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ABSTRACT  

The knowledge of the exact thresholds of parameters in the diesel engines, during combustion, 

is essential to simulate the combustion process, establish parametric values, reduce cost and 

predict exhaust emissions. Accordingly, the present paper applies the grey wolf optimization 

method to determine the optimal threshold of parameters and engine responses in a direct 

ignition engine. Twelve formulated linear equations of engine responses are introduced to the 

objective function of the grey wolf optimizer. A computer program in C++ was applied 

successfully using literature data to validate the grey wolf optimization procedure based on the 

encircling, hunting and attacking of prey by the wolf. The results show that load demand and 

turbocharge boast air pressure have the least and highest values of engine outputs, respectively. 

The blend ratio had its highest values when optimized alongside the main injection duration. 

The responses and parameters greatly improved from initial values to stopping criterion of 200 

iterations. Instances reported include brake specific fuel consumption, which improved from 

2.6468 to 1.0816 g/kWhr, blend ratio changes from 0.5031 to 0.4760%, speed drop from 0.0031 

to 0.0010rpm, and load drop from 0.0017 to 0.0010%. The main contribution of this paper is to 

establish the optimal thresholds of engine responses using the grey wolf optimizer in a diesel 

engine combustion chamber. The development of a new method to optimize response and 
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parameters of an internal combustion process using grey wolf optimizer is the novel aspect of 

this work. The results have essential practical significance to establish new emission profile for 

biodiesel. The practising engineers and researchers have a holistic insight into the problem’s 

solution and can utilize the results to enhance their engine responses. 
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1. INTRODUCTION 

Today, engine manufacturers are increasingly pressured to comply with the stringent emission 

regulations concerning combustion engines and the rapidly changing replacement attitudes of 

engine users from fossil fuels to biofuels (Jasim, 2019; Hassan et al., 2018; van Niekerk et al., 

2020). Moreover, direct ignition engine responses, which measure how quickly the engine can 

increase its power, is a recent research interest in the field of combustion. For example, 

(Mohamed et al., 2024) analyzed the possible enhancement to engine responses while changing 

fuel between hydrogen and gasoline in direct injection and spark ignition engines respectively, 

using an experimental approach. At variance to this approach, (Windarto and Lim, 2024) 

deployed a machine learning approach termed neural network to evaluate the engine response 

for a compression ignition engine that worked on propane. However, the prevailing engine 

response improvement approach in the industry is to maintain a good air fitter in the engine, 

regularly clean the engine body and replace the fuel filter when due for changes. The major 

drawbacks of this conventional approach are that it involves numerous tasks, intensive 

planning, huge cost involvement in monitoring the engine and many more. When attempting to 

enhance the performance of the engine responses, it is challenging to understand what ratios of 

these tasks mentioned earlier should be established. The results are also sometimes ineffective 

due to the sub-optimal thresholds that the parameters of the engine responses would yield. More 

importantly, attaching equal significance to the tasks of choosing a good air filter, fuel filter 

replacement and engine's body cleaning may lead to under-emphasis of some of the tasks and 

over-emphasis in others, resulting in inaccurate or sub-optimal decision-making on direct 

ignition engine operation and maintenance. Therefore, establishing optimal thresholds of 

parameters, especially using contemporary evolutionary methods is of huge importance in 

enhancing the engineering manager's assessment and plan to achieve optimized results.  

Generally, the Taguchi method is commonly used to optimize process parameters as proposed 

in several studies discussed as follows: (Wei et al., 2024) deployed the Taguchi method to 

enhance engine responses of an engine while focusing on process parameters such as ignition 

timing, injection timing and injection pressure. Specifically, the L16 orthogonal array was used 

to achieve improved engine performance. (Zhang et al., 2023) introduced the Taguchi method 

to assess the influence of control parameters to lower the calibration work. The L18 orthogonal 

array was used as the starting point for achieving the signal-to-noise ratios while focusing on 

the following process parameters: the premixed strategies, speed, energy ratio, excess air ratio 

and engine load. (Xie et al, 2024) utilized the Taguchi method in an experiment to select the 

optimal mix of process parameters, which include ignition timing, the energy distribution of the 
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engine, injection timing, excess air coefficient and torque. The analysis of variance was added 

to the Taguchi method to produce better results than the Taguchi method alone. (Teoh et al. , 

2022) reported on an L16 orthogonal array optimization scheme to define the optimal biodiesel 

blend proportion and the best engine response in a diesel engine. The analyzed process 

parameters representing the engine process are the engine load, engine speed and blend ratio. 

The Taguchi method was integrated with the grey theory as Taguchi grey technique and 13 

performance indices were analyzed. 

Furthermore, (van Niekerk et al., 2020) evaluated the emissions produced from a compression 

ignition engine feed with the blend of ethanol, diesel and biodiesel utilizing various fuel 

delivery methods and the exhaust gas circulation process. The similarity of the article with the 

present work is the common benchmark of optimization applied in both studies. While the 

central composite design methodology scheme was the optimization tool used in their work, 

the present article uses the grey wolf optimization method whose strength is a fast convergence 

behaviour. Their work concludes that using the centre composite design revealed that NOx 

emissions were reduced by 25% when a 45% threshold of the exhaust gas circulation was the 

upper boundary. Notwithstanding, the issue of fast convergence of algorithms was not 

considered in the work. (Pedrozo et al., 2021) studied the influence of natural gas fuel properties 

on the performance and emission of engine activities in the reactive-controlled compression 

ignition and conventional dual-fuel states. It was concluded that the gas mixture exhibiting the 

least methane number lessened the methane slip at the expense of heightened emissions from 

nitrogen oxides and total unburned hydrocarbon emissions. (Ebrahimi et al. , 2019) executed 

an optimization scheme comprising multiple inputs and multiple outputs in a compression-

ignition combustion system that uses a heavy-duty diesel engine fed with natural gas as well as 

diesel fuel. The optimization scheme is common to the reviewed article and the present study. 

However, this type of optimization varies and the grey wolf method proposed in the present 

study seems less reported in the literature than the fractional factorial approach based on the 

design of the experiment approach implemented in the work. (Wang et al. , 2023) analyzed the 

combustion features and engine accomplishment of kerosene subjected to compression ignition 

status information which is required for performance optimization. It was reported that kerosene 

exhibited reduced carbon monoxide than diesel. Also, kerosene gives out less thermal efficiency 

and particle emissions than diesel. Nonetheless, the emissions from NOX and hydrocarbon are 

higher in kerosene than diesel. Furthermore, the issue of optimization has been downplayed in 

the article and the emergence and implementation of the grey wolf algorithm is novel in the 

area of combustion engine performance optimization. 
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It is clear from the literature review that optimization can enhance the combustion process 

performance by reducing combustion emission and improve engine responses. Moreover, the 

multi – objective optimization is one of the key dominant techniques in the performance and 

emission optimization of engine parameters during combustion (Yotchou et al., 2023). Through 

multi – objective optimization has been proven effective in enhancing engine tongue and 

reducing fuel consumption (Yotchou et al., 2023), it produces a Pareto front against a single 

optimal solution of the problem. The weakness is that it exhibits inefficient tradeoffs when 

solving practical problems. Furthermore; the Taguchi method is used by several papers. 

(Sakthivel and Illangkumaran, 2017) deployed combined Taguchi-fuzzy method to enhance 

fishoil biodiesel performance and reduce emission from a compression ignition engine. (Saluja 

et al., 2024) optimized the integrated influence of engine operating and injection parameters on 

the reduction of fuel, emissions and elevation of the combustion ignition engines performance 

using Taguchi method and Jatropha-karanja biodiesel blends.  

Notwithstanding one of the key issues with the Taguchi method is its inability to showcase 

parameters with the highest influence on the process. Furthermore, response surface 

methodology has been applied to the optimization of performance of combustion ignition 

engine (Raj et al., 2024). However the response surface methodology has limitation, including 

the requirement to carefully design experiment; and this method may not be useful in solving 

highly non-linear system problems. The above limitation of the major methods such as the 

Taguchi method, response surface methodology and multi-objective optimization make it 

compelling to search for more efficient optimization techniques particularly that overcome 

these limitations and in addition could process results in a quick convergence rate, which the 

mentioned methods are not capable to do. This mentioned attribute will enable quick decision 

making by engineers thus promoting acceptability of optimization methods. Thus; a new 

approach is needed to bridge this knowledge gap. The new approach introduced to solve this 

problem is the use of experimental data from the literature to solve the problem. 

From the previous discussion, a few studies have utilized the Taguchi method or combined it 

with other methods such as the engine responses to obtain the best performance for the engine 

using diverse parameters including the following engine load, engine speed, blend ratio, 

ignition timing, energy distribution of the engine, injection timing, torque, injection pressure 

and many more. However, the Taguchi method, which is the prevalent method in this research 

area often gives results, which are relative but offer no clear indication of what parameter 

exhibits the greatest influence on the performance feature value of interest in the investigations 
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reviewed. To address this limitation, the use of the evolution algorithm as an effective way of 

optimizing process parameters has attracted much attention from researchers. 

The evolutionary algorithm could solve engine response problems by using schemes that mimic 

the characteristics, feeding behaviour, order in animal habitation and conducts of living things 

within their territories (i.e. grey wolves). The common mechanisms associated with 

evolutionary algorithms are their biological evolution, which is often specified as reproduction, 

mutation and recombination. Moreover, among the evolutionary algorithms, the grey wolf 

algorithm seems to be a pragmatic and promising tool for the optimization of engineer response 

indirect ignition engines. The uniqueness of the grey wolf algorithm lies in the fact that it can 

balance mining and exploration. Besides it is capable of accelerating the convergence speed 

when operating a global search using the linear convergence scheme. It could also enhance 

optimization accuracy in local search (Long et al., 2018; Rezaei et al., 2022). Therefore, the 

grey wolf optimizer exhibits numerous advantages in establishing optimal thresholds of 

parameters and in enhancing the effectiveness and scientific success of the engine response 

optimization endeavour. Therefore, this research aims to fill the research gap identified here, 

which is the absence of an efficient optimization scheme in the contemporary optimization 

perspectives.  

To date, few optimization studies have been found on the combustion research related to the 

present study. Still, no report was found to have implemented the grey wolf optimization 

method in the optimization of process parameters during the testing period of fields in internal 

combustion engines. Therefore, the present method has been developed to bridge this important 

gap. In this article, the grey wolf optimization method has been proposed to optimize the 

parameters of the combustion process using biodiesel blends with data obtained from the 

literature. The primary value of the work is about the technical and non-technical issues around 

the combination process, which can be planned for and tackled before operating the engines. 

These issues will aid in producing quality engines that conform to the standard emission 

thresholds. Thus, to deliver its primary value and uniqueness, this article is the first to offer the 

grey wolf algorithm as a robust and new method for optimizing the combustion process 

parameters. The attraction to implementing the grey wolf algorithm is the characteristics of the 

grey wolf algorithm that includes elegance as predators and being lightly social animals with 

tight nuclear packs, being elegant predators, the algorithm displays the clever attribute of the 

grey wolves in sustaining their lives by killing and eating other animals. Applied to the 

parametric optimization problem, it means that the algorithm of the grey wolves works on the 

formulated problem and solves it in such a way the final solution is obtained, similar to the 
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capture and killing of the prey by the grey wolf. The second attribute of being highly social 

animals with close nuclear packs is advantageous to the system.  Once an animal gets to the 

pack, it encircles it and each of the group members functions in the designated responsibilities, 

taking instructions from the alpha wolves. These attributes are used to solve the combustion 

process parametric optimization problem. This means that once a problem is to be solved, the 

procedures organize themselves such that the responsibility to produce optimal results is 

distributed among the grey wolves by categories. Moreover, the grey wolf algorithm presents a 

big picture of the cooperative attitudes of the members of the pack in solving the combustion 

process optimization problem. 

The purpose of this paper is to apply the grey wolf optimizer as an optimization structure to 

enhance the engine responses in a direct ignition engine. The main contribution of this study is 

along the following paths: firstly, the present study allows engineering managers to employ 

quantitative judgements through the application of a grey wolf optimizer to determine the 

optimal thresholds of parameters for the direct ignition engine with optimized responses in a 

biodiesel blend for the engine operation. Secondly, an experimental study, whose data was 

retrieved from the literature, using the grey wolf optimizer, demonstrated the effectiveness as 

well as the benefits of the proposed method. Accordingly, this paper contributes to the literature 

by developing an approach that can predict a parametric threshold capable of informing 

engineers of the level of emissions expected from operating the direct ignition engine with the 

operating fuel of Karanya biodiesel. 

This paper introduces the grey wolf optimizer, a simplified model to evaluate the engine 

responses of various biodiesel blends in an internal combustion engine. It extends beyond the 

traditional use of the Taguchi method of optimization or its merging with the grey, relational 

analysis (Teoh et al. 2019). The translation of analysis of variables results into objective 

functions based on responses into the grey wolf optimization framework presents a novel 

optimization approach. The developed empirical models serve as a valuable tool to establish 

and compare the optimal scenarios and related outcomes. Moreover, the grey wolf optimization 

adopted in the present study is capable of balancing mining exploration and acceleration of 

convergence speed in a global search. It achieves this through a linear convergence while 

enhancing optimization accuracy in a local search. It avoids the development of local extreme 

points within a small region. 

Furthermore, to illustrate the limitations of the work, the simplification of the mathematical 

model of the grey wolf optimizer and the assumptions about hunting behaviour may not be valid 

in all cases. Future studies may be refined. The simplified grey wolf optimization model 
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introduces additional parameters such as the effect of unexpected changes in the weather 

conditions such as sudden heavy rainfall while chasing prey. The emergency of an additional 

animal in the environment, such as a lion to distract the attention of the grey wolves may 

introduce a more comprehensive analysis into the modelling of the optimization of the process 

parameters. The findings of this study could support manufacturing policy associated with 

resource utilization during the operation of the internal combustion engine.  

Moreover, the necessary applications of the model are diverse. However, the optimization of 

alternative fuels for internal combustion engines is a key concern in the several applications of 

the present model. Specifically, the tyre pyrolysis oil as an alternative source of fuel that may 

be approached through the optimization perspective. Tyre pyrolysis oil may be produced 

through pre-processing, pyrolysis, oil and gas separation and sludge discharge. Within the gas 

holders, liquefaction of substances into crude oil occurs. This oil is the alternative fuel that may 

be used in the internal combustion engine and should be optimized. 

2. METHODOLOGY 

The summary of the methodology employed in the implementation of the grey wolf algorithm 

in this work is shown in Fig. 1. However, in the attainment of the optimal parameters in the 

biodiesel-diesel mixture ratio as well as the engine input parameters, objective functions in 

linear programming were formulated and solved using the grey wolf optimization procedure. 

Then a program in C++ was developed to ease the computational procedure. First, random 

numbers are generated between 0 and 1 to have sufficient data for analysis and to predict the 

behaviour of the grey wolf algorithm which is difficult to obtain in the paucity of data. Usually, 

a stochastic behaviour is assumed in the variables on the use of the random members. 

Furthermore, the p-value (probability value) was deployed to understand the likelihood of the 

data generated complying with the will hypothesis. This is achieved as the likelihood of the test 

statistic is computed; this is the obtained member through statistical testing of the data. The 

results are then collected to obtain the objective function that is used as the framework for 

implementing the grey wolf algorithm. The objective function was used to associate the 

variables of the engine combustion process in a linear programming form. In this article, the 

operations on the responses to obtain the objective functions are both in the minimization and 

maximization aspects. In this situation, for the problem solved, there are twelve responses out 

of which seven responses are associated with the minimization of responses while five 

responses are associated with the maximization of responses. To understand the responses in 

detail, the following information is provided; the minimized responses are the BSFC, exhaust 
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gas temperature, exhaust O2 CO(%), smoke (%), NOx(ppm) and load demand (%). Furthermore, 

the responses for the maximization procedure are brake-specific energy consumption, start of 

fuel injection, main injection duration, rail pressure, and turbocharge boast air pressure. 

2.1. Some information on responses  

Here, a selected number of responses are explained to understand them in detail. 

BSFC: This response is to be minimised in the present study. The motivation for this is that 

highly efficient engines are known for their lower BSFC. Therefore, a minimization objective 

is pursued for this factor since we desire our engines to be increasingly efficient. The BSFC 

helps to compare the efficiency of engines of the internal combustion type with shaft outputs. 

Brake Specific Energy Consumption (BSEC): In this work, the BSEC is a response to be 

optimized. Given the understanding that the product of the BSFC and the fuel calorific value 

gives the BSEC, a picture of how efficient the fuel energy received from the particular fuel is 

the BSEC. More particularly, the BSEC is mathematically represented as the ratio of the energy 

received through the burning of the formulated biodiesel in one hour to the real energy. It has 

a dimensionless outlook. 

Fig. 1. Research scheme 

Exhaust gas temperature (EGT): During the combustion of the biodiesel used in the present 

study, the internal combustion engine produces gases, known as exhaust gases, at unregulated 

or regulated temperatures. These gases, which include nitrogen, water and carbon dioxide are 

Generation of random numbers between 0 and 1 

First value (input): p-value of 

the input as related to its output 
First value (output): p-value of the first input x 

its degree of freedom + P-value of the second 

input x its degree of freedom + p-value of the 

third input x its degree of freedom First value + product of the first value with a 

new random number (for the second, third and 

fourth values) 

Repeat the steps above for the 

remaining inputs 

First value + product of its first value and a 

new random number (for the second, third and 

fourth values) 

Repeat the above steps for the other engine 

outputs 

Collation of the results to obtain objective functions in the Minitab 18 software 

Optimization of the results obtained from a C++ program and reports are given 
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normally produced at high temperatures and their effects in heating the environment where the 

combustion activities are conducted may be intense. Therefore, minimization of these gases is 

desired. The EGT is shown to impact the health of the combustion engine, biodiesel-air mixture 

quality and the combustion efficiency. 

Exhaust Oxygen: During the combustion of biodiesel in the internal combustion engine, oxygen 

is one of the gases produced. However, elevated amounts of exhaust oxygen are desired for the 

combustion to be efficient. Therefore, for the response named exhaust oxygen, incomplete 

combustion is often avoided which is an indication of a low threshold of exhaust oxygen. 

Furthermore, the main purpose is to study the optimal process parameters of different biodiesel 

fuel blends combusted in an internal combustion diesel engine. The parameters used to form 

Table 1 were obtained from the analysis of variance in Table 9 of (Teoh et al., 2022). Table 1 

shows the input parameters, responses and the optimization operations on them to yield optimal 

results. 

Table 1: Input parameters and responses with objectives 

S/No. Inputs Responses Operation on responses 

1 Blend Ratio (%) Brake specific fuel consumption (g/kWhr) Minimize 

2 Speed (rpm) 
Break specific energy consumption 

(MJ/kWhr) 
Maximize 

3 Load (%) Exhaust gas temp. (dC) Minimize 

4  Exhaust O2 Minimize 

5  CO (%) Minimize 

6  Smoke (%) Minimize 

7  NOx (ppm) Minimize 

8  Start of Fuel Injection (SFI) Maximize 

9  Main Injection Duration (us) (MID) Maximize 

10  Rail Pressure (bar) Maximize 

11  Turbocharge Boost Air Pressure Maximize 

12  Load Demand (%) Minimize 

 

BSFC measures how efficiently fuel is used to produce braking power. However, the higher the 

value of the BSFC, the lower the measure of the efficiency of the engine becomes. This is why 

it was minimized. The ratio of the energy produced by burning gasoline per hour to the absolute 

energy or brake power produced at the wheels is known as brake-specific energy consumption. 

This serves as the opposite of brake-specific fuel consumption. Therefore, it is maximized. The 

exhaust gas temperature (EGT) is evaluated at the exhaust manifold. It is used to regulate the 

fuel/air combination entering the engine using the temperature of the exhaust gas. Therefore, 

the more fuel consumed, the greater the temperature obtained so it is minimized. Meanwhile, 

exhaust oxygen is the measure of the amount of oxygen obtained from the exhaust gas. When 

this is too much, leakages might occur and that is why it is being minimized. CO, smoke and 
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NOx are all injurious gases that may lead to the death of humans. As a result, they are all 

minimized.  

The start of injection in the diesel engine is the point at which fuel is sprayed on the compressed 

air from the intake stroke which sets the piston working. This is why it was maximized. 

Moreover, the main injection duration is the timeline at which actuators force the injector to 

open or close as a result of little or no flow rate. This grants an optimal performance to the 

engine thereby why it was maximized. Rail pressures for diesel engines are expected to be high 

to effectively drive the valves in it. This is the reason for its optimization. Meanwhile, the turbo 

boosts air pressure is the pressure produced for efficiency in an engine where there is a greater 

push of air into the engine with an equal amount of fuel to burn. This was why it was maximized. 

Lastly, load demand hampers the speed of the engine and therefore has to be minimized. The 

results used for the first responses were obtained by multiplying the P-values with the degree 

of freedom in front of each input and then summing them together. The other results (second, 

third and fourth values) were obtained by adding the results obtained to the product of random 

numbers between 0 and 1 for the remaining three results each. 

Furthermore explanations are given on how the responses and input parameters to the internal 

combustion engine at the right. In this work the data from (Teoh et al., 2022) which contains 

the result on the analysis of variance (ANOVA) for all the output variables of the combustion 

process was extracted. (Teoh et al., 2022) conducted experiment and stated the details of the 

responses to the combustion process and the input parameters in an experiment. The further 

details stated are the p-value and the Degree of Freedom. While some optimization studies have 

been conducted previous, using the optimal parametric settings from Taguchi method, on study 

has developed a statistical approach as an input to the objective function of any evolutionary 

algorithm for its optimization. By diverging from the literature the statistical information 

provided by (Teoh et al., 2022) is explored and used to formulate the objective function which 

was introduced into the optimization mechanism of the grey wolf optimizer. For each response 

four values are obtained, namely first, second, third and fourth values.  

To obtain the first value of BSFC (brake specific fuel consumption), the p-value of the blend 

ratio is taken, which is 0.476. This is multiplied by the degree of freedom which is 4. The 

answer obtained is added to the product of the p-value of the speed (i.e. 0.001) and the degree 

of freedom of that speed parameter (i,e. 3) this cumulative product sum is added to the product 

of the p-value from the load parameter (i.e. 0.001) and its degree of freedom, which is 3. The 

cumulative of all these calculations is the BSFC (first value). For the second value of the BSFC, 
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the first value of the BSFC taken and it is multiplied by a random number between 0 and 1. In 

this instance the random number used is 0.7141. Its product with the BSFC (first value) gives 

1.363931. By adding the first value of 1.9100, the BSFC (second value) is 3.2939. For the third 

value of BSFC, the same approach is used as previously, where the first value is considered as 

1.9100. This is added to the product of the same first value and a new random number (i.e. 

0.8289), which where the first value (i.e 1.9100) is added to the product of 1.9100 and a new 

random number (i.e. 0.8289) is added to the product of 1.9100 and a new random number (i.e. 

0.2983) to give 2.4798. In summary, the BSFC ( first value) BSFC (second value), BSFC( third 

value) and BSFC (fourth value) are 1.9100, 3.2739, 3.4836 and 2.4798 respectively.  

Mathematically, the expressions for responses are given as  

BSFC( first value) = p-value on blend ratio x DF + p-value o speed x DF + p-value on load x 

DF             (1) 

BSFC (second value) = first value + first value x random number     (2) 

BSFC (third value) = first value + first value x random number     (3) 

BSFC (fourth value) = first value + first value x random number     (4) 

Furthermore, the values for the input for the input parameters are computely as follows: this 

includes the generation of four values each for the blend ratio, speed and load. For the blend 

ratio, the first p-value is already known, which is 0.4760. Notice that this is the blend ratio for 

BSFC. To obtain the Blend ratio (second value), the first P – value, which is 0.4760 is multiplied 

by the random number 0.9442 to yielded 0.44943, which in turn is added to the P – value of 

0.4760 to obtain 0.5209. The same procedure is used for the Blend ratio (third value) and Blend 

ratio (fourth value) to obtain 0.4875 and 0.55125 where 0.9442 and 0.1581 are the random 

numbers for Blend ratio (third value) and Blend ratio (fourth value) respectively. In addition, it 

should be noted that the random numbers used for the speed (second value), speed (third value), 

and speed (fourth value) are 0.6502, 0.0062 and 0.9764 respectively. Also the random numbers 

for the load (second value), load (third value) and load (fourth value) are 0.9919, 0.6799 and 

0.3715, respectively. Based on this information, the mathematical expression for the input 

parameters are as follows: 

Blend ratio (first value) = P – value on blend ratio for BSFC = 0.4760 

Blend ratio (second value) = P – value + P – value x random number    (5) 

Blend ratio (third value) = P – value + P – value x random number     (6) 

Blend ratio (fourth value) = P – value + P – value x random number    (7) 

Speed (first value) = P – value on speed for BSFC = 0.0010  

Speed (second value) = P – value + P – value x random number    (8) 
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Speed (third value) = P – value + P – value x random number     (9) 

Speed (fourth value) = P – value + P – value x random number    (10) 

Load (first value) P – value on load for BSFC = 0.0010 

Load (second value) P – value + P – value x random number    (11) 

Load (third value) P – value + P – value x random number     (12) 

Load (fourth value) P – value + P – value x random number     (13) 

These sets of steps were taken for the remaining 12 responses before optimization took place 

and can be seen in Table 2.  

Table 2: Shows the results for the parameters involved with BSFC. 

Blend ratio (%) Speed (rpm) Load (%) BSFC (g/kWhr) 

0.4760 0.0010 0.0010 1.9100 

0.5209 0.0065 0.0019 3.2739 

0.4875 0.0010 0.0017 3.4836 

0.4835 0.0019 0.0014 2.4798 

 

Table 2 needs to be summarised to extract information on the blend ratio, speed, and load from 

it. Along the first column containing the blend ratio, the following numbers are observed: 

0.4760, 0.5290, 0.4875 and 0.4835. If these numbers are arranged in increasing order it is found 

that 0.4760 comes first and the last number is 0.5209. These are the lower and upper boundaries 

for the blend ratio parameter. Likewise, considering the speed parameter, the rearranged values 

from the second column are 0.0010, 0.0010, 0.0019 and 0.065. Accordingly, 0.0010 and 0.0065 

are chosen as the lower and upper boundaries, respectively. Moreover, on considering the load 

parameter, the four values shown in Table 2 can be rearranged in ascending order as 0.0010, 

0.0014, 0.0017 and 0.0019. This reveals that the lower and upper boundaries are 0.0010 and 

0.0019, respectively. Besides these values, the parameters Blend ratio, speed and load are 

represented as X1, X2 and X3 respectively for ease of analysis and coding of the procedure 

using the C++ programming software. 

3. RESULTS AND DISCUSSION 

At present, the information arising from the empirical models developed in the section on 

methodology is substituted as the objective functions in the GWO algorithm to be optimized. 

This objective function contains the variables that influence the generation of the BSFC. 

However, the computation procedure for solving the GWO algorithm is intensive. Therefore, 

the C++ programming language is used for the process. Here, the researchers established the 

optimal process parameters for the various outputs. Thus the explanation of the steps followed 
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will be made during the first iteration while these steps are repeated for other iterations but are 

not shown here. 

Objective 1: Minimize BSFC 

Objective function for BSFC = -2.9 × BR – 45 × Speed + 2507 × Load                            (14) 

The Upper and lower boundaries of the parameters shown in Table 3 were obtained from  

Table 2. 

Table 3. Boundaries of process parameters and representation with symbols 

Parameters Lower boundaries Upper boundaries Representations 

Blend Ratio 0.4760 0.5209 X1 

Speed 0.0010 0.0065 X2 

Load 0.0010 0.0019 X3 

 

Population Size (number of wolves): 5 

Number of iterations: 200 

Step 1 – Initialization of the grey wolf’s population  

To achieve this goal of randomly initializing the grey wolf population, we have to consider each 

parameter. These parameters have boundaries (upper and lower) which are important in 

determining the contribution of each wolf to the park. In all, five rows are considered, which 

means five wolves, expressed in a matrix, determined by Equation (15): 

 

x = L + r(U-L)                                     (15) 

where 

L represents the lower boundary of the equation 

U is the upper boundary of the equation 

r shows the values of random numbers between 0 and 1          

 

The following random numbers are generated for the first wolf: 0.603595   0.380871   0.770318 

Table 4. Upper and lower boundaries for the first wolf alongside the values of the factors 

Inputs L (Upper limits) U (Upper limits) r ɛ (0,1) X 

BR 0.4760 0.5209 0.603595    0.5031   

Speed 0.0010 0.0065 0.380871    0.0031 

Load 0.0010 0.0019 0.770318 0.0017 

 

Blend ratio = 0.4760 + 0.603595 (0.5209 - 0.4760) = 0.5031   

Speed = 0.0010 + 0.380871(0.0065 - 0.0010) = 0.0031 

Load = 0.0010 + 0.770318 (0.0019 - 0.0010) = 0.0017 

The matrix obtained is shown below. However, all the values obtained fall within the upper and 

lower boundaries of the process parameters that they represent 
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Blend Ratio     Speed       Load                BSFC 

0.5031   0.0031    0.0017  2.6468 

0.4889  0.0045             0.0015  2.1205 

0.4997  0.0021  0.0014    2.0386 

0.5097    0.0017  0.0014    2.0466 

0.4852   0.0033           0.0018    2.9941 

The values for BSFC (the last column) were obtained by inputting the values of x into the 

objective function previously obtained for BSFC. 

BSFC = -2.9 BR - 45 Speed + 2507 Load 

              -2.9 × 0.5031 – 45 × 0.0031 + 2507 × 0.0017= 2.6468 

 

Iteration 1 

Step 2 – Searching for the best wolf, Xα, second best wolf, Xβ and the third best wolf, Xγ, 

positions. However, an objective of this work is to minimize BSFC. Here, the best position will 

be the wolf having the least AF S/N ratio. But the second-best wolf will have the next least S/N 

value while the third-best wolf will be the one having the third least BSFC S/N ratio. 

Xα 0.4996   0.0021  0.0014    2.0386 

Xβ 0.5097    0.0017  0.0014    2.0466 

Xγ 0.4889  0.0045  0.0015  2.1205 

 

Step 3 – Find X1, X2 and X3 

Some parameters such as “a” and “A” are obtained using the equations (2) and (3) as stated 

below. 

a = 2(1- (iteration/maximum iteration))      (16)

                                                                                                                                           

Iteration = 1, Max Iter = 200 which gives a = 1.99 

In the first wolf, the steps stated above were followed in obtaining are shown below with 

each equation vital to the next. 

A1 = 2a.r – a           (17)                               

a = 1.99, r = 0.604694 and A1 = 2(1.99)(0.604694) – 1.99 = 0.4167 
 

From Niu et al. (2019), the grey wolves are grouped into grades in a pyramidal form where the 

alpha wolves occupy the apex of the pyramid showing that they possess the best hunting power, 

attacking skills, chasing prowess and leadership acumen. These are followed chronologically 

by the beta wolves, delta wolves and any other set of wolves in the group. 
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Table 5. Formulae for obtaining X1, X2 and X3 

X1 X2 X3 

A1 = 2a.r – a A2 = 2a.r – a  A3 = 2a.r – a 

C1 = 2.r C2 = 2.r C3 = 2.r 

)(1 tXXCD    )(2 tXXCD    )(3 tXXCD    

 DAXX 11    DAXX 22    DAXX 33   

 

Table 5 depicts  

C1 = 2.r           (18) 

C1 = 2(0.365154) = 0.7303         

Dα = | C1.Xα – X (t ) |                                                                                                  (19) 

Xα 0.4996   0.0021  0.0014    

X(t)    0.5031   0.0031    0.0017 

Dα= |0.7303 (0.4996  0.0021 0.0014) – (0.5031  0.0031   0.0017) | 

Dα = | 0.13820.0016    0.0007 | 

X1 = Xα – A1Dα(20) 

X1 = (0.4996  0.0021 0.0014) – 0.4167 (0.1382   0.0016    0.0007)  

X1= 0.44180.00150.0012 

 

Follow the same steps to obtain the values for X2 and X3 by implementing the C++ 

programming language. The values of X2 are -0.2833% for the blend ratio, -0.0037 rpm for the 

speed and -0.0013% for load while for X3, the values for blend ratio, speed and load are 

0.1230%, 0.0005rpm and 0.0005% respectively. Furthermore, the average of X1, X2 and X3 is 

being calculated and termed Xnew.  The values for this are 0.09384%, -0.0009rpm and 

0.00012% for blend ratio, speed and load respectively. In addition, the greedy selection is 

carried out which involves the values of X. The process parameters are placed in the objective 

function to calculate the output of the BSFC response. But our objective at this point is to 

minimize the BSFC response. Thus, with a smaller value to the previously obtained BSFC 

response for the wolf, the Xnew replaces that wolf. Notwithstanding, retain the wolf if the reverse 

case exists. The previous value was 2.64681(g/kWhr) while the new value is 1.0816(g/kWhr). 

Since these are the values obtained during the minimization process, the new value replaces the 

old value. Therefore, the current wolves would now be  

Blend Ratio     Speed   Load   BSFC 

0.476       0.0010   0.0010   1.0816 

0.4889   0.0045   0.0015   2.1205 

0.4997   0.0021   0.0014     2.0386 

0.5097     0.0017   0.0014     2.0466 

0.4852    0.0033   0.0018     2.9941 

The same operations are conducted using other wolves from the population. Following each 

iteration, assign the current Xα as the best value. This means the best wolf has the smallest S/N 

value, obtained for the iterations. 
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At the 200th iteration, the process parameters that makeup Xα are adopted as the optimal process 

parameters for BSFC. 

Iteration 1: 1.0816 

Iteration 2: 1.0816 

Iteration 3: 1.0816 
… 
… 
… 
Iteration 198: 1.0816 

Iteration 199: 1.0816 

Iteration 200: 1.0816 

 

By running 200 iterations, Xα is obtained to be: 

Table 6. Optimal values of process parameters essential for obtaining minimum BSFC 

Blend Ratio Speed Load BSFC 

0.4760 0.0010 0.0010 1.0816 

 

Notice that the boundaries, population size and the number of iterations are unchanged in all 

objectives from that of the BSFC. 
Objective2: Maximize BSEC 

Objective function for BSEC = 1915 BR - 1989 Speed + 2.37 Load                              (21) 

 

By running 200 iterations, Xα is obtained to be: 

Table 7. Optimal values of process parameters essential for obtaining maximum BSEC 

Blend Ratio Speed Load BSEC 

0.0018 0.0010 1.8719 5.8944 

 

Objective3: Minimize EGT 

Objective function for EGT = 20.3 BR - 0.238 Speed + 2.28 Load                              (22) 

By running 200 iterations, Xα is obtained to be: 

Table 8. Optimal values of process parameters essential for obtaining minimum EGT 

Blend Ratio Speed Load EGT 

0.0010 0.0279 0.0060 0.0273 

 

Objective4: Minimize Exhaust O2 (Gas) 

Objective function for Exhaust O2 = -3.72 BR + 3582 Speed + 2638 Load                       (23) 

By running 200 iterations, Xα is obtained to be: 

Table 9. Optimal values of process parameters essential for obtaining minimum 

 Exhaust O2 (Gas) 

Blend Ratio Speed Load Exhaust 

0.9406 0.0010 0.0010 2.7210 

Objective5: Minimize CO (Gas) 

The objective function for CO = -4.07 BR - 25 Speed - 63 Load                              (24) 
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By running 200 iterations, Xα is obtained to be: 

Table 10. Optimal values of process parameters essential for obtaining minimum CO (Gas) 

Blend Ratio Speed Load CO 

0.2520 0.0011 0.0012 0.9233 

 

Objective 6: Minimize Smoke 

Objective function for Smoke = 12.75 BR - 1.695 Speed + 8.08 Load                             (25) 

By running 200 iterations, Xα is obtained to be: 

Table 11. Optimal values of process parameters essential for obtaining minimum smoke 

Blend Ratio Speed Load Smoke 

0.0010 0.0030 0.00120 0.0157 

 

Objective 7: Minimize NOx 

The objective function for Smoke = 4.039 BR + 1176 Speed - 846 Load                             (26) 

By running 200 iterations, Xα is obtained to be: 

Table 12. Optimal values of process parameters essential for obtaining minimum NOx 

Blend Ratio Speed Load NOx 

0.857 0.0010 0.0010 3.7914 

 

Objective 8: Maximize SFI 

The objective function for SFI = 3.60 BR + 2954 Speed - 2340 Load               (27) 

By running 200 iterations, Xα is obtained as Table 13. 

Table 13. Optimal values of process parameters essential for obtaining maximum SFI 

Blend Ratio Speed Load SFI 

1.4911 0.0019 0.0013 7.9076 

 

 

Objective 9: Maximize MID 

The objective function for MIJ = 8.5 BR - 1347 Speed - 2117 Load                             (28) 

By running 200 iterations, Xα is obtained as Table 14. 

Table 14. Optimal values of process parameters essential for obtaining maximum MID 

Blend Ratio Speed Load MID 

1.6399 0.0011 0.0013 9.7721 

 

Objective10: Maximize Rail Pressure 

Objective function for RP = -4.47 BR + 10271 Speed - 2719 Load(29) 

By running 200 iterations, Xα is obtained as Table 15. 

Table 15. Optimal values of process parameters essential for obtaining maximum rail pressure 

Blend Ratio Speed Load Rail pressure 

1.0498 0.0017 0.0010 10.0491 
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Objective 11: Maximize Turbocharge Boost Air Pressure 

Objective function for TBAP = 8.937 - 13.82 BR + 2514 Speed + 5643 Load          (30) 

By running 200 iterations, Xα is obtained as Table 16. 

Table 16. Optimal values of process parameters essential for obtaining maximum turbocharge 

boost air pressure 

Blend Ratio Speed Load TBAP 

0.9590 0.0014 0.0020 10. 5409 

 

Objective 12: Minimize Load Demand 

Objective function for LD = 2.49 BR + 2.13 Speed + 3.82 Load                             (31) 

By running 200 iterations, Xα is obtained as Table 17. 

Table 17. Optimal values of process parameters essential for obtaining minimum load demand 

Blend Ratio Speed Load Load demand 

0.0017 0.0010 0.0010 0.0102 

 

Each input was used in the optimization of the engine outputs using the Minitab 18 software. 

Fig. 1 to 3 show the plots pf blend ratios against engine outpits, speed against engine outputs 

and load against engine outputs, respectively. 

 

Fig. 1.  Blend ratio against engine outputs 
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Fig. 2. Speed against engine outputs 

 

 
Fig. 3.  Load against engine outputs 

Moreover, in the first part of the research, three inputs namely blend ratio (%), speed (rpm) and 

load (%) were used in the optimization of the engine outputs (Figs. 1, 2, 3). The brake-specific 

fuel consumption was minimized to an optimal value of 1.0818 g/kWhr at blend ratio, speed 

and a load of 0.4760 %, 0.001 rpm and 0.001 % respectively. However, the optimal 

maximization of brake-specific energy consumption yielded 5.8944 MJ/kW-hr at a blend ratio 

of 0.0018 %, speed of 0.001rpm and load of 1.8719 %. Moreover, exhaust gas temperature 

yielded 0.0273 dC at its optimal reduction with blend ratio, speed and load at 0.001 %, 0.0279 

rpm and 0.006 % respectively. Meanwhile, exhaust O2 (gas) was optimally lowered to obtain 

2.7210 at a blend ratio of 0.9406 %, speed of 0.001 rpm and load of 0.001 % respectively. In 

addition, CO was drastically reduced to an optimal value of 0.9233 % at a blend ratio of 
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0.9604%, speed of 0.001 rpm and load of 0.001%. In conjunction with CO, smoke was also 

greatly lowered to an optimal value of 0.0157 at which the blend ratio, speed and load were 

0.001%, 0.003 and 0.0012% respectively. NOx was optimally minimized to obtain 3.7914 ppm 

at a blend ratio of 0.875%, speed of 0.001rpm and load of 0.001%.  

Furthermore, the start of fuel injection was raised to 7.9076 at a blend ratio, speed and load of 

1.4911%, 0.0019 rpm and 0.0013% respectively. Main injection duration was maximized and 

a value of 9.7721µs was obtained at a blend ratio, speed and load of 1.6399%, 0.0011rpm and 

0.0013% respectively. Rail pressure was also increased to 10.0491 bar at a blend ratio of 

1.0498%, a speed of 0.0017 rpm and a load of 0.001%. Turbocharge boost air pressure was 

maximized to a value of 10.5409 at a blend ratio, speed and load of 0.9590%, 0.0014 rpm and 

0.002% respectively. However, load demand was reduced to an optimal value of 0.0102% 

where the blend ratio was 0.0017%, speed was 0.001rpm and load was 0.001%. 

Moreover, the second part of the work dealt with the optimization of each input against all 

engine responses. The blend ratio was first taken against the responses. At the end of the 

process, the Break Specific Energy Consumption (BSEC) was seen to be the one with the 

highest value as compared with the rest while CO had the least value. Break Specific Energy 

Consumption (BSEF) is likely the most to be directly proportional to the blend ratio. CO might 

be the least in value as a result of a nice blend of the biodiesel used for the experiment. In 

addition, Speed was optimized for the engine outputs. The Exhaust (gas), Rail pressure and 

Start of Fuel Injection were seen to be the first, second and third respectively with the highest 

values while Exhaust Gas Temperature was the lowest. CO was seen to possess the maximum 

value as a result of it being proportional to the speed. Meanwhile, for the load concerning the 

engine responses, Exhaust (gas), Main Injection Duration and Rail pressure had maximum 

values as related to the first, second and third respectively while the Break Specific Energy 

Consumption (BSEC) had the least value. The exhaust (gas) is greatest as a result of it being 

directly proportional to the load.  The Brake-Specific Energy Consumption (BSEC) has the 

least value as it is inversely proportional to the load. 

Furthermore, it is essential to understand how much the model proposed in the present study 

deviates from values by other researchers in other studies. This research was done by comparing 

the results of the present work with Teoh et al. (2019) that uses Taguchi method and then 

compared the performance using correlation analysis Table 18. A correlation value of r as 

0.7822 was obtained. This means that there is a strong positive correlation, which means that 

high current study variable scores go with high Teon et al. (2019) variable scores (and vice 

versa). This gives and encouragement that the proposed method can be used in other studies 
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since the relationship between the results of the present study and Teoh et al (2019) is 

acceptable. 

Table 18. Comparison of Current study and Teoh et al. (2019) using correlation analysis 

S/No. Response Parameters 
Current 

study 

Teoh et al. 

(2019) 

(Taguchi 

method) 

Statistical results 

1 BSFC 

Blend ratio 

Speed (rpm) 

Load (%) 

0.476 

0.001 

0.001 

0.476 

0.001 

0.001 
Mx: Mean of X Values 

My: Mean of Y Values 

X - Mx & Y - My: Deviation scores 

(X - Mx)2 & (Y - My)2: Deviation 

Squared 

(X - Mx)(Y - My): Product of 

Deviation Scores 

X Values (Current study) 

∑ = 9.604 

Mean = 0.267 

∑(X - Mx)2 = SSx = 9.787 

 

Y Values (Teoh et al., 2019) 

∑ = 6.208 

Mean = 0.172 

∑(Y - My)2 = SSy = 4.149 

 

X and Y Combined 

N = 36 

∑(X - Mx)(Y - My) = 4.984 

 

R Calculation 

r = ∑((X - My)(Y - Mx)) / 

√((SSx)(SSy)) 

 

r = 4.984 / √((9.787)(4.149)) = 

0.7822 

Decision: the value of r is 0.7822. 

This is a strong positive correlation, 

which means that high current 

study variable scores go with high 

Teon et al. (2019) variable scores 

(and vice versa). 

2 BSEC 

Blend ratio 

Speed (rpm) 

Load (%) 

0.0018 

0.0010 

1.8719 

0.001 

0.001 

0.945 

3 
Exhaust gas 

temperature 

Blend ratio 

Speed (rpm) 

Load (%) 

0.0010 

0.0276 

0.0060 

0.001 

0.023 

0.006 

4 Exhaust 

Blend ratio 

Speed (rpm) 

Load (%) 

0.9406 

0.0010 

0.0010 

0.731 

0.001 

0.001 

5 CO 

Blend ratio 

Speed (rpm) 

Load (%) 

0.2520 

0.0011 

0.0012 

0.252 

0.001 

0.001 

6 Smoke 

Blend ratio 

Speed (rpm) 

Load (%) 

0.0100 

0.0030 

0.0012 

0.001 

0.003 

0.001 

7 NOx 

Blend ratio 

Speed (rpm) 

Load (%) 

0.8570 

0.0010 

0.0010 

0.857 

0.001 

0.001 

8 SOI 

Blend ratio 

Speed (rpm) 

Load (%) 

1.4911 

0.0019 

0.0013 

0.960 

0.001 

0.001 

9 
Main Injection 

duration 

Blend ratio 

Speed (rpm) 

Load (%) 

1.6399 

0.0091 

0.0013 

0.944 

0.001 

0.001 

10 Rail pressure 

Blend ratio 

Speed (rpm) 

Load (%) 

1.0498 

0.0017 

0.0010 

0.959 

0.001 

0.001 

11 

Turbocharge 

boost air 

pressure 

Blend ratio 

Speed (rpm) 

Load (%) 

0.9590 

0.0014 

0.0020 

0.963 

0.001 

0.001 

12 Load demand 

Blend ratio 

Speed (rpm) 

Load (%) 

0.0017 

0.0010 

0.0010 

0.017 

0.001 

0.001 

 

4. CONCLUSIONS 

This research was conducted to optimize the parameters of a combustion process where 

biodiesel is combined with other substances. Twelve objective functions were formulated and 

solved with the grey wolf optimization method. Seven of the objective functions were from the 

minimization perspective while five responses were formulated from the maximization 

viewpoint. The twelve responses used in this work include the BSFC, brake-specific energy 

consumption, exhaust gas temperature, exhaust O2, CO, Smoke, NOx, the start of fuel injection, 
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main injection duration, rail pressure, turbocharge boost pressure and load demand. These 

responses are the feedback obtained when the following inputs are utilized in the process: blend 

ratio, speed and load. All 200 iterations were run using the C++ programming platform. Based 

on the results obtained from the work, the following conclusions are valid: 

1. Load demand could be seen to have the least value of all the engine outputs. This shows 

that there is appropriate and optimal usage of the biodiesel mixture. 

2. TBAP had the highest value of all engine outputs that were optimally maximized. This in 

turn shows adequate effects on the speed variations, efficiency and power flow of the engine. 

In addition, the biodiesel blend is maximally utilized at variable speed with little load applied. 

3. In this article, engine responses that were found to be hazardous to human lives were 

drastically reduced during the process and those that were relevant were adequately and 

optimally maximized for efficiency and economic reasons. 

4. The blend ratio had its highest value when optimized alongside MID. This probably shows 

proper periodical injection of the biodiesel blends supply for the effective rotation of the 

crankshaft. 

5. Speed had its maximum value when optimized alongside EGT probably as a result of more 

oxygen being burnt to raise the exhaust temperature at high speed. 

6. The blend ratio had its maximum value at BSEC when singlehandedly optimized with the 

engine outputs but was lowest at CO at the same condition. This might be a result of the 

biodiesel blend being better to generate less or insignificant amounts of poisonous outputs. 

7. Speed had its maximum value at RP and lowest at EGT when singlehandedly optimized 

with the engine outputs. 

Further research is essential to improve the solution quality of the problem by introducing the 

sensitivity analysis to establish which of the parameters is most sensitive to changes thereby 

focusing on such variables for significant performance improvement. Moreover, it is 

recommended that other input parameters should be considered during the revisit of this article 

to bring about a vast improvement and advancement in the automobile industry. Also, we 

recommend that other optimization tools like the Aquila method of analysis should be used in 

future articles to further improve the process and thereby lay a building block on the already 

laid foundation. Besides, we recommended that various biodiesel blends be studied and worked 

on to fit in for diesel consumption to make them affordable, effective and efficient. 
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