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ABSTRACT  

The uncontrolled friction stir welding heat generation impacts the quality of welds. However, 

the intuition and experience of the engineer fail to regulate the effects of excessive heat 

generation on the weld quality and research has not addressed this aspect yet. This paper fills 

the gap by introducing an integrated CRITIC-BPNN (CRiteria Importance Through 

Intercriteria Correlation-Back Propagation Neural Network) method to investigate the selection 

and optimisation characteristics of the friction stir welding process for AA6082-T6 material. In 

this study, two major performance characteristics i.e. ultimate tensile strength (UTS) and 

percentage elongation (%EL), were chosen for analysis. The input parameters for the machining 

were the tool rotational speed, welding speed, tool pin profile and tool shoulder diameter. For 

the back propagation neural network model, a four-layer network with sigmoid hidden neurons 

and output neurons was selected. The weight estimates of the friction stir welding parameters 

are determined by the CRITIC method.  For further weight determination between the nodes 

and edges of the neural networks, the Poisson distribution model was introduced. This 

stochastic-based method was used to calculate the weights at the edges, between the inputs, 

hidden layers and outputs of the neural network.  The forward pass and backward passes are 

then used for updating and error minimisation. The welding speed has the highest weight with 

a contribution of 49.72% using the CRITIC method, implying that welding speed is the best 
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and most influential parameter of the friction stir welding process. For the 4-1-2 neural network 

architecture, the values of the ultimate tensile strength and percentage elongation at the optimal 

thresholds are 0.6457 and 0.6019, respectively, for the first forward pass and 0.6123 and 0.6356, 

respectively, for the second forward pass. The predicted tensile strength is 320.64 MPa and the 

prediction for the percentage elongation is 18.83%. The results obtained from the proposed 

method could be useful for planning purposes during the friction welding process. 
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1. INTRODUCTION  

In friction stir welding, the prediction and selection of welding process parameters is tedious, 

requiring a competent evaluation and choice among several alternatives (Sabry et al., 2023; Ay 

and Sarsilmaz, 2023; Das and Chakraborty, 2024). However, effective multicriteria decision-

making strategies that evaluate friction stir welding parameters are scanty, and difficult to rate 

in importance (Nikolic et al., 2012; Marichamy et al., 2023; Sabry et al. 2023). Hence, there 

exists the risk of choosing the wrong alternative without scientific support (Das and 

Chakraborty, 2024). Moreover, multicriteria decision-making has become an important tool to 

examine information that is unclear, certain and therefore useful to obtain the best decision 

from limited data in friction stir welding (Marichamy et al., 2023; Sabry et al., 2023; Das and 

Chakraborty, 2024; Park et al., 2024; Kopf et al., 2024).  

Moreover, in friction stir welding, predicting process parameters while utilizing AA6082-T6 

material provides valuable information for its stakeholders, including engineers and decision-

makers in welding (Kuykendall et al., 2023). Accordingly, artificial intelligence involves 

several criteria, also implying the appropriateness of introducing multicriteria decision-making 

methods to solve the current problem is considered (Marichamy and Babu, 2021; Sarvaiya and 

Singh, 2022). Shaik et al. (2019) enhanced the parameters of joined Al7075-T651 and Al6082-

T651 alloys in friction stir welding using the Taguchi GRA (grey relational analysis). Sahu et 

al. (2021) used FSW on AA5083 to determine the effect of the process parameter on the weld 

microstructural and physical properties. Sarvaiya et al. (2022) used the PSO (Particle Swarm 

Optimization) algorithm to attain the best working conditions for the process parameters of 

FSW and calculated the quality of the performance of FSW under these conditions. Wang and 

Lados (2022) investigated the friction stir lap welding of two dissimilar galvanized steel sheets 

(JAC270 45/45 and Al 6061-T651). Gosavi and Jaybhaye (2022) studied the enhancement of 

the process variables involved in the FSW of the Silicon-Carbon Composite, Al 7075 with the 

use of Grey Relational analysis (GRA). Gaikwad et al. (2023) estimated various multi-criteria 

optimisation algorithms for the FSW of AA7075-T651 alloy plates. Akbari and Asiabaraki 

(2023) evaluated the consequence of the shoulder and probe diameter and height of the FSW 

tool on the failure load, impact and stress forces and temperature profile of the FS welded 

AA5083. Dugar et al. (2023) investigated the FSW of AA6082 and AA2014 alloys using 

Taguchi L9 orthogonal array, analysis of variance and grey relational analysis. 

Sefene et al. (2023) utilized a multi-criteria technique to obtain the optimal values of the FSW 

process parameters that produce welded joints with the best mechanical characteristics. 

Karthick et al. (2023) analysed the FSW boron and titanium carbide composite of nitinol and 
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estimated its joint's tensile strength using the Taguchi method. Reddy et al. (2023) improved 

the welding strength when using the Titanium Zirconium Molybdenum tool during the FSW 

process by using the Taguchi technique. Song et al. (2025) studied the friction stir welded joints 

of 317L austenitic stainless steel and 2507 super duplex stainless steel, focusing on their surface 

and mechanical characterization. Abolusoro et al. (2024) studied the joints containing AA7075-

T651 and AA6101-TB after being friction stir welded. Tang et al. (2024) analysed the 

mechanical characteristics and microstructure of a jointed AA6061 material using the friction 

stir welding method. Xue et al. (2024) established a simulation model to examine the welding 

process.   

Compared with experimental aspects of friction stir welding, little research has been conducted 

to date on the prediction and selection of metal joint parameters in friction stir welding (Gan et 

al., 2013; Al-Shaibani and Aljanabi, 2020; Dharmalingam et al., 2022). At the same time, 

according to cited literature descriptions, the 6XXX aluminum series, including the AA6082-

T6 material, has been a major material of interest to researchers and material engineers (Kim et 

al., 2010; Mallieswaran et al., 2018; Sefene et al., 2023; Rashid et al., 2023; Tang et al., 2024). 

However, selection and predictive studies are less on the AA6082-T6 material. Recognizing 

the potential applications of friction stir welded joints of AA6082-T6 material, prediction and 

selection of parameters in the welding process have been pursued in this work. Moreover, from 

the literature review and the general understanding of the state-of-the-art in friction stir welding, 

it is known that the deployment of predictive solutions of the friction stir welded joint 

parameters and the determination of the best and worst parameters can be considered very 

promising in the research community and industry. However, no real solutions aimed at 

predicting friction stir welding parameters for joints, through advanced artificial intelligence 

applications, fully leveraging the objective multicriteria weight regulation scheme have been 

proposed and tested in the welding environment. Consequently, no real information associated 

with the input layer, hidden layer and the overall performance of the artificial neural network 

intelligent system is available. 

Thus, this paper presents an integrated CRITIC-BPNN (CRiteria Importance Through 

Intercriteria Correlation- Back Propagation Neural Network) method to predict and select metal 

joint parameters during friction stir welding for the AA6082-T6 material. The CRITIC method 

is first implemented to determine the objective weights of the neurons in a back propagation 

network. The mechanisms of forward and backward passes are triggered. Also, the visualization 

of how to minimize the errors while ensuring that the neural network is reliable is made. The 

CRITIC method is suggested to sort the parameters and criteria into classes by weights, 
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highlighting the most influential category of the parameters. The back propagation neural 

network is applied to predict the performance of the metal joint parameters. 

The novelty of the work is that a predictive model for the friction stir welding of AA6082-T6 

material has been successfully developed using the back propagation neural network. Thus, it 

reveals the reliability of back propagation neural network method in developing predictive 

models and making welding decisions towards process sustainability. While the proposed 

method aided in achieving the highest weld quality level, it is the first investigation within the 

contemplated parametric range and the proposed method for the AA6082-T6 material, using 

the friction stir welding process. 

The highlights of this study are as follows: 

1. The study offers insights into the prediction and selection processes for AA6082 – T6 

material friction stir welding and contributes to the development of robust planning of welding 

practices that align with the economic and environmental objectives of the welding 

organization. 

2. Predicting friction stir welding parameters potentially increases efficiency, reduces 

operational cost and enhances weld quality. 

3. The paper suggests the need for a holistic method that considers the replacement of the 

common weight used for edges via neural network nodes by including the CRITIC method 

weight into the back propagation neural network. 

4. The Poisson distribution method was used to translate the CRITIC method based weights to 

those used in calculating the outputs of the hidden layers and the final outputs of the process. 

5. CRITIC method enabled the selection of the greatest weight of the friction stir welding 

parameters for further processing. 

6. Analysis of the output for the hidden layer and the final neurons of the neural network 

using the sigmoid function for activation in the context of friction stir welding of the 

AA6082-T6 material. 

2. METHODOLOGY 

2.1. Problem statement 

During friction stir welding, excessive heat generation and its poor regulation is a pressing issue 

that should be addressed. Heat generation, when improperly managed may adversely affect the 

weld quality of the substrate material being processed. However, attempts at regulating this heat 

are confronted with multiple challenges such as cost and poor handling of among others. Costs 

of constructing or purchasing equipment or technology to regulate heat keep escalating day by 
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day, particularly in developing countries whose economies keep on declining by the day. Poorly 

trained technicians also result in poor handling of the control of heat in the substrate. Moreover, 

the mechanism of heat generation involves the creation of heat within the friction stir welding 

process as a result of the dissipation of electromagnetic or electrical energy. Moreover, the 

prediction of the parameter values of the friction stir welding is a feasible way to overcome the 

obstacles of cost and poor handling confronting the friction stir welding process. Of great utility 

in this context is the adoption of the back propagation neural network (Afshari et al., 2016). 

With very little information on the friction stir welding parameters, an abundant quality of 

qualitative and quantitative information could be provided for decision-making on heat control 

in the process. While the traditional back propagation neural network draws its weight from the 

intuitive experience of the researcher, a new method is needed that ignores the traditional 

intuitive approach and substitutes it with an objective weight determination multicriteria 

method. In this context, the CRITIC-based back propagation neural network method may be a 

suitable candidate to predict the parameters of friction stir welding for the adequate control of 

heat generation during the welding process. 

2.2. Selection of AA6082-T6 material 

The AA6082-T6 material has been selected due to its diverse applications in transportation, 

infrastructure and everyday uses (i.e. firearm suppressors, fly fishing reels, automotive 

components and non-flight critical aircraft components) (see also Raji and Oke, 2020). The 

AA6082-T6 material has outstanding properties that make it very attractive to material 

engineers. These include mechanical properties such as. Brinell hardness of 92, elastic 

(Young’s tensile) Modulus of 69 GPa, elongation of 9.8%, fatigue strength of 95 MPa, shear 

modulus of 26GPa and tensile strength of 330MPa. The electrical properties also include an 

electrical conductivity of 42% IACS. The thermal properties include latent heat of fusion of 

410 J/g and thermal conductivity of 160W/m-k. 

2.3. CRITIC methodical computation in friction stir welding 

In normalizing the parameters of the friction stir welding it has been established that there is a 

need to identify which of the parameters are beneficial and which are non-beneficial. This is 

essential to determine the best and worst parameters for the process. Accordingly, the four 

parameters whose experimental data are considered in the present work are scrutinized for 

appropriate categorizations. First, the tool's rotational speed was analysed for beneficial or non-

beneficial categorization (Sameer and Birru, 2020). As such the researcher searched the 

literature to understand the effect of tool rotational speed on weld (Sameer and Birru, 2020). 
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It was found that the higher the tool rotational speed the higher the durability of the aluminum 

being welded (Sameer and Birru, 2020; Amatullah et al., 2022). Moreover, other information 

was obtained from the literature, which shows that the higher the tool rotational speed, the 

higher the quality of the grains produced (Sameer and Birru, 2020). This led the researcher to 

conclude that the higher the better signal-to-noise criterion is adequate for the tool rotational 

speed. Hence tool rotational speed is a beneficial parameter (Amatullah et al., 2022). Next is 

the welding speed. It is found that the higher the welding speed the worse the weld quality will 

be. Furthermore, with increasing welding speed, the penetration decreases, making the 

parameters unattractive when increased (Gupta et al., 2019). Thus the lower the better signal-

to-noise criterion is applicable and welding speed is non-beneficial. For tool pin profiles, there 

are various types used such as the square pin, cylindrical pin, tapered pin and trapezoidal pin. 

It can be concluded that the tool with the square pin gives maximum tensile strength while the 

tool with the tapered pin profile gives more tensile strength than the cylindrical tool pin (Swetha 

and Padhy, 2023). This implies that the tool pin is a beneficial parameter in friction stir welding. 

For tool shoulder diameter, an increase in its value increases the material's mechanical 

properties.  Thus, shoulder diameter is a higher-the-better parameter and hence a beneficial 

parameter (Sahu and Pal, 2014). 

2.4. CRITIC method as a weighted index in the BPNN method  

The application of the CRITIC method by the materials engineer is to resolve the complication 

that arises when confronted with assigning weights to the parameters of the friction stir welding 

process when they conflict with goals. Here, there are multiple goals to be achieved at the same 

time. In this context, an objective multicriteria method that assesses uniformly to obtain the 

same results by different individuals should be used. Specifically, the CRITIC method is used 

for analysis where the substrate material is AA6082-T6 Fig. 1. Fig. 1 shows the procedural 

steps observed while executing the CRITIC method. The complete naming of the CRITIC 

method is the criteria importance through inter-criteria correlation. The procedure utilized in 

this work entails first the application of the CRITIC method to determine the weights of criteria 

and then substituting these values in the BPNN (Back propagation neural network) method in 

the next phase of computation. 
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Fig. 1. Research Scheme 

Fig. 1 shows the schematic of the proposed method used on the AA6082-T6 material data in 

the friction stir welding process. It shows first that the idea of the new method was conceived 

from an understanding of the literature review. Based on the gap revealed in the literature, a 

predictive model by back propagation neural network was developed. However, it is different 

from the classical back propagation method because it introduced a mechanism of weight 

calculation objectively from the CRITIC multicriteria method. So Fig. 1 branches into two parts 

from the conclusion of the literature review. The first part chooses the CRITIC multicriteria 

method and the second part selects the back propagation neural network method. After the 
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weights are computed using the CRITIC method on the left side of Fig. 1, the output is fed into 

the right-hand side of Fig. 1. Here, the inputs are defined, the hidden layers are specified, biases 

are defined and the outputs are spelt out. Then, the flow of work progresses to the calculation 

of the weights at the edges. This moves up weight updating in backward passes and the errors 

are computed. Finally, the results are obtained in back propagation neural networks. 

Moreover, the procedure used in implementing the CRITIC method is as follows; 

Step 1: Obtain normalized values for all the parameters of the friction stir welding Here, there 

are four different parameters of interest in the present study namely the tool rotational speed, 

expressed in revolutions per minute, welding speed, expressed in millimeter per minute, tool 

pin profile, which has no unit but is expressed in structural form, such as cylindrical, threaded 

cylindrical, square and trapezoidal. By closely observing the values of the parameters along the 

four levels defined for each parameter, some values are very high and others are very low. 

However, it becomes difficult to know which of the very low values of parameters exceed others 

except by the use of a common analysis, which is called normalization. In the normalization, 

Equation (1) is used: 
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To applying Equation (1), the parameters are first classified into beneficial and non-beneficial 

parameters. Beneficial parameters are those elements of the process whose increments are 

desired and contribute positively to the progress of the friction stir welding process. However, 

if a parameter contributes negatively to the friction stir welding process whose value increments 

are not desired then it becomes a non- beneficial criterion. Thus in implementing Equation (1) 

to the friction stir welding process the maximum value is the best value for beneficial 

parameters and minimum value is the worst value. For non-beneficial parameters, the minimum 

value is the best while the maximum value is the worst. Furthermore, the worst value of the 

parameter is subtracted from the particular value in the cell whose value is to be replaced with 

the normalized values. This becomes the numerator, which is divided by the difference between 

the best and the worst values of the parameters. By solving the previously discussed calculation, 

new values are obtained for each parameter along the levels. Then, computations proceed to the 

next step. 

Step 2: Calculate the standard deviation, j  for each parameter (Achebo and Odinikuku, 2015). 

For each parameter with the normalized values, the formula for standard deviation is applied 

on the parameter. This is shown as Equation (3): 

 

N

xi

j

2

 



          (3) 

Where j  is the standard deviation of the parameters 

N is each value from the parameters 

xi  is each value from the parameters  

µ is the parameter mean 

Using the standard deviation, effort is made to compute the mean of the data values. Afterwards, 

the deviations of each parametric value from the mean are evaluated. The resulting value is 

divided by the size of the parameters and the square root of the values are obtained. Then 

computation proceeds to the next step. 

Step 3: Establish the symmetric matrix of nxn with element rjk, which is the linear correlation 

coefficient between vectors xj and xk. 

Here a matrix is created which consists of parameters along the x-axis and the same parameters 

repeated along the y-axis in a matrix. 

Then the entries are compared against one another. Now, the linear correlation between 

parameters is to be calculated. If a parameter is compared against itself, the linear correlation 

is 1, otherwise it may be less. It should be noted that for both the standard deviation and 
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correlation, the syntax available in Microsoft Excel could be used and it brings results fast. 

After all the calculations, the symmetric matrix is obtained and the computation proceeds to the 

next step. 

Step 4: Compute the measure of the conflict created by criterion j with respect to the decision 

situation defined by the rest of the criteria. 

Equation (4): 





m

k

jkC rM
1

)1(        (4) 

Where Mc is the measure of conflict  

The values presented from the last step are called the rjk values. However, each of these values 

needs to be subtracted from 1. Then the sum of each row is evaluated to find the measure of 

conflict created by the parameter rjk with respect to the decision situation and considering the 

rest of the parameters. The computation then proceeds to the next step. 

Step 5: Establish the quality of the information in relation to each parameter. Equation (5) used 

in this situation. 
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Where  j  is the standard deviation of the parameters  

What is done in Equation (5) is to multiply the standard deviation value with those of the 

measure of conflict. On solving, the quality of the information is obtained. The computation 

afterwards proceeds to the next step. 

Step 6: Establish the objective weights: 

Here, Equation (6) is used 
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1

         (6) 

Where Wj is the objective of the parameters 

2.5. The BPNN and the CRITIC-based BPNN methods 

The BPNN is a state-of-the-art technology with huge flexibility conditions and adaptability, 

including the CRITIC method, to enhance prediction of the BPNN method. The BPNN is a 

reliable and highly sophisticated tool used in prediction and decision making. Moreover, with 

the complex nature of friction stir welding process in view, together with the goal of green 

welding, a novel BPNN method was developed. The weight estimates of the friction stir 

welding parameters are determined by the CRITIC method. By using the CRITIC-based 
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weights for initialization and further weight determination between the nodes and edges of the 

neural networks, the Poisson distribution model was introduced. This stochastic-based method 

was used to calculate the weights of the edges between the inputs and the hidden layers of the 

neural network. The Poisson distribution model also aided to determine weights for the edges 

between the hidden layers and the final outputs. The lambda variable was determined based on 

some defined properties of the friction stir welding process. The forward pass is then achieved 

with the computation of weights for the edges and the errors. Weight updating is then 

implemented and backward pass is used to minimize errors until the error reaches an acceptable 

threshold. 

The following are the principal steps to implement the back propagation neural network applied 

in this paper: 

Step 1: Forward pass: In this step, the obtained weights of the parameters through the CRITIC 

method are fed into the input layer. Afterwards, each input weight is transferred into inputs to 

be used at the edges by introducing the Poisson distribution function which has three terms 

namely lambda to the power of X, exponential to the power of negative lambda. These are the 

numerator of the probabilistic friction while the denominator is the factorial of X. Thus the 

outcome of the division of the numerator with the denominator is of interest to the analyst for 

further calculations. In this probabilistic function, to obtain Lambda, the analyst should draw 

the neural network architecture and analyse each input neuron for Lambda values. The number 

of edges emerging from each input neuron becomes the denominator value for the Lambda 

while the particular numbered edge takes the numerator position for the calculation of Lambda. 

For instance, at the Trs neuron of the input, two edges branch out of it. The label at the first 

branch edge is W1, indicating weight at the edge connecting Trs neuron with the first hidden 

layer labelled Q1. The second edge branched out to meet the second hidden layer labeled as Q2. 

The weight on this edge is W3. Now, the Lambda value associated with W1 being the first edge 

is ½ while it is 2/2 for W3. This same idea is used to generate all the weights, which are 

conventionally taken as random numbers. However, to obtain X that will be introduced to the 

Poisson distribution function, we have to refer to the obtained weights by the CRITIC method. 

Observe that first right after the decimal and take it as the value of X. For instance, the weight 

obtained for the Trs neuron using CRITIC method was 0.1689. The value X from this number 

is 1 since it is the first digit after the decimal. 

All the edges that enter in Q1 from the various inputs are multiplied with their corresponding 

weights and the final value will be added to the bias value, which is randomly generated. The 

final answer is the value of Q1. The same procedure will be used for Q2. Then the actuation 
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function is introduced to calculate the outputs of Q1 and Q2. Then the outputs of Q1 and Q2 will 

be those to calculate U1 and U2. Then the output of U1 and U2 are calculated using the activation 

function. 

Step 2: Error calculation: After the output layer has generated the final output, it is compared 

with the desired output which has been set earlier. This desired output is also called the target 

output. In the present study, a new innovative approach is developed to represent the target 

output. The target output is shown as a logarithm function, with a constant added to it, in general 

it is written as (log f(x)+c)-c. The difference between the target output and the final output is 

called the total error of the process and is computed to understand how far the total output is 

from the desired output. 

Step 3: Backward pass: From the term backward propagation, the backward pass is the most 

related to this term. However, it is only achieved when a forward pass has been done and error 

has been calculated. The error value that has been calculated in the previous step is used to 

evaluate the gradient of the lost function. Then the gradient of the error is transmitted backwards 

in the entire network. Notice that in forward propagation, the calculation is done from the input 

to the hidden layers and then the output. However, the reverse is the case with the backward 

pass, where the output layer is the starting point and information is transmitted to the hidden 

layers and then to the input. During the propagation of the error backwards, the weight 

represented by edges is updated in a proportion equal to their contribution to the error. 

Backward propagation involves obtaining derivatives of the error while each weight is referred 

to, this shows the extent of change in the weight and how it changes the error. Learning rate is 

calculated which reveals the size of the weight update. With a small learning rate, the weights 

are updated in a small manner and vice versa. 

Step 4: Weight updating: After the derivative of the total error with respect to the weight has 

been defined, the updating of weight commences using the formula which accounts for the new 

weight, the current weight, the learning rate and the derivative of the total error with respect to 

the weight. In the opposite direction of the gradient, the weights are updated and the term 

gradient descent is often used. A stoppage to weight updating is implemented if the network 

performance fails to substantially improve. 

3. RESULTS AND DISCUSSION  

3.1. CRITIC method in friction stirs welding  

In implementing step 1 of the CRITIC method, Equation (1) mentioned in the section on 

methodology is adopted. Table 1 shows the experimental data obtained from Jangra et al. 

(2015) indicating that there are four parameters of interest in the analysis of this work. 
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Table 1. Experimental data (Jangra et al., 2015) 

 Parameters 

Levels 
Tool rotational 

speed (Trs) rev/min 

Welding speed 

(Sw) mm/min 

Tool pin 

profile (Tpp) 

Tool shoulder 

diameter (Tsd) mm 

1 1200 20 1 14 

2 1950 25 2 16 

3 3080 30 3 18 

4 4600 35 4 20 

Best 4600 20 4 20 

Worst 1200 35 1 14 

Delta 3400 15 3 6 

Rank 1 2 4 3 

 

The tool rotational speed, measured in revolutions /min, is designated as Trs and classified as a 

beneficial parameter. The welding speed, measured in mm/min, is represented by letter Sw and 

regarded as a non-beneficial parameter. The tool pin profile is the third parameter a beneficial 

parameter represented as Tpp, has no units. The fourth parameter, tool shoulder diameter, 

measured in mm, represented as Tsd, is a beneficial parameter. By referring to Equation (1), the 

researcher is compelled to identify the best and worst parametric values for each parameter. 

The Trs has its best and worst values as 4600 and 1200 rev/min, respectively. The welding 

speed, Sw, has its best and worst values as 20 and 35 mm/min, respectively. The tool pin profile 

(Tpp) has its best and worst values as 4 and 1, respectively. Then, the tool shoulder diameter, 

Tsd, has its best and worst diameters as 20 and 14 mm, respectively. With this information, delta 

values, which are the differences between the highest and lowest in each column (for each 

parameter) are obtained as 3400, 14, 3 and 6, for Trs, Sw, Tpp and Tsd, respectively.   

The purpose of Table 2 is to express the values for the parameter in the same scale. Consider 

the intersection of level 1 and the tool rotational speed, which has a value of 1200 rev/min in 

Table 1.  

Table 2. Normalisation of matrix 

 Parameters 

Levels Trs rev/min Sw mm/min Tpp  Tsd mm 

1 0 1 0 0 

2 0.2206 0.6667 0.3333 0.3333 

3 0.5529 0.3333 0.6667 0.6667 

4 1.000 0.0000 1.0000 1.0000 

Standard deviation 0.4351 0.4303 0.4303 0.4303 

 

By applying Equation (1), it is known that its numerator has two terms, Xij, which is 1200 and 

worst

iX , which is still 1200. Then the numerator of Equation (1) is 0. Considering the 

denominator of Equation (1) which is the difference between Xj best and 
worst

iX , which is 4600-

1200, giving a value of 3400. Then a value of zero divided by 3400 yields 0. The same 
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computation is made for the intersection of level 1 and welding speed to give 1. Other elements 

along level 1 under the tool pin profile and tool shoulder diameter yield 0 and 0, respectively. 

Thus, by using the same procedure conducted here for all other levels and parameters, Table 2 

is computed with values. Furthermore, along each column representing parameters in Table 2 

is the cell after level 4, which should contain the value of the standard deviation. Equation (3) 

may be used to obtain the standard deviations for parameters. Consider the tool rotational speed 

having four levels 1, 2, 3 and 4 with normalized values of 0, 0.2206, 0.5529 and 1.0000, 

respectively. To calculate the standard deviation of the parameters, the mean of these values is 

first computed as the sum of the values i.e. 0.02206, 0.5529 and 1.0000 divided by 4. This gives 

0.4434. However, Equation (3) has the numerator, which demands the subtraction of the mean 

from each number at the different levels. For instance, at level 1 under tool rotational speed, the 

indicated value of zero has a value of 0.4434 subtracted from it, which yields -0.4434. Likewise, 

for level 2 of the same tool rotational speed parameter, 0.4434 is subtracted from 0.226 to give 

-0.2228. Furthermore, for level 3 of the tool rotational speed parameter, 0.4434 is subtracted 

from 0.5529 to give 0.1095. Moreover, for level 4 of the tool rotational speed parameter, 0.4434 

is subtracted from 1 to yield 0.5566. Notice that the numerator of Equation (3) is summed up 

after been squared and the square root obtained. In essence, for each of parameters Trs, Sw, Tpp 

and Tsd, the standard deviation value obtained are 0.4351, 0.4303, 0.4303 and 0.4303, 

respectively. Furthermore, Table 3 is created as the correlation matrix which has all four 

parameters as both its vertical and horizontal axis.  

Table 3. Correlation matrix 

 Parameters 

Parameters Trs rev/min Sw mm/min Tpp  Tsd mm 

Trs 1 -0.9887 0.9886 0.9886 

Sw -0.9887 1 -1 -1 

Tpp 0.9886 -1 1 1 

Tsd 0.9886 -1 1 1 

Here, the Microsoft Excel spreadsheet facility for correlation could be used and the values in 

Table 3 are obtained. Next is Table 4 which shows the measure of conflict that utilizes the 

correlation values for further computations. The final result is in Table 5 which is the weight 

determination. 

Table 4. Measure of conflict 

 Parameters  

Parameters Trs rev/min Sw mm/min Tpp  Tsd mm Sum 

Trs 0 1.9887 0.0114 0.0114 2.0115 

Sw 1.9886 0.0000 2.0000 2.0000 5.9886 

Tpp 0.0114 2.0000 0.0000 0.0000 2.0114 

Tsd 0.0114 2.0000 0.0000 0.0000 2.0114 
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Table 5. Weight determination 

Parameters Standard deviation Sum Cj Wj Wj (%) 

Trs 0.4351 2.0115 0.8752 0.1689 16.89 

Sw 0.4303 5.9886 2.5769 0.4972 49.72 

Tpp 0.4303 2.0114 0.8655 0.1670 16.70 

Tsd 0.4303 2.0114 0.8655 0.1670 16.70 

  Sum 5.183   

All the values of Cj need to be added. Then divide the sum value with each value. On solving, 

the weights are obtained but have to be expressed in percentage. These are the objective weights 

of the parameters and can be used in the BPNN method for predictions. Next is the 

implementation of the BPNN method. For the friction stir welding process, the prediction 

problem for the parameters is conceptualized as a back propagation method. 

3.2. CRITIC based back propagation neural network  

In this study, two major performance characteristics i.e. ultimate tensile strength (UTS) and 

percentage elongation (%EL), were chosen for analysis. The input parameters for the machining 

were the tool rotational speed (TRS), welding speed (Sw), tool pin profile (TPP) and tool shoulder 

diameter (TSD). For the back propagation neural network model, a four-layer network with 

sigmoid hidden neurons and output neurons was selected. Earlier, the CRITIC method was 

deployed on the experimental data obtained by Jangra et al. (2015) with the result indicating 

the weight of each of the parameters for Trs, SW, Tpp and Tsd the weights are 0.1689, 0.4972, 

0.1670 and 0.1670, respectively. These weights are not sufficient for use in the back 

propagation neural network method because more weights are required than those generated. 

To overcome this problem, the Poisson distribution is introduced to calculate the weight used 

at every instance. Consider, the first weight for the tool rotational speed having a value of 

0.1689. The value of the parameter with which a factorial is to be obtained is the one after the 

decimal point, which is 1. Another parameter of the Poisson distribution is Lambda which can 

be obtained from the number of weight that emerges from the tool rotational speed of concern. 

This is taken as ½ for the first weight. Thus by applying the Poisson distribution the obtained 

probability is 0.3033, this weight is assigned to the edge between the mode carrying Trs and Q1 

as in Fig. 2. To obtain the weight of the second edge that connects node Trs and Q2, which is 

W3, a similar procedure is applied such that the Poisson distribution formular is introduced with 

x maintained as 1. Notice that, this is the value of the whole number after the decimal point of 

the weight obtained from the analysis by the CRITIC method. Here, Lambda is calculated as 2 

since it is the second edge out of a total of two. By substituting these known values into the 

Poisson equation, W3 is obtained as 0.0153. By following similar procedure as discussed here 
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and using the obtained weight for Sw, Tpp and Tsd the estimated weights of the following edges 

are known: W2, which is the Sw–Q1 edge is 0.0016 and for W6, representing the Sw–Q2 edge is 

0.0153. In addition, W4, which shows the weight of the Tpp–Q1 edge is 0.3033. Furthermore, 

W7 which shows the weight of the Tpp- Q2 edge is 0.3679. Moreover, W5 which is the weight 

for the Tsd–Q1 edge is 0.3033. Also, W8 which is the weight of the Tsd–Q2 edge is 0.3679. 

Moreover, by considering the neural network architecture in Fig. 2, there are four inputs, 

namely, Trs, SW, TPP and Tsd. These inputs are linked to the hidden layers Q1 and Q2 while they 

are associated with the biases, b1 and b2. Consider the input Trs, it transfers information to the 

hidden layer Q1 through weight W1. The output of the hidden layer Q1 goes to the output V1 

through the weight of W12. At this output, the information is back propagated into Trs such that 

the weights are re-evaluated. This procedure, illustrated with Trs is also repeated for each input, 

namely, SW, Tpp and Tsd. The question at this stage, which if answered, will aid the progress of 

this evaluation, concerns what the output of the hidden layers Q1 and Q2 will be. As a 

computational strategy, an equation is first formulated among the hidden layers, inputs, weights 

and a bias. A linear equation is assumed among the variables such that the hidden layer becomes 

the dependent function. While the inputs, weights and bias associated with the first segment of 

the analysis are the independent functions. 

To start with, Equation (7) is formulated:  

Trs (W1) + SW (W2) + TPP (W4) + Tsd (W5) + b1    (7) 

           
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
           

Fig. 2. CRITIC-based BPNN for the friction stir welding process 
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Q1 = Trs (W1) + SW (W2) + TPP (W4) + Tsd (W5) + b1.   (8) 

To obtain Q1, the various values of the independent variables were introduced into the 

equations. Here, Trs, SW, TPP were obtained from the computations of the critic method as 

0.1689, 0.4972, 0.1670 and 0.1670 respectively. Furthermore, the computed values of W1, W2, 

W4 and W5 are 0.3033, 0.0016, 0.3033 and 0.3033 respectively. However, the value of b1 needs 

to be generated randomly as 0.35. All these values of input, weight and bias were substituted 

into equation 4 to obtain Q1 as 0.5033. Furthermore, it is in turn to calculate Q2 and Equation 

(9) is formulated for this purpose.  

Q2 = Trs (W3) + SW (W6) + TPP (W7) + Tsd (W8) + b1    (9) 

From Equation (9), the estimated values of the calculated weights due to Trs, SW, TPP and Tsd 

are extracted from the critic method as 0.1689, 0.4972, 0.1670 and 0.1670 respectively. In 

addition, W3, W6, W7, and W8 are extracted from the calculated weight using Poisson 

distribution as 0.3679, 0.0153, 0.3679 and 0.3679, respectively. Also, the bias b1 is 0.35. By 

substituting all these known values into equation (5), Q2 is obtained as 0.5426. Output of hidden 

layer: In this network architecture the hidden layer has members namely Q1 and Q2. While each 

of these layers is fed with inputs from Trs, SW, TPP and Tsd, they get transformed and produce 

outputs. In essence, there is an output of Q1 and also an output of Q2 to be computed. First, the 

output of Q1 is estimated using the sigmoid function. This is based on the assumption that the 

graph evolving from the output of Q1 as well as Q2 has a characteristic shape curve. This is a 

common assumption in artificial neural network and has attracted wide usage in the artificial 

neural network community. Besides this other researchers utilize other aviation functions such 

as Tanh, Swish, Relu among others.  However, progressing with the use of sigmoid function in 

evaluating the output of Q1, Equation (10) is applied.  

Output of an hidden layer =  
layerhiddene1

1
        (10) 

Now, by substituting the value of Q1 obtained from a previous calculation which is 0.5033 into 

Equation (10), out Q1 = 0.6232. Also by substituting the value of Q2 obtained into Equation 

(10), Q2 is obtained as 0.6324. Moreover, moving from the hidden layer to the output of the 

neural network, elements U1 and U2 are considered. Here, equations are formulated to relate U1 

with the output of Q1, with W12, output of Q2, with W9 as well as the bias 2. In this instance 

Equation (11) is formulated:  

U1 = out Q1 x W12 + out Q2 x W9 + b2                   (11) 
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By substituting the appropriate values in Equation (11), U1 gives 0.6003. Moreover, by 

evaluating the output of V1 using a similar approach to Equation (10), out U1 gives 0.6457. 

Furthermore, Equation (12) is formulated to relate U2 as a dependent variable with independent 

variables such as out Q1 (W11), out Q2  (W1) bias 2. Thus, Equation (11) is expressed as  

Out Q1 (W11) + Out Q2 (W10) + b2       (12) 

By introducing the appropriate values into Equation (11), U2 gives 0.6039. Moreover, a similar 

equation to Equation (10) is used to evaluate the output of U2, which is obtained as 0.6465. 

3.3. Training phase  

During the training phase, data on the various parametric values are fed at the input neurons 

while the final outputs are specified. By observing pairs of neurons the neural network learns 

by updating its edge weights. This training phase is accomplished by using three principal ideas 

including back propagation, which is the backward pass conducted after the forward pass that 

computes the weights. The second idea of the training place is the optimizers while the third 

content is the loss function. These concepts interact to produce trained neuron that works 

towards the generation of predicted outputs. Moreover, the neural network parameters are 

initialized randomly and this is effectively done in the classical literature. However, to diverge 

from this established practice, in this article, the Poisson distribution is introduced to displace  

the random weights generation for a methodical evaluation. From the outset, the data on friction 

stir welding parameters is passed to the network while it generates some probability of the data 

based % elongation and ultimate tensile of the data. 

This prediction together with the actual ground truth of 1 is transmitted to a loss function, which 

then generates a scalar loss value. Here, the loss function reflects the characteristics of the 

network. In computations, the weight of the network is adjusted to minimize the loss. However, 

because of this minimization, calculus is used while the loss propagated to computer gradients. 

This latter idea is the back propagation of errors. This is because computations are made from 

the last layer to the second to the last and then up to the first layer in a backward progression. 

The second idea mentioned above is the optimizers, which behave similarly to gradient descent. 

The optimizer expresses the parameters as a function of itself, the learning rate and the gradient. 

The gradient is always calculated during back propagation and it reflects the manner in which 

the neural network should be updated. Now, on the neural network parameters are calculated, 

the edge weights are updated. At this stage, the performance of the neural network is judged to 

be relatively better than the previous performance. The process of forward and backward 
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process is repeated until the error value stabilizes, which is termed the convergence of the 

results.  

3.4 Setting the target for control purposes 

Having obtained the outputs U1 and U2, it is essential to set target and work backward after 

achieving a forward pass. It is common to arbitrarily pick values in the literature but a deviation 

for this was taken in the present study that proposed the use of the logarithm function to set the 

target in the present paper, U1 was obtained as 0.6457, while U2 gives 0.6465. However, to 

obtain a target for each of these assumed value of roughly 50% of the output is added to each. 

The same value of 50% is substrate and the final result is used as the target. Thus, to obtain the 

first target, T1, the following computation is made: 0.3 is added to 0.6457 while its logarithm is 

evaluated as log (0.9457) which gives - 0.0242 from this value 0.3 is subtracted to give – 0.2342. 

Furthermore, to find T2, the following computations were made: 0.4 is added to 0.6465 while 

its logarithm is evaluated as log (1.0465) which gives 0.0197. From this value, 0.4 is subtracted 

to give - 0.3803. It is interesting at this point to find out if there are differences between the 

calculated outputs (i.e. U1 and U2, on one side) and the target values (T1 and T2, on the other 

side). From the analysis U1 is equal to 0.6457 while T1 is equal to -0.3242. Here, the difference 

between these two values of U1 and T1 is an error, since the best result would be U1 to be equal 

to T1. Similarly, there is a difference between the values of U2, which is 0.6465 and T2, which 

is -0.3803. This difference is also called an error. Furthermore, for the process, it is interesting 

to find out what the total errors are.   In response to this question, Equation (13) is used to 

evaluate the total error.  

  2)arg(
2

1
outputettEtotal

      (13) 

Recall that there are two aspects of the process investigated, which are the outputs and the 

targets. The outputs are out U1 and out U2 while the targets are T1 and T2. Hence, Equation (13) 

may be re-written to include the mentioned parameters, to give Equation (14).  

 

2

22

2

11 )(
2

1
)(

2

1
UOutTUOutTEtotal      (14) 

The first part of Equation (14) is the first error while the second part is the second error which 

are represented as E1 and E2 respectively. By substituting the known values of T1, T2, out U1 

and out U2 into Equation (14), E1 could be added to E2 to give totalE  as 0.9539. Now, the value 

of 0.9529 is the error obtained for the process. However, by starting without U1, there is a need 

to reduce the error in a backward propagation process, such that the various weights are 
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updated. By looking at Fig. 2, the immediate weight to update is W12 in a backward propagation 

process. Thus, error at W12 is obtained by calculating the gradient from the last layer to the 

second to the last layer and progressively so. In this particular instance, the change in loss as a 

ratio of the change in parameters is expressed mathematically as Equation (15)   

Error at 
12

12
W

E
W total




         (15) 

However, it is challenging to differentiate Equation (15) from the understanding of Equation 

(14). In Equation (14), there is no term expressed as W12. This means that Equation (14) cannot 

be differentiated with respect to W12 without making some adjustments. Thus, the right-hand 

side of Equation (14) is separated as shown in Equation (16).        

12

1

1

1

112 W

U

U

UOut

UOut

E

W

E totaltotal



















     (16) 

The adjustment made in Equation (16) is to introduce 1UOut  and 1U  at both numerator and 

denominator at the same time. This cancels out and permits progress by way of differentiation 

of the relevant functions. At this point, each of the three components (i.e. the partial derivatives 

of a term relevant to the other) has its values extracted and calculated as follows:  

For  
1UOut

Etotal




, 2
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The above computation results in -)-0.3242-0.6457)=0.9699. 
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= Out U1 (1- Out U1)= 0.6457 (1-0.6457)= 0.2288 
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1
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From the above calculations, the values of 
1UOut

Etotal




, 

1

1

U

UOut




 and 

12

1

W

U




were obtained and 

substituted into Equation (12) such that 0.9699, 0.2288 and 0.6232 are multiplied to give 

0.1383. This implies that to obtain a good value, which is relevant to the target, 0.1383 is the 

change that should be achieved in W12. This call for an updating of W12. Here, there is a rule 

that is followed in this neural network training. This rule is stated as in Equation (17).  
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Parameters = parameters – learning rate x  
parameters

loss




      (17) 

Equation (13) is re-written as Equation (18). 

12

1212
W

E
WW total




          (18) 

where   is the learning rate. Usually the learning rate is assumed as a value between 0 and 1. 

In this work, a value of 0.5 is used as the learning rate. This is updating W12, and substituting 

the appropriate values in Equation (15), a value of W12 given as - 0.06895 is obtained. 

Furthermore, by following the same process in updating W12, the updating of W11, W9 and W10 

is done particularly finalizing with Equation (18) to obtain W11 as – 0.07, W9 as  - 0.07 and W10 

as – 0.0711.  The next step is to update the hidden layers by updating weight W1, W2, W3, W4, 

W5, W6, W7, and W8. After updating, the obtained values are W1 = 0.3033, W2 = 0.0016, W3 = 

0.3679, W4 = 0.3033, W5 = 0.3033, W6 = 0.0153, W7 = 0.3679 and W8 = 0.3679.     

Table 6 shows the old weights used for the first forward propagation and the weights obtained 

after updating the weights during first backward propagation. Table 6 also shows the value of 

W1  to W12 In the second forward propagation and the updated weights obtained in the second 

backward propagation of the  architecture  4-2-2. Table 7 shows the different weights obtained 

in the first and second forward passes. It also shows the different values of updated weights 

obtained in the first and second backward propagation of the architecture 4-2-2. Table 8 shows 

the outputs of the hidden layer (Q1 and Q2) of the first and second forward passes. It also shows 

the final outputs (ultimate tensile strength and percentage elongation) obtained after the first 

and second forward propagation of the architecture 4-2-2. Table 9 shows the output of the 

hidden layer and final outputs for both the first and second forward passes of the neural 

architecture 4-1-2. 

Table 6. Forward and backward passes for the neural network architecture 4-2-2 

Weight 
First 

 forward pass 

First 

 backward pass 

Second  

forward pass 

Second  

backward pass 

W1 0.3033 0.3033 0.3033 0.3036 

W2 0.0016 0.0016 0.0016 0.0025 

W3 0.3679 0.3679 0.3679 0.3682 

W4 0.3033 0.3033 0.3033 0.3036 

W5 0.3033 0.3033 0.3033 0.3036 

W6 0.0153 0.0153 0.0153 0.0162 

W7 0.3679 0.3679 0.3679 0.3682 

W8 0.3679 0.3679 0.3679 0.3682 

W9 0.0002 -0.07 -0.07 -0.1404 
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Weight 
First 

 forward pass 

First 

 backward pass 

Second  

forward pass 

Second  

backward pass 

W110 0.0031 -0.0711 -0.0711 -0.1456 

W11 0.0031 -0.07 -0.07 -0.1434 

W12 0.0002 -0.06895 -0.06895 -0.13825 
 

Table 7. Forward and backward passes for the neural network architecture 4-1-2 

Weight 
First 

forward pass 

Second 

forward pass 

First 

backward pass 

Second 

backward pass 

W1 0.3033 0.3033 0.3033 0.3036 

W2 0.0016 0.0016 0.0016 0.0026 

W4 0.3033 0.3033 0.3033 0.3036 

W5 0.3033 0.3033 0.3033 0.3036 

W11 0.0031 -0.0701 -0.0701 -0.1434 

W12 0.0002 -0.06895 -0.06895 -0.1383 

Table 8. Outputs of hidden layers and final neurons for the neural network 

architecture 4-2-2 (two hidden layers) 

 Hidden layers Final neurons 

Description Q1 Q2 
Ultimate tensile 

strength (UTS) 

Percentage 

elongation (%EL) 

First forward pass 0.6232 0.6324 0.6457 0.6465 

Second forward pass 0.6232 0.6324 0.6255 0.6251 

Table 9. Outputs of hidden layers and final neurons for the neural network 

architecture 4-1-2 (only one hidden layer) 

 Hidden layers Final neurons 

Description Q1 
Ultimate tensile 

strength (UTS) 

Percentage elongation 

(%EL) 

First forward pass 0.6232 0.6457 0.6019 

Second forward pass 0.6232 0.6123 0.6356 

The optimal back propagation neural network comprises different architecture. For the first 

architecture, four neurons are in the input layer, two neurons in the hidden layer and two 

neurons in the output layer (4-2-2) for the first and second forward passes, the errors are 0.9539 

and 0.9564. However, for the second architecture, four neurons are in the input layer, one 

neuron in the hidden layer and two neurons in the output layer (4-1-2). For the first and second 

forward passes the errors are 0.9971 and 0.9545. It was noted that increasing the number of 

hidden neurons of the network from one to two gives the best result of 0.9539 at the first forward 

pass. Therefore, the computation is truncated after the first iteration. The associated 

performance characteristics are the ultimate tensile strength and percentage elongation of 

0.6457 and 0.6039 respectively. On a scale of 0 to 1 of the experimental data, the following 

information is useful: obtain the difference between the maximum and minimum value of the 

ultimate tensile strength, which is (330.150 – 286.900), i.e. 52.24. The value of 0.6457 is 

multiplied with 52.25 and added to the minimum value of 286.900 to give 320.6378 MPa. Also, 
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to calculate the predicted value for percentage elongation, the difference between the maximum 

and minimum value, which is (21.6 – 14.6), i.e. 7 is obtained. The value of 0.6039 is multiplied 

with 7 and added to the minimum value of 14.6 to give 18.83%.  Thus, the predicted tensile 

strength is 320.64 MPa and 18.83% was obtained as the prediction for the percentage 

elongation. 

Table 10. Parametric settings for existing study and the present study 

S.No. Parameters 
Ighravwe and 

Oke (2015) 

Current 

study 
Comment 

1 No. of inputs 4 4 Same 

2 
No. of outputs 

1 2 
Higher number of outputs in 

the present sudy 

3 No. of hidden layers 2 2 Same 

4 No. of epoch 2000 2 Current study is simplified  

5 
No. neurons in 

hidden layer 
8 2 

Current study is less 

complicated 

Comparing the neural networks used in applications is an important way for us to position our 

method regarding the existing knowledge in the literature. Accordingly, we compared the 

structure of our method with Ighravwe and Oke (2015). In Table 10, there are five main 

parameters used for comparison. Among these, two of the parameters, namely the number of 

inputs and the number of hidden layers are the same. However, the remaining three parameters 

are different. For these different parameters, it was noted that the current study has the 

advantage of being simple while the literature comparison is very complex regarding the values 

of the parameters in the serial numbers 2, 4 and 5. It can therefore be concluded that our 

proposed method competes favourably with the existing literature method. 

4. CONCLUSIONS 

This article applies a new method called the integrated CRITIC-BPNN method to search for 

the best operating parameters responsible for the effective control of the FSW process.  

The key findings of the present study can be summarized as follows: 

1. The welding speed has the highest weight with a contribution of 49.72% using the CRITIC 

method. However, two parameters, namely tool pin profile and tool shoulder diameter have the 

respective lowest weight contribution of 16.70% each. This implies that welding speed is the 

best and most influential parameter of the friction stir welding process according to the results 

from the CRITIC Method. 

2. The values of the ultimate tensile strength and percentage elongation at the optimal 

thresholds, using the 4-2-2 neural network architecture are 0.6457 and 0.6465, respectively, for 
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the first forward pass. However, it was 0.6255 and 0.6251, respectively, using the second 

forward pass. 

3. For the 4-1-2 neural network architecture, the values of the ultimate tensile strength and 

percentage elongation at the optimal thresholds are 0.6457 and 0.6019, respectively, for the first 

forward pass and 0.6123 and 0.6356, respectively, for the second forward pass. 

4. The errors at the first and second forward passes, using two hidden layers (i.e. 4-2-2 neural 

network architecture) were 0.9539 and 0.9564, respectively. However, for the one hidden layer 

structure (i.e. 4-1-2) neural network architecture) the errors at the first and second forward 

passes are 0.9971 and 0.9545, respectively. 

5. The predicted tensile strength is 320.64 MPa and the prediction for the percentage elongation 

is 18.83%. 

Briefly, this article contributes to the state-of-the-art of FSW selection and optimization 

problem, offering a new method to join CRITIC and BPNN for the construction of a robust and 

reliable method. The problem was solved by developing equations for the various computations 

such as correlation, normalization and other aspects in CRITIC coupled with the equations for 

weight determinations in forward and backward passes in the backpropagation neural network 

implementation process. The CRITIC-BPNN method performed very well concerning solution 

and convergence when the literature data was used to test the method using tool shoulder 

diameter, welding speed, tool rotational speed and tool pin profile. Based on the existing 

problems observed in the implementation of this method, one of the next steps of work should 

be to develop a simplified spreadsheet method for the last aspect of the back propagation neural 

networks to aid the weight adjustments. However, the PROMETHEE method may be 

interesting to use in computations for weight determination. 
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