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ABSTRACT  

The work done in this research is dedicated to compute the critical buckling load of combined 

columns. This is performed using theoretical and experimental analyses. The combined column 

is made of two materials, namely copper and aluminum alloys. The theoretical approach 

involves numerical analysis using ANSYS and analytical analysis using the equivalent stiffness 

method. The study determines the critical buckling load by considering many parameters. These 

parameters include lengths of copper and aluminum in the combined columns, cross-sectional 

geometries (square, circle, and hexagon), and boundary conditions. The experimental work is 

carried out using a Strut Bucking Apparatus on a combined column with circular cross-sections 

and different end supports. The findings show that the critical buckling loads achieved from 

numerical and analytical analysis are in good agreement with those obtained from experimental 

analysis. It is found that the critical buckling load increases with increasing the length of copper 

in the combined column and with more restrictive end supports. There is a good match of critical 

buckling load between those achieved from the equivalent stiffness method and ANSYS model 

for any considered cross-sectional geometries (square, circle, and hexagon) and two types of 

support (fixed-fixed and fixed-pinned). The results reveal that the combined columns with 

square cross-sections have higher critical buckling loads than those with circular or hexagonal 

cross-sections. The highest percentage errors of critical buckling load between the experimental 

method and theoretical methods (equivalent stiffness method and ANSYS models) are (-13.120, 

-12.768, and -12.453) % and (-13.083, -18.039, and -19.052) % for pinned-pinned, fixed-

pinned, and fixed-fixed columns respectively.  
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1. INTRODUCTION 

The structural integrity relies greatly on the strength and stiffness of the engineering structure. 

The lateral axial load applied on a structural engineering may cause a catastrophic failure 

because the structure becomes unstable leading to a sudden change in shape or collapse. This 

type of failure occurs due to buckling (Alansari et al., 2020).  The studies have concentrated on 

maximizing the critical load and minimizing the weight of the structure. Choosing a proper 

cross-section area and geometry may lead to maximizing the critical buckling load and 

achieving weight reduction. There are two approaches to buckling analysis. The first approach 

is known as the eigenvalue buckling analysis (Saraçaoğlu and Uzun, 2020). The other approach 

is called nonlinear buckling analysis. This type is suitable for large-deflection buckling loads. 

It is more accurate compared to eigenvalue buckling analysis (ANSYS Inc, (2019)).  

Euler made an assumption to estimate the critical buckling load of a column subjected to an 

axial concentrated load. His method is only valid for long and slender columns (Alansari et al., 

2020, Khuder and Hussein, 2014). Timoshenko and Gere made considerable efforts to predict 

the elastic stability of any type of column (Saraçaoğlu and Uzun, 2020). 

There are many studies available in the literature that studied the buckling behavior of 

structures. Abdel-Lateef et al. (Abdel-Lateef et al., 2001) performed an analytical analysis to 

investigate the stability of a variable cross-section column subjected to concentrated or 

distributed axial loads. The variation of the cross section was assumed to follow power law to 

estimate the load intensity and the changes in the moment of inertia. Šapalas et al. (Šapalas et 

al., 2005) used numerical and analytical analysis to study the buckling behavior of tapered 

columns under axial and bending moment loads. Pekbey et al. (Pekbey et al., 2007) performed 

analytical and experimental analysis to determine the critical buckling load. They obtained a 

good degree of discrepancy between the numerical and experimental results. Safa Bozkurt 

Cokun and Mehmet Tarik Atay (Coşkun and Atay, 2009) chose the variational iteration method 

to evaluate the critical buckling load for columns with different boundary conditions and cross-

section areas.  Coşkun (Coşkun, 2010) studied the elastic stability of tilt-buckled columns with 

varying flexural stiffness. They applied homotopy perturbation method to compute the critical 

buckling loads and mode shapes. They claimed that the proposed approach is an effective 

technique for the elastic stability of such problems. Darbandi et al. (Darbandi et al., 2010) 

introduced an analytical solution based on the Euler-Bernoulli beam theory and the singular 

perturbation method of Wentzel-Kramers-Brillouin to analyze the static stability of the variable 

cross-section column under distributed axial loads. Li et al. (Li et al., 2011) examined the 

stability of composite columns using the integral equation method. The effect of varying the 
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material properties and changing the cross-section end forces and distributed axial forces on the 

stability of the column was studied. Coşkun and Öztürk (Coşkun and Öztürk, 2012) selected 

three analytical methods to assess the elastic stability of Euler columns. These methods are the 

domain decomposition method, variational iteration method, and homotopy perturbation 

method. Yilmaz, et al. (Yilmaz et al., 2013) applied the localized differential quadrature method 

to study the buckling performance of axially functionally graded non-uniform columns with 

elastic restraints. Avcar (Avcar, 2014) relied on a numerical analysis to model the elastic 

buckling of steel columns subjected to an axial load. The influence of the slenderness ratio, 

cross-section geometry, and boundary conditions on the critical buckling load was investigated. 

Ruocco et al. (Ruocco et al., 2016) explored the buckling behavior of non-uniform columns by 

using Hencky bar-chain model. They estimated the rotational spring stiffness through three 

methods for non-uniform columns. The finite difference column model was used to calibrate 

the end rotational spring stiffness of the Hencky bar-chain. In another study, Ruocco et al. 

(Ruocco et al., 2016) optimized the geometry of inhomogeneous columns with elastic restraints 

under concentrated and distributed loads. They discretized the differential equation of Euler 

columns by assuming the Hencky bar-chain model to evaluate the critical buckling load by 

looking for the minimum eigenvalue. Soltani and Sistani (Soltani and Sistani, 2017) adopted a 

finite difference method to look into the buckling load of columns. They considered varying 

the flexural rigidity, supported edges of columns, and the applied axial loads in their study. 

Saraçoğlu and Uzun (Saraçoğlu and Uzun, 2019) built an ANSYS model to examine the 

buckling performance of structural elements. They considered the impact on the buckling load.  

Botis et al. (Botis et al., 2023) analyzed the buckling behavior of beam-type components based 

on Cavalieri’s principle. The stability of the changeable cross-section beam was simulated and 

studied using an indirect variational approach taking into account the stiffness of the support 

connections. Saeed et al. (Saeed et al., 2024) calculated the buckling load multiplier by 

considering long rectangular and circular structures with solid and hollow cross sections which 

are loaded by compressive loads. They computed the decrease in the buckling load and mass 

when the hollowness of the cross-section area increases. They discovered that the column with 

a rectangular cross-section displayed a 3% higher load multiplier than the column with a 

circular cross-section for the same volume of material. 

In this research, numerical, analytical, and experimental analyses are used to evaluate the 

buckling load of two segments of combined columns. The numerical analysis is performed 

using ANSYS. An equivalent stiffness method is employed in the analytical analysis. Three 

different cross-section geometries (circle, square, and hexagon) and four boundary conditions 
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(fixed-fixed, fixed-free, pinned-pinned, and fixed-pinned) are considered in the analytical and 

numerical analysis. The columns are assumed to be prismatic, isotropic, and homogenous. 

Experimentally, the circular combined columns made of aluminum and copper alloys are 

manufactured to measure the critical buckling load at different segment lengths with different 

boundary conditions.  

2. EXPERIMENTAL WORK 

2.1. Materials used: 

In this work, a two-segment combined column with a circular cross-section area is made of 

aluminum and copper alloys. Table 1 shows the mechanical properties of these alloys. The 

diameter of the combined column is 8 mm. The combined columns are formed by pressing the 

outside threads of one column against the inner threads of the other. The total column length is 

kept at 552 mm. The length of each segment is varied and the effect of this variation on the 

buckling behavior was studied. The first and last columns are made entirely of pure aluminum 

and pure copper respectively, whereas the other columns consist of different percentages of 

aluminum and copper as displayed in Fig.1. 

Table 1. Material Properties of Aluminum and Copper alloy (Diwan and Diwan, 2022). 

Property 
Value 

Aluminum Copper 

Modulus of Elasticity (E) 7.1×1010 N/m2 1.1×1011 N/m2 

Poisson Ratio (ν) 0.33 0.34 

Density (ρ) 2770 kg/m3 8300 kg/m3 

 
Fig.1 Combined column with different percent of Aluminum and Copper alloys. 
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2.2. Critical Buckling load measurement 

The critical buckling load and deflection of single metal and combined columns were measured 

experimentally for three boundary conditions as demonstrated in Fig. 2. Fig. 3 shows that Strut 

Buckling Apparatus (SKU: 015) that was used in this study.  This apparatus consists of a single 

vertical column with a sliding support that enables a screw to apply the load. The fixed or free-

edge column support is a cylinder in a socket. The load cell measures the column load and the 

digital calipers (0.01mm) measure its deflection.  Weight hangers and weights are used for side 

loading. The experiment was carried out on the column by following these steps: 

1. Measuring the diameter and length of the columns. 

2. Placing the column in the testing device between the two ends of the fixture. 

3. Adjusting the force display and deflect measures to zero. 

4. Applying a compressive load and then gradually raise the compressive force until a 

noticeable deformation is seen. 

5. Recording the critical buckling load value. 

6. Conducting the test for both single metal and combined columns, considering all end support 

conditions of columns. 

 

 

Fig. 2  Boundary conditions of column 

ends support used in experimental 

works. 

 

Fig.3 Strut Buckling Apparatus. 

3. NUMERICAL MODELING 

The ANSYS Workbench software version 2022R2 was employed in this research for 

calculating the critical buckling load of combined columns. The combined column has a length 

of 552 mm for various geometries of cross-sectional areas (circular, square, and hexagonal) 

with constant area. The dimensions of various cross-sectional areas of combined columns are 

given in Table 2. The combined column is composed of two materials (aluminum and copper 
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alloys) in different percentages of length as illustrated in Fig. 1. Three different cross-section 

geometries of a combined column with constant area and length are utilized in the model of 

ANSYS. Fig. 4 presents the geometry and mesh of three combined columns with various cross-

sectional geometries (circle, square, and hexagonal) when the area and length of the column are 

(50.265 mm2 and 552 mm) respectively. The types of elements used in ANSYS model are 

SOLID186 with 20- Node for circular and square combined columns and SOLID187 with 10-

Node for hexagonal combined columns. The appropriate element size is chosen using the 

convergent criterion (Hashim et al., 2022- Shukur et al., 2024). The least number of (nodes and 

elements) are (31284, 6468), (13144, 2106) and (7700, 3427) respectively when the cross-

sections of the combined column are circular, square, and hexagonal respectively. This work 

employs the following four supporting edges types: (a) fixed-fixed support edges (F–F); (b) 

fixed-free support edges (F–Free); (c) fixed-pinned support edges (F–P); and (d) pinned-pinned 

support edges (P–P). The translational and rotational displacements for the three support types 

are as follows: 

1. Fixed-fixed support: The displacements in the translation (𝑥, 𝑦, and 𝑧) and rotational on 

(𝑥, 𝑦, and 𝑧) are zero for two ends of the combined column.  

2. Fixed-free support: The displacements within the translation (𝑥, 𝑦 and 𝑧) and rotational 

around (𝑥, 𝑦 and 𝑧) are zero for one end of the combined column and at the other end are free.  

3. Fixed-pinned support: The displacements during the translation (𝑥, 𝑦 and 𝑧) and rotational 

concerning (𝑥, 𝑦 and 𝑧) are zero for one end and at the other end, the displacement through the 

translation (𝑥 and 𝑧) and rotational related to (𝑥 and 𝑦) are zero.  

4. Pinned-pinned supported: The displacements under translation (𝑥 and 𝑧) and rotational 

around (𝑥 and 𝑦) are zero for two ends of the combined column. 

Table 2. Dimensions of different cross sectional area of combined column. 

No. Shape Figure Dimension 

1 Circle 

 

 

𝑟 = 4 𝑚𝑚 

2 Square 

 

 

𝑎 = 7.08 𝑚𝑚 

3 Hexagon 

 

 

𝑎 = 4.3985 𝑚𝑚 
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4. ANALYTICAL MODELING: 

The equivalent stiffness technique is applied to determine the equivalent stiffness of the 

combined column (Alansari et al., 2018 - Jebur and Alansari, 2023). In this method, the 

equivalent stiffness of the combined column depends on many parameters. These include the 

length of each part, cross-section area, and supporting type. As seen in Fig. 1, the cross-section 

area is assumed constant, while the properties and length of each part are varied and four 

supporting types are considered. Therefore, the equivalent stiffness of columns can be 

calculated depending on the supported type by using the following equations (Jebur and 

Alansari, 2023): 

1. Fixed-free column: to calculate the equivalent stiffness (modulus of elasticity (E)  and 

second moment of area (I)), the combined column consists of two parts and the equivalent 

stiffness of clamped –free column can be estimated using the following equation (for more 

details see (Jebur and Alansari, 2023)): 

 

(a) 

(b) 

(c) 
Fig.4 Geometry and meshing of combined columns with different cross 

sectional geometries (a) circular, (b)square, and (c) hexagonal 
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(𝐸𝐼)𝑒𝑞 =
𝐿3

(𝐿2)3 − (𝐿1)3

(𝐸𝐼)1
+

(𝐿1)3

(𝐸𝐼)1

 
(1) 

a. Fixed-fixed, pinned-pinned, and fixed-pinned columns: for fixed-fixed, pinned-pinned, and 

fixed-pinned combined columns, the following four steps can be used to compute the equivalent 

second moment of areas. 

b. The centroid of the column must be found in this case. The centroid equals half of the total 

length of the column (i.e. X=0.5*L=0.276 m)  

c. Based on the centroid, the combined column is split into left and right parts. The left and 

right segments number depends on the length of each part but generally the number of parts in 

the left and right sides are either (1) or (2). Then, to determine the equivalent stiffness of the 

left  and right sides, the following equation is applied: 

i. If the left part consists of one material only and the right part consists of two materials (Jebur 

and Alansari, 2023): 

(𝐸𝐼)𝑙𝑒𝑓𝑡 =
(𝐿𝑙𝑒𝑓𝑡)3

(𝐿1)3

(𝐸𝐼)1

= (𝐸𝐼)1 
(2-a) 

 

(𝐸𝐼)𝑟𝑖𝑔ℎ𝑡 =
(𝐿𝑟𝑖𝑔ℎ𝑡)3

(𝐿2)3−(𝐿1)3

(𝐸𝐼)1
+

(𝐿1)3

(𝐸𝐼)1

      
(2-b) 

ii. If the left part consists of two materials and the right part consists of one material (Jebur and 

Alansari, 2023 ): 

(𝐸𝐼)𝑙𝑒𝑓𝑡 =
(𝐿𝑙𝑒𝑓𝑡)3

(𝐿2)3−(𝐿1)3

(𝐸𝐼)1
+

(𝐿1)3

(𝐸𝐼)1

      
(3-a) 

 

(𝐸𝐼)𝑟𝑖𝑔ℎ𝑡 =
(𝐿𝑟𝑖𝑔ℎ𝑡)3

(𝐿1)3

(𝐸𝐼)1

= (𝐸𝐼)1      
(3-b) 

iii. If the left and right parts consist of one material only (Jebur and Alansari, 2023): 

(𝐸𝐼)𝑟𝑖𝑔ℎ𝑡 =
(𝐿𝑟𝑖𝑔ℎ𝑡)3

(𝐿1)3

(𝐸𝐼)1

= (𝐸𝐼)1           
(4-b) 

 

(𝐸𝐼)𝑙𝑒𝑓𝑡 =
(𝐿𝑙𝑒𝑓𝑡)3

(𝐿1)3

(𝐸𝐼)1

= (𝐸𝐼)1     
(4-b) 

d. The equivalent stiffness of the combined column is: 

(𝐸𝐼)𝑒𝑞 =
(𝐿𝑙𝑒𝑓𝑡+𝐿𝑟𝑖𝑔ℎ𝑡)∗(𝐿𝑙𝑒𝑓𝑡)2∗(𝐿𝑟𝑖𝑔ℎ𝑡)2

(𝐸𝐼)𝑙𝑒𝑓𝑡∗(𝐿𝑙𝑒𝑓𝑡)2+(𝐸𝐼)𝑟𝑖𝑔ℎ𝑡∗(𝐿𝑟𝑖𝑔ℎ𝑡)2          
(5) 
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After calculating the equivalent stiffness of the combined column, the following formula can 

be used to determine the critical buckling load: 

𝑃𝑐 =
𝜋2(𝐸𝐼)𝑒𝑞

(𝐿𝑒𝑓𝑓)
2           

(6) 

Where (𝐿𝑒𝑓𝑓) is the effective length of a column (in meters), and it equals to (𝐿𝑒𝑓𝑓 = 𝐾 ∗ 𝐿) 

and K is: 

𝐾 = {

1 for Pinned − Pinned 𝐶𝑜𝑙𝑢𝑚𝑛
2 for Clamped −  Free 𝐶𝑜𝑙𝑢𝑚𝑛
0.5 for Fixed − Fixed 𝐶𝑜𝑙𝑢𝑚𝑛

0.699 for Fixed − Pinned 𝐶𝑜𝑙𝑢𝑚𝑛

      

5. RESULTS AND DISCUSSION: 

The findings are divided into two parts, the first one deals with the comparison among the 

experimental, analytical, and numerical results of circular columns for three types of support 

(pinned-pinned, fixed-pinned, and fixed-fixed column). The other parts cover the effect of the 

cross-section area of the column on the critical buckling load. A constant cross-section area is 

assumed with different geometry of it (circular, square, and hexagonal).   

5.1.  Comparison with Experimental Results: 

In this part, three types of support are used to validate the analytical and numerical models by 

comparing their results with the experimental results of the circular column. These types of 

support are pinned-pinned, fixed-fixed, and fixed-pinned supports. Fig. 5 displays the 

comparison among the critical buckling loads obtained by experimental, equivalent stiffness 

method, and ANSYS model when the length of the copper alloy decreases (i.e. aluminum alloy 

increases). Generally, the experimental results are less than those of analytical and numerical 

results. Very good agreements are noticed between experimental results and both of equivalent 

stiffness method and ANSYS results. The maximum error percentages between experimental 

and ANSYS critical buckling loads are (-13.083, -18.039and -19.052) % for pinned-pinned, 

fixed-pinned, and fixed-fixed columns respectively The maximum error percentages of critical 

buckling loads obtained by the equivalent stiffness method compared to experimental results 

are (-13.120, -12.768, and -12.453) % for pinned-pinned, fixed-pinned, and fixed-fixed 

columns respectively as listed in Table 3. From Table 3, it can be seen that the maximum error 

percentages are observed when the length of copper alloy is (0.25*L) or (0.75*L) 

approximately. Also, the maximum error percentages of ANSYS results compared to 

experimental results are greater than those obtained by the equivalent stiffness method. 
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(a) Pinned-Pinned Column. 

 
(b) Fixed-Pinned Column. 

 
(c) Fixed-Fixed. 

Fig. 5 The Comparison among the critical buckling loads of combined circular column 

obtained by experimental work, equivalent stiffness method, and ANSYS model 

assuming different boundary conditions. 
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Table 3. The comparison among the critical buckling loads of combined circular 

columns obtained by experimental work, equivalent stiffness method, and ANSYS 

model assuming different boundary conditions. 

No. Lcu 
Critical Buckling Load (N). 

Error % w.r.t. Exp. 

Results 

Experimental Equivalent ANSYS Equivalent ANSYS 

1- Pinned-Pinned Support. 

1 0.55 669.800 716.110 717.246 -6.914 -7.084 

2 0.481 632.600 709.560 713.775 -12.166 -12.832 

3 0.361 579.400 633.550 655.205 -9.346 -13.083 

4 0.311 549.700 585.540 602.617 -6.520 -9.626 

5 0.241 496.500 527.000 519.289 -6.143 -4.590 

6 0.191 448.300 496.760 485.696 -10.810 -8.342 

7 0.071 437.200 463.390 457.847 -5.990 -4.722 

8 0 408.600 462.210 456.430 -13.120 -11.706 

2- Fixed-Pinned Support. 

1 0.55 1,401.700 1,464.400 1,467.960 -4.473 -4.727 

2 0.481 1,237.600 1,331.800 1,460.854 -7.612 -18.039 

3 0.361 1,176.900 1,305.700 1,340.982 -10.944 -13.942 

4 0.311 1,124.700 1,268.300 1,233.352 -12.768 -9.660 

5 0.241 1,103.500 1,156.900 1,062.808 -4.839 3.688 

6 0.191 998.600 1,070.800 994.055 -7.230 0.455 

7 0.071 867.700 953.310 937.056 -9.866 -7.993 

8 0 883.800 945.200 934.156 -6.947 -5.698 

3- Fixed-Fixed Support. 

1 0.55 2,624.800 2,861.600 2,868.986 -9.022 -9.303 

2 0.481 2,398.200 2,602.000 2,855.099 -8.498 -19.052 

3 0.361 2,239.700 2,511.800 2,620.820 -12.149 -17.017 

4 0.311 2,121.500 2,342.800 2,410.467 -10.431 -13.621 

5 0.241 2,006.200 2,132.300 2,077.156 -6.286 -3.537 

6 0.191 1,892.500 2,077.700 1,942.785 -9.786 -2.657 

7 0.071 1,784.300 2,006.500 1,831.387 -12.453 -2.639 

8 0 1,718.600 1,847.100 1,825.718 -7.477 -6.233 

 

5.2. Effect of Cross-Section Area of Column: 

In Figs. 6-8, the comparison between critical buckling loads obtained from ANSYS and 

equivalent stiffness method of different supporting types when the cross-section area of the 

column is a circle, square, and hexagon shape respectively. It can be observed that an excellent 

agreement between the findings of the two theoretical models for pinned-pinned and fixed-free 

columns for any cross-section geometry. However, the equivalent stiffness method must be 

improved to get an agreement with the ANSYS model for fixed-fixed and fixed-pinned columns 

for any cross-section geometry. Because of the effect of support is not considered when the 

equivalent stiffness of the beam is calculated. In other word, the position of maximum 

deflections of buckling in both fixed-fixed and fixed-pinned columns are not similar to that of 

pinned-pinned column.   
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The effect of cross-section shape on the critical buckling loads obtained from the ANSYS model 

for different supporting types are compared as shown in Fig. 9. The square column has a higher 

critical buckling load compared to circular and hexagonal columns. The critical buckling load 

of the square column is about (1.04) times the critical buckling load of the circular column at 

different supporting types. On the other hand, the hexagonal column has a higher critical 

buckling load compared to circular and hexagonal columns. The critical buckling load of the 

square column is about (1.008) times the critical buckling load of the circular column at 

different supporting types. The effect of cross section area appears in the second moment or 

area as shown in equation (6) and the second moment or area causes increases the critical 

buckling load of square column. On the contrary, the effect of equivalent of stiffness of 

combined column appears in Fig. 9, the critical buckling load increases with increasing the 

length of copper part considering constant cross sectional area. This increasing in critical 

buckling load occurs due to the high elastic modules of copper (i.e. increasing the modulus of 

combined material). 

 
 

(a) Pinned-Pinned Support (b) Fixed-Fixed Support 

  
(c) Fixed-Pinned Support (d) Fixed-Free Support 

Fig. 6 The comparison between the critical buckling loads of ANSYS and equivalent stiffness 

models when the column have circular cross-section. 



Kufa Journal of Engineering, Vol. 16, No. 1, January 2025               357 

 
 

 

6. CONCLUSIONS: 

The critical buckling load of combined columns made of copper and aluminum alloys with 

different cross-sectional geometries and various supported edges of the combined column were 

studied. The critical buckling load was calculated using theoretical methods (the equivalent 

stiffness method and the ANSYS model) and compared to the experimental method. From the 

obtained results, the following conclusions can be drawn: 

1. The critical buckling load increases as the column ends support becomes more restricted 

because the freedom of movement of the column reduces the buckling load. 

2. The critical buckling load in the case of a square cross-section is greater than in the cases of 

circular and hexagonal cross-sections because the moment of inertia in the case of a square 

section is greater. 

3. The critical buckling load increases as the copper length increases due to the stiffness of 

copper is higher than that of aluminum. 

4. There is good agreement of values of critical buckling loads between the equivalent stiffness 

method and ANSYS model for any cross-sectional areas (square, circle, and hexagon) and two 

types of support (pinned-pinned and fixed-free). 

  
(a) Pinned-Pinned Support (b) Fixed-Fixed Support 

  
(c) Fixed-Pinned Support (d) Fixed-Free Support 

Fig.9 The comparison between the critical buckling loads of ANSYS model for 

different cross section geometries and different supporting types. 
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5. There is a good match of critical buckling load between those achieved from the equivalent 

stiffness method and ANSYS model for any cross-sectional geometries (square, circle, and 

hexagon) and two types of support (fixed-fixed and fixed-pinned)  

6. A good degree of discrepancy was found between the experimental and theoretical results 

(analytical and numerical analysis). 

7. The highest percentage errors of critical buckling load between the experimental method and 

theoretical methods (equivalent stiffness method and ANSYS models) are (-13.120, -12.768, 

and -12.453) % and (-13.083, -18.039, and -19.052) % respectively for pinned-pinned, fixed-

pinned, and fixed-fixed columns. 

8. The highest percentage errors of critical buckling load between the experimental method, 

and theoretical methods (equivalent stiffness method and ANSYS models) were found at the 

quarter and three quarters of the length of copper in the combined columns. 
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