, receives data from the outside world. The 

last layer is the output layer, which sends information out to users. Layers that lie 

between the input and output layers are called hidden layers and have no direct contact 

with the environment. Their presence is needed in order to provide complexity to 

network architecture for modeling non-linear functional relationship. After choosing 

the network architecture, the network is trained by using back propagation algorithm, 

where back propagation algorithm is the efficient optimization method used for 

minimizing the error through weight adjustment [13]. The trained neural network has 

to be tested by supplying testing data. 

In this work, three multilayer (feedforward) neural networks have been built under 

MATLAB® environment to model the relationship between the temperature and time 

with respect to the weight change.  All these networks are consisting of input layer 

which has two neurons taking the temperature and time as inputs, two hidden layers 

and one output layer gives the networks output represents the corresponding weight 

change. The difference between these networks is the number of neurons inside each 

hidden layer. For the first network, 15 neurons are used in the first hidden layer and 12 

neurons for the second hidden layer, whereas for the two other networks the first 

hidden layers have 4 and 7 neurons, respectively. Finally, the second hidden layers for 

the last two networks have 6 and 9 neurons, respectively. Figure (1) shows the neural 
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network model of this work. The hyperbolic tangent function (𝑡𝑎𝑛ℎ) is used as an 

activation function for all neurons. The back-propagation training algorithm based on 

Levenberg-Marquardt algorithm is used to train these networks.The Levenberg-

Marquardt algorithm appears to be the fastest method for training moderate-sized 

feedforward neural networks (up to several hundred weights). It also has an efficient 

implementation in MATLAB® software, because the solution of the matrix equation is 

a built-in function, so its attributes become even more pronounced in a MATLAB 

environment [14].The training algorithm parameters used in this work are given in 

Table (3). 

 

Table (3)Levenberg-Marquardt training algorithm parameters. 

Parameter Name Parameter value 

epochs 5000 

goal 1.00E-08 

max fail 1000 

memory reduction 1 

minimum gradient 1.00E-08 

adaptive value 𝜇 0.001 

adaptive value decrement 𝜇𝑑𝑒𝑐 0.1 

adaptive value increment  𝜇𝑖𝑛𝑐 10 

maximum of the adaptive value 𝜇𝑚𝑎𝑥 10000000000 

Learning rate 0.0005 

learning rate increment 1.005 
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Figure (1) the neural network model. 

 

RESULTS AND DISCUSSION 

1- Cyclic oxidation of coated system in air 

Coating system germanium-doped aluminizing-siliconizing substrate was 

subjected to cyclic oxidation. A primary aim was to study the kinetic of oxidation 

behavior of coated system as a function of the environments. The specific weight 

change of the samples of coated system during oxidation is plotted as a function of 

time as shown in Figure (2). 

  The kinetics behavior of cyclic oxidation of coating system at temperature range 

between 300-900oC follows the parabolic rate (  ∆𝑾/𝑨 = 𝑲𝑷𝒕
𝟎.𝟓 ) where (∆𝒘weight 

change, 𝑨 surface area of oxidation, 𝑲𝒑 constant of parabolic oxidation rate, 𝒕 

oxidation time and 𝒏 oxidation exponent)as shown in the curves of Figure (2. In coated 

systems case, oxidation rate coefficients are obtained and listed in  

 

Table (4. Weight change values are shown in  

 

Table (5). 
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Figure (2) Parabolic fitted results of specific weight change vs. time plot for 

germanium-doped aluminizing-siliconzing diffusion-coated low alloy steel type-

T21 cyclic oxidized in air at temperatures range(300-900oC) at 102 h for 3 h cycle. 

 

 

Table (4n) values and parabolic oxidation rate constants KP for cyclic oxidation 

of germanium-Doped Al-Si in air for102 hr at 3 hr cycle. 
Temperature oC n KP (mg2/cm4)/sec. 

300 0.414 1.361×10-7 

600 0.510 5.270×10-5 

900 0.543 7.296×10-5 

 

 

Table (5) Weight change values for cyclic oxidation of germanium-Doped Al-Si in 

air for102 hr at 3 hr cycle. 

Time (hr) 
Weight Change 

(mg/cm2) at 300oC 

Weight Change(mg/cm2) 

at 600oC 

Weight Change (mg/cm2) 

at 900oC 

3 0.0162 0.0588 0.0936 

6 0.0220 0.0841 0.1378 

9 0.0264 0.1037 0.1728 

12 0.0300 0.1203 0.2029 

15 0.0331 0.1350 0.2298 

18 0.0359 0.1484 0.2544 

21 0.0385 0.1607 0.2772 

24 0.0409 0.1722 0.2987 

27 0.0431 0.1830 0.3189 

30 0.0451 0.1932 0.3383 

33 0.0471 0.2030 0.3567 

36 0.0489 0.2124 0.3745 
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Time (hr) 
Weight Change 

(mg/cm2) at 300oC 

Weight Change(mg/cm2) 

at 600oC 

Weight Change (mg/cm2) 

at 900oC 

39 0.0507 0.2213 0.3916 

42 0.0524 0.2300 0.4081 

45 0.0541 0.2383 0.4241 

48 0.0557 0.2464 0.4397 

51 0.0572 0.2542 0.4548 

54 0.0587 0.2619 0.4696 

57 0.0601 0.2693 0.4839 

60 0.0615 0.2765 0.4980 

63 0.0628 0.2836 0.5117 

66 0.0641 0.2905 0.5252 

69 0.0654 0.2973 0.5384 

72 0.0667 0.3039 0.5513 

75 0.0679 0.3103 0.5640 

78 0.0691 0.3167 0.5765 

81 0.0703 0.3229 0.5888 

84 0.0714 0.3291 0.6008 

87 0.0726 0.3351 0.6127 

90 0.0737 0.3410 0.6244 

93 0.0747 0.3469 0.6359 

96 0.0758 0.3526 0.6473 

99 0.0769 0.3583 0.6585 

102 0.0779 0.3638 0.6696 

 

 

Based on the positive weight change data, the coated system of the low alloy steel 

substrate appears to be fairly resistance to scale spallation even at temperature range 

300-900oC .Coating system appears good oxidation resistance as a result of  the most 

desirable SiO2, and Al2O3 protective scale layer that formed on the sample surface 

during oxidation, and these scales layer has sufficient adherent with the substrate to 

withstand the imposed cyclic heating and cooling environments. This evident from the 

continuous weight gain is noted during oxidation. Second, the (Al+Si) phase of the 

coating remaining untransformed totally over the entire exposure period indicates that 

the Al,Si loss from the coating during oxidation is very slow because of the formation 

of a spall-resistant silica, alumina layer especially at higher temperatures. The presence 

of the reactive elements such as germanium oxidermanium affects the high temperature 

oxidation in three main ways [11]: 
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 Increase in the selective oxidation of the elements forming the scale 

(Al,Si) at the beginning of the oxidation process. A lower content of this 

element is needed to produce a continuous protective SiO2, and Al2O3 

layers. 

 Reduction in the scale growth rate at higher temperature by means of 

altering the transport mechanism in the oxide. The outward diffusion of 

Alchanges to inward diffusion of O-2.  

 Increase in the scale to alloy adherence.  

Figure (2shows the important in oxidation resistance of the improvement in 

oxidation resistance of coated system (germanium-doped aluminizing-siliconizing 

coated low alloy steel substrate at temperature range between 300-900oC), for 102hr at 

3hr cycle. Figure (3toFigure (5are showing  the cross section view images of LOM of 

the coated  low alloy steel substrate at temperature range  between 300-900oC . From 

the surface appearance of the samples, the spalled areas are considerably low. It is 

possible that a small amount of germanium had segregated on grain boundaries in the 

scale, and little voids are observed near the alloy/scale interface as shown in figures.  

Since germanium could not be detected with X-ray diffraction at the surface of 

oxidized samples, the suspected enrichment levels for germanium segregation must be 

very low. The addition of germanium had no visible effect on the external scale 

morphology developed during the cyclic oxidation of germanium-doped aluminizing-

siliconizing.  The phase constitution of the coatings was determined using XRD 

analysis. The major phases as a result of cyclic oxidation between (300-900oC) were 

continuous protective SiO2, andAlr2O3 layers on the sample surface as anticipated, its 

amounts increased with exposure duration. 

 

 
Figure (3) LOM of low alloy steel type-T21 coated with germanium- 

doped aluminizing-siliconizing after cyclic oxidation under air  

at 300oC. (cross section view). 
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Figure (4) LOM of low alloy steel type-T21 coated with germanium- 

Doped aluminizing-siliconizing after cyclic oxidation under air at 600oC. 

(Cross section view). 

 

 
Figure (5) LOM of low alloy steel type-T21 coated with germanium- 

doped aluminizing-siliconizing after cyclic oxidation under air at 900oC.  

( cross section view). 

 

2- Neural networks results 

The experimental data shown in 

 

Table (5) was rearranged to give 102 sets; the temperature and time are considered 

as inputs and the weight change as output, to represent the networks inputs and output 

sets. These sets are divided into two groups the first one is consist of 88 sets 

representing the training sets. Whereas, the second group is consist of the remaining 14 

sets as shown in shaded form in the  

 

Table (5), to be used to test the trained networks.Figure (6) to Figure (8showing the 

best linear regression between the networks responses and the experimental data during 

the training phase of the proposed networks, in addition to the correlation coefficient 

(R-Value). It can be seen that the network with m=4 and n=6 has the best fit because of 

the correlation coefficient is equal to one its means perfect fit. Whereas, the other two 

networks have acceptable fit (0.99987) for the network of m=15 and n=12 and 
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(0.99996) for the network of m=7 and n=9. This result is proved by plotting the 

networks responses with the experimental data of the testing sets as shown in Figure 

(9) to Figure (11). It is clear from the magnified view of the curved that the output of 

network with m=15 and n=12 is deviated from the experimental data in two points, the 

same things happened for the network with m=7 and n=9. In contrary, the output of 

network with m=4 and n=6 does not give any deviation from the experimental data. 

 

 

 
Figure (6) the linear regression and correlation coefficient (R-value) between the 

network response (15 and 12 neurons at first and second hidden layer, 

respectivly) and the experimental data for training sets. 
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Figure (7) the linear regression and correlation coefficient (R-value) between the 

network response (4 and 6 neurons at first and second hidden layer, respectivly) 

and the experimental data for training sets. 

 

 
Figure (8) the linear regression and correlation coefficient (R-value)  

between the network response (7 and 9 neurons at first and second  

hidden layer, respectivly) and the experimental data for training sets. 
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Figure (9) the network response with respect to experimental 

 testing sets for m=15 and n=12 netwoeks. 

 

 
Figure (10) the network response with respect to experimental  

testing sets for m=4 and n=6 netwoeks. 
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Figure (11)the network response with respect to experimental  

testing sets  for m=7 and n=9netwoeks 

 

 

CONCLUSIONS 

From the cyclic oxidation tests of coated low alloy steel type-T22 in air 

temperatures range between 300-900 oC for 102hr at 3 cycle, and the neural network 

modeling the following results can be concluded: 

1. Coated system (Germanium-doped Aluminizing-siliconizing diffusion coating) 

revealed good cyclic oxidation resistance, and oxidation kinetics was following 

the parabolic oxidation rates. 

2. The neural network showed good results to fit the data of the coating system and it 

can be considered reliable to predict the weight change for the corresponding 

temperature and time as shown in Figure (6 to Figure (11. 

3. The network with 4 neurons in the first hidden layer and 6 neurons in the second 

hidden layers has the best results and give perfect fit with experimental data. 
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