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Abstract

The experimental research reported is aimed using small quantities of CFRP strips to provide against
web or/and flange local buckling for (8) specimens of steel columns . Steel columns with (I) section
specimens are made from welding thin plates at their edges between web and flange . The type of
strengthen carbon fiber is a unidirectional woven fiber mat of mid strength which is a product of Sika coded
as SikaWrap-230C. The CFRP is fixed using a resin Sikadure-330.The study is focusing on the local
stability of such members. Many pattern of wrapping are suggested herein. Recommendations have been
drawn for the best pattern chosen to obtain the most efficient and economic strengthen pattern. This
technique has the potential to correct difficulties associated with existing techniques while being cost-
effective and causing minimal disruption to the users of the structure. Also formulation of the finite element
method used for analyzing the tested columns. The finite element model will be using the experimental
load-deflection results of the steel columns. The use of ANSYS-8 to create the finite element model is
adopted, the maximum different between experimental results and ANSY S-8 results is 4.8%.

LAl
Cugll aasall sliatV) eldl uuail (CFRP) (oradsdll 0508l Gl w2l (o AL 4aS Jlanials (sl bl (a3
lilall 3 ohaall A milaca aal e (1) G <88 Luaall BaaeY) 23l puiea o5 L dpaaall 5aaeY) (e £ 3l Ll ddlally
5% S A58 1) A glial) s gial) gail) (ha ay olatls dagasia (538 LT Bran Jlaxinl cass dgill g L Ailally cugll o b
Laadgal) Ayhaay) e duhall @3S, . (Sikadure-330) g5 @il Jleaiuls ¢g0Sl Gl cugn & -(Sika Wrap-230C) !
by Akl sda . alaBYl 5 8eUSl Aali (o Jaad el Giluag adlanud sl sae Ll 158 2 L eliac Y] sda (il
saasall jealiall anylass. Lasal) (padicedll dlije o (Koo Lo Sl Aladlly 22H 353 A alagls Adagiyell Clgaeall (0 A0\
o e YL L daaal) saac U Jolaglly Janll giaiad Llaal) A e s daplall oday L Lytida diagaiall 82021 Julas &S
%4.8 S ANSYS-8 ziling Lobaal) militl) (py (38 acadly B220al) yualial) Ayl ey SANSYS-8
Introduction
Recent research on the strengthening of circular hollow sections (CHS) with FRP
by Teng and Hu (2007) and Hong et al. (2000) in axial compression, Haedir et
al.(2007,2006) in bending, Doi et al. (2003)in bending and compression, Jiao and zhao
(2004) in tension, and Zhao et al (2005) and Xiao et al. (2005) on concrete filled CHS,
have shown significant benefits in strength and stiffness of steel members with externally
bonded CFRP. Experiments on steel RHS strengthened with CFRP under transverse end
bearing force were described by Zhao et al. (2006). The mechanical properties of
reinforced fiber rely on the fiber characteristics, such as their size, the percentage of fiber
reinforcement, and the orientations of fibers. One of the greatest limitations to the
behavior of conventional steel tubular beams composed of thin section is the
susceptibility of the steel component to local buckling. This local instability is more
likely to occur in thin than in thick section, and the effect of local stresses within the steel
can result in a reduction of strength.
Experimental Setup and Test Specimens:
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The section dimensions of the specimens produced by seam-welded along length of
three parts of steel with 2mm thickness, 120mm length of web, 100mm length of flange
and 500mm height of 320Mpa yield steel. The measured uni-axial tensile material
properties are listed in Table 1. Figl shown section of the specimen, Fig2 Shown the
measured uni-axial tension stress-strain material curve of the steel sheets which used to
fabricate the tuber steel columns.

Table(1)
The dimension and the measured uni-axial tension material properties of the
Steel sheets which used to fabricate the tuber steel columns.

Thickness | Length of | Length of Length Yield Stress | Ultimate Failure

Specimen t (mm) flange web I (mm) fy (Mpa) Stress f, Strain &
(mm)w, (mm)w, (Mpa)

1to8 2 100 120 500 320 400 0.10714

(W;) 100mm
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Fig(1) Section of specimen
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Fig. (2) The measured uni-axial tension stress-strain material curve.

The tuber steel columns strengthen with different of woven carbon fiber type Sika Wrap-
230C by epoxy Sikadure-330 the material properties are tabulated in Table 2.

Table(2)
The material properties of Sika Wrap-230c carbon fiber and Sikadure-330 epoxy.
Material Fabric design Fiber Areal Tensile E-Modulus
Thickness density weight strength (Mpa)
(mm) glcm® g/m (Mpa)
Sika Wrao-230C 0.131 1.76 230 4300 238000
Sikadure-330 30 4500

The test program include tested eight structure column; non strengthen steel column

(NS), columns strengthen with longitudinal CFRP for the two face of the web only by
strip with width(2.8cm ) was applied with inclination of (45°,63.43° and26.57°)for (PS1),
(PS2) and (PS3) respectively.

The column (PS4,PS5 and PS6)have the same distribution of CFRP of column
(PS1,PS2 and PS3) but at the two face of the flange. The column (PS7) strengthen with
longitudinal CFRP as two strip with (3cm) width at the web but the flange strengthen by
CFRP as two strip with (2cm) width.
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Finite Element odeling:
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General:

The finite element method has become a powerful tool for the numerical solution of
a wide range of engineering problems. In this search the formulation of the finite element
method used for analyzing the tested columns is introduced. The use of ANSYS-8 to
create the finite element model is adopted. All the necessary steps to create the calibrated
model are explained in details and the steps taken to generate the analytical load-
deflection response of the member are discussed.

Nonlinear Finite Element Analysis for Structures:
Most phenomena in solid mechanics are nonlinear. However in many applications it
Is convenient and practical to use linear formulation for problems to obtain engineering
solutions. On the other hand, some problems definitely require nonlinear analysis if
realistic results are to be obtained such as post-yielding and large deflection behavior of
structures. Depending on the sources of nonlinearities, the nonlinear problems can be
divided into three categories. In brief, these categories are, Problems involving material
nonlinearity, Problems involving geometric nonlinearity and Problems involving both
materials and geometric nonlinearity.
The present study deals with material nonlinearity in analyzing the tested columns.
This is because large deflection behavior of structures. Buckling loads are critical loads
where certain types of structures become unstable. Each load has an associated buckled
mode shape; this is the shape that the structure assumes in a buckled condition. There are
two primary means to perform a buckling analysis:
1. Eigenvalue
Eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal
elastic structure. It computes the structural eigenvalues for the given system
loading and constraints. This is known as classical Euler buckling analysis.
Buckling loads for several configurations are readily available from tabulated
solutions. However, in real-life, structural imperfections and nonlinearities
prevent most real-world structures from reaching their eigenvalue predicted
buckling strength; ie. it over-predicts the expected buckling loads. This method is
not recommended for accurate, real-world buckling prediction analysis.
2. Nonlinear
Nonlinear buckling analysis is more accurate than eigenvalue analysis because it
employs non-linear, large-deflection, static analysis to predict buckling loads. Its
mode of operation is very simple: it gradually increases the applied load until a
load level is found whereby the structure becomes unstable (ie. suddenly a very
small increase in the load will cause very large deflections). The true non-linear
nature of this analysis thus permits the modeling of geometric imperfections, load
perturbations, material nonlinearities and gaps. For this type of analysis, note that
small off-axis loads are necessary to initiate the desired buckling mode.
Finite Element Representation of steel columns with
External CFRP Reinforcement:
In the field of solid mechanics, the finite element method is usually used to find
approximate solutions for structures having complicated shapes and /or loading
arrangement. The element types for this model are shown in Table (3) . The SOLID45
element was used to model the steel. This element has eight nodes with three degrees of
freedom at each node translation in the nodal x, y and z directions the element has
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plasticity, creep, swelling, stress stiffening, large deflection, and large strain capabilities.
A reduced integration option with hourglass control is available.

While Shell41 represents the CFRP strips, SHELL41 is a 3-D element having
membrane (in-plane) stiffness but no bending (out-of-plane) stiffness. It is intended for
shell structures where bending of the elements is of secondary importance. The element
has three degrees of freedom at each node: translations in the nodal x, y, and z directions.
The element is defined by four nodes, four thicknesses, a material direction angle and the
orthotropic material properties. Orthotropic material directions correspond to the element
coordinate directions. The element coordinate system orientation is as described in
Coordinate Systems. The element x-axis may be rotated by an angle THETA (in
degrees).The element may have variable thickness. The thickness is assumed to vary
smoothly over the area of the element, with the thickness input at the four nodes. If the
element has a constant thickness, only TK(l) need be input. If the thickness is not
constant, all four thicknesses must be input. Parameter needed to define the material
models can be founded in Tables(4) .

Materials Properties:

EX is the modulus of elasticity of the concrete and PRXY is the Poisson's ratio. The
bilinear model requires the yield stress as well as the hardening modulus of the steel to be
defined.

Table (3) Element types for working model.

Material type ANSYS element
Steel SOLID45
CFRP strips SHELL41
Table(4) Material models for the calibration model
Material model Element Type Material properties Real Constant
number
1 SOLID45
Linear Isotropic
EX 200000
PRXY 0.3

Bilinear Isotropic
Yield stss 280
Tang mod 2000

2 SHEEL41
Linear orthotropic Shell thickness of 0.131
EX 230000 node J TK(J)
EY 1 node K TK(K) 0.131
EZ 1 node L TK(L) 0.131
PRXY 0 node | TK(I) 0.131
PRYZ 0 Element x-axis 0°,45°, 26.57°,
PRXZ 0 rotation theta 63.43°
GXY 1 Elastic foundation 0
GYZ 1 stiffness
GXZ 1 Add mass/unite 0
area
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Experimental and ANSYS results:

The results of the tested specimens that obtained from applying an axial
compressive load by using an universal testing machine as shown in Fig. (4), shown that
the application of CFRP to the steel columns increase the stiffness, the ultimate axial
compressive load and decrease the local buckling at the ends of the column. The
obtained results from experimental tested and ANSYS-9 were tabulated in Table (5).The
axial compressive load to axial displacement curve for the experimental tested columns
are shown in Fig.(13), also the curves of experimental tested for each column and by
solved this columns by ANSYS-9 are shown in Fig.(5) and Fig.(6), Fig.(7), Fig.(8),
Fig.(9), Fig.(10), Fig.(11) and Fig.(12) also this figures show the shape of columns before
and after testing. From these figures it's clear that the distribution of CFRP was for
column PS3. Where this pattern gives a behavior better than the behavior of other
columns.

Fig. 4 The universal testing machine.

Table (5) The experimental and ANSYS-9 results of the tested column.

Po Pu
NS 100 0% 102 2%
PS1 130 30% 125 3.8%
PS2 120 20% 118 1.7%
PS3 135 35% 132 2.2%
PS4 113 13% 118 4.4%
PS5 105 5% 110 4.8%
PS6 115 15% 119 3.5%
PS7 115 15% 120 4.3%

Where: P, :ultimate axial load (KN) by experimental tested.
P, : ultimate axial load of non strength steel column (KN) by experimental tested.
Pa :ultimate axial load (KN) by ANSYS-9.
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Fig.5 The axial compressive load to axial displacement curve of column NS by
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Fig.10 The axial compressive load to axial displacement curve of column NS and
PS5 by experimental tested and ANSYS-9.
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Fig.11 The axial compressive load to axial displacement curve of column NS and
PS6 by experimental tested and ANSYS-9.
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PS7 by experimental tested and ANSYS-9.
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Fig.14 shows that the column PS3 represented the best distribution of CFRP which
increased the ultimate load to about (35%). The columns that strengthened at flange the
CFRP debonded from the surface happened. The Figures from (16) to (23) show
distribution of stresses intensity, Axial displacement in Y direction and distribution of
stresses intensity at CFRP of each columns by ANSYS-9 and bulking of NS column
shown at Fig.(16).
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Fig.15 the percentage of difference between ultimate axial load of
experimental tested and ANSYS-9 for columns.
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Conclusion:

1) The distribution pattern has a significant effect on the behavior of (I)
section steel columns with CFRP, where the pattern of column PS3 given
increasing in ultimate capacity more than another columns.

2) The application of CFRP on (I) section steel columns increases the
ductility and ultimate compressive load to about 35%.

3) The distribution pattern must be proper with the case of buckling of
column which the last depend on the aspect ratio of the column.

4) The anchor system proved with epoxy its effectiveness in carrying the
applied force whether the CFRP were bonded or not to the columns.

5) recommend to keep the CFRP working till the column reaches its failure,
because in most of the previous researches the CFRPs debonded from the
surface and the failure (separation) happened, because of the differences in
the stiffness of the three materials (steel, epoxy and CFRP).

6) By use of ANSYS-8 to create the finite element model, the maximum
different between experimental results and ANSY S-8 results is 4.8%.
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