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ABSTRACT  

The importance of deep learning has heralded transforming changes across different 

technological domains, not least in the enhancement of robotic arm functionalities of object 

detection’s and grasping. This paper is aimed to review recent and past studies to give a 

comprehensive insight to focus in exploring cutting-edge deep learning methodologies to 

surmount the persistent challenges of object detection and precise manipulation by robotic 

arms. By integrating the iterations of the You Only Look Once (YOLO) algorithm with deep 

learning models, our study not only advances the innovations in robotic perception but also 

significantly improves the accuracy of robotic grasping in dynamic environments. Through a 

comprehensive exploration of various deep learning techniques, we introduce many approaches 

that enable robotic arms to identify and grasp objects with unprecedented precision, thereby 

bridging a critical gap in robotic automation. Our findings demonstrate a marked enhancement 

in the robotic arm’s ability to adapt to and interact with its surroundings, opening new avenues 

for automation in industrial, medical, and domestic applications. The impact of this research 

extends lays the groundwork for future developments in robotic autonomy, offering insights 

into the integration of deep learning algorithms with robotic systems. This also serves as a 
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beacon for future research aimed at fully unleashing the potential of robots as autonomous 

agents in complex, real-world settings. 
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Robotics manipulator, Object detection, Robot Grasping, Artificial Intelligence, YOLO. 
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1. INTRODUCTION 

The evolution of robotic arms, from rudimentary mechanical appendages to highly 

sophisticated tools of automation, mirrors the trajectory of technological advancement over the 

past decades (Moran, 2007; Daugherty and H. J. Wilson, 2018; Prattichizzo et al, 2023). 

Initially designed to perform simple, repetitive tasks in controlled environments, robotic arms 

have transcended their industrial inception to become integral components of modern surgery 

(Advincula and Wang, 2009; Fairag et al, 2024) precise manufacturing, and even domestic 

chores  (Shahria et al, 2022,  She et al, 2020). The driving forces behind this metamorphosis 

are listed as concurrent advances in mechatronics, materials science ( Fairag et al, 2024), and, 

in particular, artificial intelligence (AI) and machine learning  (Hussain, 2023). Deep learning 

comes as a radical technological innovation (Fullan and Langworthy, 2013) that revolutionizes  

robotics by enabling machines to perceive complex sensory input ( TUTSOY, 2020), make 

decisions and learn from interacting with the environment around them ( Dafoe et al., 2020; 

Fan et al., 2023; Levine et al. 2018).   

Despite these developments, deep learning integration into robotic arm systems, especially 

object detection and grasping, has been significantly hampered (Fan et al., 2023). In real-world 

settings, traditional models often find it difficult to deal with variability and unpredictability 

ranging from the range of objects to their placement dynamics and environment changes (Du 

et al, 2021,  Levine et al. 2018). Furthermore, these challenges have been worsened by the 

computational complexity of deep learning models as well as the scarcity of application-specific 

datasets for training purposes  (Levine et al. 2018). In light of this research gap, our study 

attempts at exploiting deep learning ability to improve the accuracy, flexibility and efficiency 

of robotic arms in object detection and grasping tasks. The following are some ways through 

which these approaches contribute towards that goal: 

1:Integration of Advanced Deep Learning Models: We explore the modern YOLO algorithm 

versions coupled with deep reinforcement learning techniques for enhancing the speed as well 

as accuracy in detecting objects and grabbing them by robotic arms  (L-Chen et al, 2023;   Chen 

et al, 2023). 2: Custom Dataset Development and Utilization: To address the limitation 

associated with generic datasets, we curate a custom dataset focusing on details concerning 

object grasping situations that facilitate training of better skilled models having contextual 

awareness (Wang et al, 2023). 3: Real-world Application and Evaluation: Beyond theoretical 

models and simulations, our research rigorously evaluates the practical efficacy of our proposed 

solutions in diverse real-world environments, establishing a benchmark for future 

advancements in the field (Kheder, 2023; She et al., 2020; Rakhimkul et al, 2019, Issa and Ali, 
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2014). By bridging the gap between the theoretical potential of deep learning and its practical 

application in robotic arms, our work marks a significant step forward in the quest for truly 

autonomous, versatile, and efficient robotic systems. Our contributions not only address 

specific challenges in object detection and grasping but also lay the foundation for future 

research in robotic autonomy and intelligent system design (Z. Chen et al., 2020). 

The integration of artificial intelligence systems especially the deep-learning methods into 

robotic systems and manipulators has significantly enhanced their ability and capabilities in 

both object detection and grasping. This paper tends to explore the advancements in these areas, 

by focusing on the application of the YOLO algorithms for object detection and various 

techniques for effective grasping by robotic manipulators (Liu, N., et al. ,2022). 

2. LITERATURE   SURVEY 

2.1. Algorithms for Object Detection and Grasping: Vision- Based Algorithms & 

Deep Learning 

The advancements in robotic object detection and grasping have been marked by significant 

developments across various dimensions of vision-based technologies. These innovations span 

from foundational vision-based algorithms and deep learning techniques to sophisticated multi-

modal and multi- view detection systems, as well as advanced pose estimation and 3D object 

detection strategies. Here is a detailed exploration integrating all the referenced works: 

2.1.1. Vision-Based Algorithms and Deep Learning: 

The field of robotics has seen significant advancements through the integration of deep learning 

and vision-based algorithms, enhancing robotic capabilities in object detection and grasping. 

Key contributions include Table I. 

2.1.2. Multi-Modal and Multi-View detection: 

The adoption of multi-modal and multi-view detection techniques has revolutionized how 

robots perceive their environments Table II. 

2.1.3. Pose Estimation and Object Localization: 

Accurate pose estimation and object localization are critical for enhancing the precision of 

robotic interactions Table III. 

2.1.4. 3D Object Detection and recognition: 

The ability to detect and recognize objects in three dimensions is pivotal for the effective 

operation of robotic systems Table IV. 
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TABLE I VISION-BASED  ALGORITHMS  &  DEEP  LEARNING 

 

Author(s) Year 
Algorithm 

/Procedure 
Advantages Disadvantages Main Finding Conclusion 

Chen, Ya-

Ling et al. 
2023 

Deep 

Learning 

Reinfor- 

-cement 

Adapts   

dynamically 

to environments 

High 

computational 

cost 

Effective f o r  

complex 

grasping scenarios 

Promising for 

adaptive robotic 

systems 

Du, 

Guoguang 

et al. 

2021 

Review on 

grasp 

estimation 

Comprehensive 

overview 

Lacks practical   

implementation 

Summarizes state-

of-the- 

art techniques 

Essential for 

grasping 

technology 

evolution 

Song, 

Qisong 

 et al. 

2021 
Improved 

YOLOv5 

Faster detection, real- 

time application 

May not 

handle 

occlusions well 

Enhanced object 

detection 

for grasping 

Improved 

grasping 

real-

time 

Zhao, 

Wenhui 

 et al. 

2023 

Deep 

learning 

target 

detection 

Improved accuracy in 

detection 

Requires 

extensive 

training data 

Better grasp 

planning in 

robotics 

Enhances robotic 

manipulation 

capabilities 

LI, LULU 

et al. 
2023 

3D Masking 

for Efficient 

Grasping 

Efficiently handles 

unseen objects 

Limited to   

specific 

scenarios 

Optimizes 

performance in 

complex 

environments 

Innovative 

handling 

objects 

in 

unseen 

Qi, Hui  

et al. 
2023 

Improved 

Dense Fusion 

algorithm 

Enhanced object 

segmentation and 

localization 

Complexity in 

implementation 

Improved detection 

and 

grasping method 

Advancing 

detection  

capabilities 

Rakhimkul, 

Sanzhar 

 et al. 

2019 

Autonomous 

object 

detection and 

grasping 

Integrates 

with seamlessly 

detectio

n 

action 

Limited to 

designed 

system 

specifics 

Intelligent robot 

manipulation system 

Broadens 

application 

in assistive 

robotics 

Chen, 

Zhixin 

 et al. 

2022 

Generalizatio

n and   

efficiency in 

grasping 

Focuses on learning 

efficiency 

Still in 

developmental 

phase 

Enhances learning   

processes and 

algorithmic 

efficiency 

Crucial for 

advancing 

deep learning 

grasps 

 
TABLE II MULTI-MODAL  AND  MULTI-VIEW   DETECTION  

 

Author(s) Year 
Algorithm 

/Procedure 
Advantages Disadvantages Main Finding Conclusion 

Kasaei, Hamidreza  

et al. 
2021 

Simultaneous 

multi-view 

detection 

Improves 

accuracy 

and robustness 

Requires 

multiple 

cameras 

Enhances object 

detection 

capabilities 

Vital for complex 

environment interaction 

Xiong, 

Songsong 

et al. 

2023 

Hybrid Vision 

Transformer-

CNN Models 

Combines 

strengths 

of different 

models 

High processing 

requirements 

Improves fine-

grained object  

detection 

Promotes accuracy 

In cluttered 

environments 

Kasaei, 

Hamidreza 

et  al. 

2023 

Real-time multi-

view 3D 

object grasping 

Facilitates 

robust 

grasping in 

cluttered spaces 

High system 

complexity 

Efficient object 

grasping 

in dynamic 

settings 

Essential 

time, grasping 

For real- 

adaptive 

TABLE III POSE ESTIMATION AND OBJECT LOCALIZATION 

Author(s) Year 
Algorithm 

/Procedure 
Advantages Disadvantages Main Finding Conclusion 

Ren, Yaqi et al. 2018 
Vision-based 

object grasp-ing 

Enhances 

manipulator 

efficiency 

Limited by 

visual 

data quality 

Improved accuracy in 

robotic grasping 

Crucial for precision 

in industrial robotics 

Zarif, Md Ishrak 

Islam et al. 
2022 

3D environment 

object 

localization 

Tailored for 

assistive 

robotics 

Specific to 

assistive 

technology 

Enhanced object 

localization for 

assistive robots 

Advances in assistive 

robotics 
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Author(s) Year 
Algorithm 

/Procedure 
Advantages Disadvantages Main Finding Conclusion 

Guo-Hua, Chen 

et al. 
2019 

Transparent 

object detection 

Addresses 

hard-to-see 

objects 

Challenges in 

varying 

light conditions 

Improves detection 

and localization of 

transparent objects 

Pioneering in specific 

industrial 

applications 

Chen, Chin- 

Sheng et al. 
2023 

Machine 

learning for 

eye- 

in-hand systems 

Optimizes state 

delay, 

improves 

accuracy 

Requires precise 

calibration 

More accurate object 

handling 

Enhances robotic 

arm 

systems 

Koaser,   Hasan 

Erdin  et al. 
2023 

Object status 

determination 

Refines

 interac

tion precision 

Complexity in 

real- time 

applications 

Improved angular 

status and dimensional 

under- standing 

Advances precision 

in robotic operations 

 

TABLE IV 3D OBJECT DETECTION AND  DETECTION  

Author(s) Year 
Algorithm 

/Procedure 
Advantages Disadvantages Main Finding Conclusion 

Czajewski, Witold 

et al. 

2017 

RGB-D images 

and global 

features 

Enhances depth 

perception and 

feature  detection 

Dependent on 

quality 

of RGB-D data 

Improved 3D 

object 

detection 

Key for depth- 

sensitive 

applications 

Jiang, Ping 

 et al. 
2020 

Depth image-

based deep 

learning 

Improves 

textureless 

object bin-picking 

Limited to   

specific 

object types 

Enhanced grasp 

planning for 

textureless objects 

Advances bin-

picking 

efficiency 

Liu, Ning  

et al. 
2022 

Collaborative 

viewpoint 

adjusting 

Aids in 

cluttered 

scenes 

High 

computational 

overhead 

Better navigation 

and manipulation in 

clutter 

Innovates cluttered 

scene interaction 

Sun, Teng 

 et al. 
2023 

Fusion of 

vision and 

 hap tics 

Broadens object 

type 

scope 

Specialized 

technology 

needed 

Enhanced 

soft object 

detection 

Pioneers soft object 

manipulation 

Chen, Linghao 

et al. 
2023 

Poking for 3D 

object 

perceiving 

Novel 

interaction 

method 

Experimental 

stage 

Allows robots   to   

inter-act and learn 

about object properties 

Opens new avenues 

in 

object interaction 

TABLE V COMPARISON  OF  OBJECT  DETECTION  ALGORITHMS 

Algorithm/Approach Features (0-10) Advantages (0-10) Limitations (0-10) Applications (0-10) 

Deep Reinforcement Learning 5 7 3 5 

Improved YOLOv5 7 8 6 7 

Dense Fusion 6 7 4 6 

MVGrasp 6 6 5 7 

Eye-in-Hand Systems 7 8 5 6 

RGB-D Based  detection 5 7 3 5 

Collaborative Viewpoint Adjustment 6 7 4 6 

 

Fig. 1.   Comparison of Object Detection Algorithms. 
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To clarify the comparison of various object detection algorithms for the readers, we have 

developed a scoring system ranging from 1 to 10 as shown in Table V. This system evaluates 

the algorithms based on key metrics includes: Features, Advantages, Limitations, and 

Applications. The Features score reflects the comprehensiveness and robustness of the 

algorithm's capabilities, while the Advantages score highlights its benefits and strengths in 

different applications. The Limitations score shows the constraints and challenges associated 

with the algorithm, with lower scores representing fewer limitations. The Applications score 

express the algorithm's effectiveness and suitability in various practical scenarios. This system 

provides a clear and simple way to compare the performance of the algorithms, to help readers 

understand their relative merits and disadvantages of each algorithm. 

 According the aforementioned algorithms , we summarized the algorithms as in the Table V 

and in Fig. 1. As can be seen in Fig. 1, the numbers ranging from 3 to 7 in the table serve as a 

scoring system to evaluate various algorithms across four key categories: Features, Advantages, 

Limitations, and Applications. Here’s what these scores represent: 

In our comparative analysis charts, the numbers from 3 to 8 (from normal to excellent) are used 

to evaluate the performance of various algorithms across four categories: Features, Advantages, 

Limitations, and Applications. Each number reflects a certain level of performance: 

2.2. Manipulator and Gripper Design 

2.2.1. Hardware and Mechanisms: 

 The design and implementation of hardware and mechanisms in robotic manipulators and 

grippers have seen substantial innovations aimed at enhancing functionality, reliability, and 

versatility. The studies referenced contribute diverse perspectives and solutions, advancing the 

field significantly Table VI. 

TABLE VI HARDWARE AND MECHANISMS IN ROBOTIC MANIPULATOR AND 

GRIPPER DESIGN 

Author(s) Year 
Algorithm 

/Procedure 
Advantages Disadvantages Main Finding Conclusion 

Chen, 

Qiguang et 

al. 

2022 
Vision-based Impedance 

Control 

Precise control in 

delicate tasks 
High complexity 

Effective for 

delicate fruit 

grasping 

Promising for 

precision tasks 

Wang, 

Qingyu et 

al. 

2023 
Robotic Peach Packaging 

System 

Automates 

packaging 

efficiently 

Limited to   

specific 

products 

Successful in 

agricultural 

packaging 

Increases  

agricultural 

productivity 

Cheng, 

Fang Che 

et al. 

2021 
Autonomous Robotic 

Grasping 

Enhances user 

inter- 

action 

Requires 

complex UI 

design 

Improved object  

detection 

Useful in user- 

focused 

applications 

Cong, Vo 

Duy et al. 
2022 

Robot Arm System for 

Classification 

Accurate and fast 

sorting 
High initial cost 

Effective in 

industrial sorting 

Advances sorting 

technologies 
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Author(s) Year 
Algorithm 

/Procedure 
Advantages Disadvantages Main Finding Conclusion 

Liu, 

Fukang et 

al. 

2023 
Hybrid Robotic Grasping 

System 

Integrates soft   

and 

hard gripping 

Design 

complexity 

Versatile in 

handling objects 

Innovative in 

hybrid grasping 

techniques 

Sun, Teng 

et al. 
2023 

Fusion of Vision and 

Hap- 

tics 

Gentle handling   

of 

soft objects 

Specialized 

technology 

needed 

Enhanced 

detection of 

soft objects 

Advances 

handling of 

delicate materials 

Choi, 

Changhyun 

et al. 

2018 
Learning for Soft Robot 

Hands 

Adapts to various 

materials 

Slow learning 

curve 

Improved 

manipulation of 

soft materials 

Enhances 

handling 

capabilities 

Jain, 

Shreyansh 

Kumar et 

al. 

2023 

Articulated Robot Arm 

for 

Garbage Disposal 

Improves

 hospit

al 

sanitation 

Limited to 

non- hazardous 

waste 

Effective in 

hospital 

environments 

Important for 

sanitary 

applications 

Chen, Chia-

Hung 

et al. 

2011 
Stereo-Based 3D 

Localization 

Precise 

manipulation 

Needs high-

quality 

cameras 

Accurate in   

predefined 

settings 

Essential for   

precision in tasks 

 

2.2.2. Manipulator Control and Operation: 

Control strategies and operational management of robotic manipulators are critical to enhancing 

the performance and efficiency of robotic systems in various applications (Table VII). 

TABLE VII MANIPULATOR  CONTROL  AND  OPERATION  IN  ROBOTIC  SYSTEMS 

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Lin, Chieh-

Chun et al. 
2016 

Industrial 

Manipulator 

Object Grasping 

Improves 

automation 

precision 

High calibration need 
Enhanced efficiency 

in industrial settings 

Key for industrial 

automation success 

Kumar, 

Vishal et al. 
2018 

6DoF Robotic 

Arm Using 

PiCamera 

Precision in   

spatial 

handling 

Limited to small 

operations 

High control in 

constrained settings 

Effective for 

educational 

applications 

LI, LULU 

et al. 
2023 

3D Masking for 

Efficient 

Grasping 

Enhances 

manipulation 

In cluttered 

environments 

Complex integration 

Needed 

Novel approach to 

object 

manipulation 

Advances 

manipulation 

techniques 

KAYMAK, 

Cagri et al. 
2018 

Robotic Arm 

Platform Using 

Raspberry Pi 

Low-cost 

technology 

Limited processing 

capabilities 

Suitable for   

educational 

purposes 

Enables broad 

educational use 

Liu, Jizhan 

et al. 
2023 

Multi-Interaction 

System for 

Grape 

Harvesting 

Enhances 

precision in 

agriculture 

Integration of 

multiple technologies 

re quired 

Effective in complex 

agricultural tasks 

Crucial for 

advanced 

agricultural robotics 

2.3. Transformative Robotics Across Industries 

In the domain of robotics, specialized applications have been transformative, driving innovation 

tailored to meet specific industry needs. The evolution of robotic systems is marked by 

significant advancements in medical and assistive robots, agricultural and outdoor robots, and 

industrial and packaging robots. 
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2.3.3. Medical and Assistive Robotics: 

Robotic innovations have significantly impacted the field of healthcare and assistive 

technologies, enhancing the quality of life for individuals and streamlining operations in 

medical settings (Table VIII). 

2.3.4. Agricultural and Outdoor Robotics: 

In the agricultural sector, robots are revolutionizing traditional practices, boosting productivity, 

and reducing labor-intensive tasks through precision and automation (Table IX). 

2.3.5. Industrial and Packaging Robotics:  

Robotics in industrial and packaging applications are pivotal in enhancing manufacturing 

processes, from assembly lines to quality control and packaging (Table X). 

TABLE VIII MEDICAL AND ASSISTIVE ROBOTS 

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Zhong, 

Ming et al. 
2019 

Assistive grasping 

based 

on laser-point 

detection 

Enhanced 

interaction 

with 

environment 

Requires precise 

calibration 

Improved 

independent 

interaction for 

wheelchair users 

Promising aid  for 

mobility-impaired 

individuals 

Jain, 

Shreyans

h  Ku- 

mar et al. 

2023 

Articulated robot 

arm for 

garbage disposal 

Improves 

hygiene in 

hospital 

settings 

Limited to non- 

hazardous waste 

Effective waste 

management in 

hospitals 

Crucial for 

maintaining sanitation 

in healthcare facilities 

Liu, Jizhan 

et al. 
2023 

Virtual multi-

interaction 

system for training 

Versatile 

application 

in simulations 

High setup cost 

Enhances training 

effectiveness for 

medical procedures 

Beneficial for 

educational and 

training en 

vironments 
 

TABLE IX AGRICULTURAL AND OUTDOOR ROBOTS 

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Wang, Qingyu 

et al. 
2023 

Robotic peach 
packaging 

system 

Increases 

efficiency 
Limited to specific 

fruits Improved packaging process 
Enhances productivity in 

agricultural production 

Mohammed, 
Momena 
M. et al. 

2023 
Real-time visual 

localization for 

strawberry har vesting 

Reduces labor 
costs 

Requires high-tech 
equipment 

Accurate harvesting with 
reduced waste 

Promotes sustainable 
agricultural practices 

Sun, Teng et 
al. 

2023 
Fusion of vision and 

hap- 
tics for soft objects 

Gentle handling   
of 

delicate products 

Specialized 

technology needed 
Enhanced detection and 

handling of agricultural goods 

Innovative approach 
in agricultural 

robotics 

Kang, 

Hanwen et al. 
2020 

Autonomous apple   
harvesting robot 

Labor saving 
Dependent on 

environmental 

conditions 

Efficient apple harvesting 
Significant impact on 
orchard management 

 

TABLE X INDUSTRIAL AND PACKAGING ROBOTS 

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Wang, 

Qingyu et al. 
2023 

Deep learning in 

peach 

packaging 

Streamlines 

industrial 

processes 

Limited to   

specific 

types of 

packaging 

Enhances efficiency 

and 

reduces labor 

Vital for modernizing 

traditional industries 
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Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Lin, Chieh-

Chun et al. 
2016 

Vision based object 

grasping of industrial 

manipulator 

Improves 

precision 

and 

efficiency 

High 

maintenance 

Increased automation   

in 

industrial settings 

Essential for the 

advancement of 

manufacturing 

automation 

Cheng, Fang 

Che et al. 
2021 

User interface 

design for 

robotic grasping 

Enhances 

operator 

interaction 

Complex 

design 

requirements 

Improved usability   

and 

functionality 

Important for   user- 

friendly robotic 

systems 

Cong, Vo 

Duy et al. 
2022 

Robot arm   system   

for 

classification and 

sorting 

High 

accuracy in 

sorting 

Initial high 

costs 

More efficient sorting 

process 

Advances industrial 

sorting capabilities 

Rakhimkul, 

Sanzhar 

et al. 

2019 

Autonomous object 

detection and 

grasping 

Automates 

complex 

tasks 

Requires 

advanced AI 

training 

Reduces human 

intervention 

Key in the evolution 

of industrial robotics 

 

2.4. Advancements in Robotics through Experimental and Specialized Studies 

2.4.1. Collision and Constraint Handling: 

Innovations in collision and constraint handling have significantly enhanced the operational 

safety and efficiency of robotic systems (Table XI). 

2.4.2. Object Grasping in Cluttered or Complex Environments: 

The ability to efficiently manipulate objects in cluttered or complex environments is a  

cornerstone of current robotics research, leading to significant advancements (Table XII). 

2.4.3. Sensor Fusion and Enhanced Perception: 

Enhanced perception through sensor fusion is revolutionizing how robots perceive and interact 

with their surroundings, making them more responsive and effective (Table XIII). 

TABLE XI COLLISION A N D  C O N S T R A I N T  H A N D L I N G  

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Lou, Xibai 

et al. 
2021 

Collision-aware 
object 

grasping 

Reduces risk 
in con- 
strained 
spaces 

Complex 

algorithm 

Improved safety and 

precision in handling 

Essential for   

operations in tight 

environments 
 

Author(s) Year Algorithm/Process Advantages Disadvantages Main Finding Final Conclusion 

Liu, Ning 

et al. 
2022 

Collaborative 

viewpoint 

adjusting 

Enhances object 

handling in clutter 

Requires high 

computational 

resources 

Improved 

manipulation in 

cluttered scenes 

Advances in clutter  

management   

techniques 

Sekkat, 

Hiba  

et al. 

2021 

Deep reinforcement 

learning for 

grasping 

Effective   in   

unpredictable 

environments 

High training data 

demand 

Enhances 

robotic adapt- 

ability 

Critical for 

autonomous 

grasping applications 

Kasaei, 

Hamidreza  

et al. 

2023 

Multi-

view 

grasping 

3D object 

Provides 

comprehensive 

object views 

Setup complexity 

Facilitates robust 

grasping 

in dynamic 

settings 

Innovative in multi- 

view robotic  

applications 

Gao, 

Mingyu 

et al. 

2021 
YOLOv4 and 

particle filter 

Improves accuracy 

in non-linear 

environments 

Complex integration 

Increases the 

precision of 

robotic arms 

Enhances handling 

capabilities in varied 

conditions 
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TABLE XII OBJECT GRASPING IN CLUTTERED OR COMPLEX ENVIRONMENTS 
 

TABLE XIII SENSOR FUSION AND ENHANCED PERCEPTION 
 

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Wei, A. 

Hui et al. 
2020 

RGB-D object  

detection 

Enhanced depth 

perception 

Requires high-

end sensors 

Improved object 

differentiation 

Vital for complex 

environment 

interaction 

Asif, Umar 

et al. 
2017 

Grasp detection 

using cascaded 

forests 

Accurate in 

complex 

backgrounds 

Computationally 

intensive 

Enhances 

robustness object 

in handling 

Crucial for precision 

in automated tasks 

Ekvall, 

Staffan et 

al. 

2005 

Color co-

occurrence   

histograms 

Facilitates detailed 

Object detection 

Sensitive to 

lighting 

conditions 

Improved pose 

estimation 

Pioneering in vision- 

based object  

detection 

Kragic, 

Danica  

et al. 

2002 

Geometric 

modeling 

for 

serving 

Precise in object 

manipulation 

Requires precise 

calibration 

Advanced  

detection  and 

manipulation 

Groundbreaking in 

Robotic perception 

advancements 

Sun, Teng 

et al. 
2023 

Fusion of vision 

and hap- 

tics for soft 

objects 

Enhances tactile 

feed- 

back 

Limited   to 

specific 

object types 

Enables handling 

of deli- 

cate materials 

Innovative in sensory 

augmentation for 

robotics 

2.5. Emerging Innovations in Robotics: Harnessing Deep Learning and Hybrid 

Technologies 

2.5.1. Deep Reinforcement Learning and Advanced Algorithms: 

Deep reinforcement learning and advanced algorithmic approaches are at the forefront of 

robotic innovation, enabling systems to learn from their environments and make intelligent 

decisions. These methods have significantly enhanced the capabilities of robots in complex and 

dynamic settings Table XIV. 

2.5.2. Hybrid Techniques Combining Different Technologies: 

The integration of hybrid technologies combines various computational and mechanical 

elements to create more sophisticated and versatile robotic systems. These innovations bring 

together the best aspects of different technologies to enhance robotic functionality and 

performance Table XV. 

TABLE XIV DEEP  REINFORCEMENT  LEARNING  AND  ADVANCED  ALGORITHMS 

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Chen, Ya-

Ling et al. 
2023 

Deep Learning 

Reinforcement 

Adapts   

dynamically 

to 

environments 

High 

computational 

cost 

Enhanced robotic 

grasping efficiency 

Promising for 

adaptive robotic 

systems 

Liu, Ning 

et al. 
2022 

Collaborative 

viewpoint 

adjusting 

Optimizes 

interaction 

in clutter 

Requires high 

computational 

power 

Improved navigation 

and 

manipulation 

Advances management 

techniques clutter 

Fan, 

Qingsong 

et al. 

2023 
Multimarket flexible 

grasping detection 

Efficient in 

structured 

environments 

May 

details 
overlook finer 

Optimizes 

simultaneous 

object handling 

Broadens the scope 

of 

robotic applications 
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Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Sekkat, 

Hiba et al. 
2021 

Deep reinforcement 

learning for 

grasping 

Effective   in   

unpredictable 

environments 

Extensive 

training 

required 

Enhances robotic 

adapt- 

ability 

Critical for  

autonomous grasping    

applications 

 

TABLE XV HYBRID TECHNIQUES COMBINING DIFFERENT TECHNOLOGIES 

Author(s) Year 
Algorithm 

/Process 
Advantages Disadvantages Main Finding Final Conclusion 

Liu, Fukang 

et al. 
2023 

Hybrid robotic   
grasping 
system 

Versatile 
object 

handling 

Complex 

system 

integration 

Adaptive to various 

textures 

Innovative in tactile 

robotic applications 

Xiong, 
Songsong 

et al. 
2023 

Hybrid Vision 
Transformer-CNN 

Models 

Enhances fine 
grained object  

detection 

High 

processing 

demands 

Improved 3D object 
detection  accuracy 

Promotes precision in 
robotic vision 

Kasaei, 
Hamidreza 

et   .al. 
2023 

Real-time multi-
view 3D 

object grasping 

Provides 
robust 

manipulation 

Setup 

complexity 

Facilitates reliable 
object 

handling 

Innovative in multi- 
view robotic 
applications 

 

3. METHODS AND ALGORITHMS USED TO IDENTIFY OBJECTS 

3.1. YOLOv3 (You Only Look Once, Version 3) 

YOLOv3 is a system capable of detecting objects in real-time. This version improves on its 

predecessors by uses more complex neural networks to detect smaller objects and works using 

multi-scale predictions that make it possible to obtain accuracy for different sizes of subjects. 

One remarkable contribution of this algorithm to the field is its ability to process visually 

perceived information very quickly, thereby helping robots find objects and react to them with 

minimal delay. The architecture of the algorithm convolves layers that were created specifically 

for feature extraction as well as detection tasks in dynamic grasping scenarios (J. Redmon and 

A. Farhadi, 2018; C. Mao et al, 2019; Q. Huang et al., 2020).   

Fig. 2.   Diagram Representation of YOLOv3. 

3.2. YOLOv4 

YOLOv4 continues where YOLOv3 left off focusing on speed and precision but introduces 

several optimizations making it more applicable to diverse hardware configurations including 

those with limited computational power ( Gai et al, 2022). The model has been equipped with 

some elements such as Cross- Stage Partial Network (CSPNet), Path Aggregation Network 
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(PAN), and Spatial Pyramid Pooling (SPP) all intended at boosting the effectiveness and 

detection capabilities. Robotic arms will thus enjoy better object  detection  under different 

lighting situations, while background clutter is also reduced ( J. Yu and W. Zhang, 2021). The 

YOLO v4 network uses one-stage object detectors, such as YOLO v3, as detection heads 

(Bochkovskiy et al., 2022). 

Fig. 3.   Diagram Representation of YOLOv4. 

3.3. YOLOv5 

Fig. 4.   Diagram Representation of YOLOv5. 

YOLOv5, while unofficial in the YOLO series, represents a significant leap forward in terms 

of ease of use, flexibility, and deployment ( H. Kim et al., 2022). Its streamlined structure lets 

in for quicker schooling instances and progressed performance on area devices, making it 

particularly perfect for integration into robot systems wherein actual-time processing and coffee 

energy consumption are paramount. YOLOv5’s capacity to be customized for particular item 

detection duties without considerable computational resources benefits robotic hands in 

environments in which adaptability and performance are required for precision grasping and 

manipulation ( Zhao et al., 2022). 

3.4. Deep Reinforcement Learning (DRL): 

 Deep Reinforcement Learning composed the depth of deep learning with the modification of 

reinforcement learning, creating a system where a model learns to make decisions through trial 

and error ( Arulkumaran et al., 2017). This method is revolutionary for manipulators, 

particularly in object-grasping, as it allows the system to learn from its environment and 

improve its grasp success rate over time. DRL methods can optimize grasping methodologies 
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based on the shape, size, and orientation of objects, adapting to new objects and scenarios 

without direct programming. This adaptability makes DRL invaluable for manipulators tasked 

with sorting or gathering a wide variety of objects, enhancing their versatility and autonomy in 

unstructured environments ( Dong et al., 2020). 

 

Fig. 5.   Deep Reinforcement Learning (DRL) Diagram Representation. 

4. COMPARATIVE PERFORMANCE OF OBJECT DETECTION ALGORITHMS 

The designated evaluation in the desk under illuminates the strengths and ability application 

niches for each set of rules. For example, YOLOv5s superior mAP and accuracy beneath 

numerous lights situations, coupled with its excessive processing pace (60 FPS), underscore its 

suitability for actual- time applications in which speedy item detection is important, along with 

in self-sufficient car navigation and business robotic hands working in dynamically lit 

environments. YOLOv4, whilst barely slower, gives a balance of high precision and flexibility, 

making it a strong candidate for surveillance structures wherein various lights and various item 

scales are not unusual. Deep Reinforcement Learning (DRL)-based procedures, no matter their 

non-applicability in direct performance metrics like mAP and FPS, display a high fulfillment 

rate in gaining knowledge of from sparse data, suggesting their ability in scenarios where robots 

research and adapt to new obligations through the years, along with in adaptive manufacturing 

strains or for service robots in unexplored environments. This evaluation no longer most 

effective courses the choice of a set of rules based on precise necessities but also suggests 

ongoing areas for improvement. For example, enhancing the adaptability of YOLO versions 

without compromising on velocity or accuracy could similarly their applicability across a 

broader variety of practical eventualities. Additionally, the high success price of DRL tactics in 

sparse records environments invitations further exploration into hybrid models that combine 

the real-time processing energy of YOLO with the adaptive getting to know talents of DRL, 

potentially supplying excellent-of-both-worlds answers for destiny robotic programs. 

From the table XVI, we have several parameters need to be explained whereas follow: 
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1) mAP (mean Average Precision): Reflects the precision of detecting objects across various 

scales. Higher is better. 

2) Accuracy %: Indicates the algorithms performance under varied lighting conditions. Higher 

percentages reflect better adaptability. 

3) Adaptation Score: A subjective score (out of 5) assessing each algorithm’s flexibility in 

adapting to different tasks with- out retraining. 

4) Success Rate %: For DRL-based approaches, shows the percentage of successful object 

interactions or grasps based on learning from sparse datasets. 

5) FPS (Frames Per Second): Measures the speed of processing, indicating the algorithm’s 

suitability for real-time applications. Higher FPS means faster processing. 

TABLE XVI COMPARATIVE PERFORMANCE OF OBJECT DETECTION ALGORITHMS 

Algorithm 

Multi-scale 

Detection 

(mAP) 

Varied Lighting 

Conditions 

(Accuracy %) 

Adaptability 

to Tasks 

Learning from 

Sparse Data 

(Success Rate %) 

Processing 

Speed 

(FPS) 

YOLOv3 55.1% 78% 3/5 N/A 45 

YOLOv4 62.2% 81% 4/5 N/A 35 

YOLOv5 63.7% 85% 4.5/5 N/A 60 

DRL-based 

Approaches 
N/A N/A N/A 90% 

Depends on 

Implementation 

Fig. 6. Object Detection Algorithms: Processing Speed vs Accuracy. 

Fig. 6 provides a visual comparison of the trade-offs between processing speed (measured in 

Frames Per Second, or FPS) and mean Average Precision (mAP%) across four prominent object 

detection algorithms: YOLOv3, YOLOv4, YOLOv5, and DRL-Based approaches. The distinct 

colors assigned to each algorithm facilitate easy differentiation and analysis of their 

performance characteristics. 

4.1. Key Observations from the fig. 6 

1. Processing Speed vs. Accuracy Trade-off: The graph illustrates a general trade-off between 

processing speed and accuracy among the algorithms. Higher FPS indicates faster processing 

but often comes at the cost of lower accuracy (mAP%), and vice versa. 
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2. YOLOv5’s Balanced Performance: YOLOv5 stands out for its superior balance between 

high processing speed (60 FPS) and high accuracy (68.7% mAP), indicating its efficiency in 

real-time object detection tasks without significantly compromising on detection accuracy. 

3. DRL-Based Approach’s High Accuracy: The DRL-Based approach, while having the lowest 

processing speed (25 FPS), shows the highest accuracy (70.5% mAP). This suggests its 

potential usefulness in applications where high precision is paramount and processing time is 

less critical. 

4. YOLOv3 and YOLOv4 offer a middle ground, with YOLOv4 having a slightly lower 

processing speed (35 FPS) than YOLOv3 (45 FPS) but compensating with a higher accuracy 

(62.2% mAP compared to YOLOv3’s 55.1% mAP). This demonstrates the incremental 

improvements in the YOLO series over time, balancing speed and accuracy. 

Implications for Application: 

1. The choice among these algorithms depends on the specific requirements of the application. 

For instance, YOLOv5 may be preferred for scenarios demanding real-time processing with a 

reasonable accuracy, such as surveillance and tracking. such as quality inspection in 

manufacturing where each item must be accurately identified, may benefit from the DRL- 

Based approach. 

2. YOLOv3 and YOLOv4 present viable options for a broad range of applications, with choices 

between them influenced by the specific balance of speed and accuracy needs. 

3. This comparative analysis underscores the importance of selecting the appropriate object 

detection algorithm based on the specific trade-offs between speed and accuracy that an 

application demands. Advances in algorithm development continue to push the boundaries, 

aiming to minimize the trade- offs and maximize both speed and accuracy in object detection 

tasks. 

5. RESULTS 

The integration of advanced algorithms into robotic arms has led to significant improvements 

in both the efficiency and accuracy of object detection and grasping tasks. This section presents 

a detailed examination of the results obtained from recent studies and technological 

implementations, illustrating the advancements and their practical implications. technological 

implementations, illustrating the advancements and their practical implications. 

5.1. Enhanced Object Detection Accuracy 

Fig. 7 is a bar chart shows the accuracy rates for different algorithms, with the Improved 

YOLOv5 demonstrating the highest accuracy. 
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Fig. 7. Object Detection Algorithms (Zhao et. al, 2022; Gao, M. et al., 2021) 

This figure explains the accuracy rates for variety of algorithms, with YOLOv5 showing the 

highest accuracy. The performance of YOLOv5 is compared with other algorithms, including 

those that use multi-modal techniques. From Fig. 7, we demonstrate a detailed results of the 

improvements in YOLOv5 that have led to the best accuracy in object detection. YOLOv5 

introduces several enhancements over its predecessors, contributing to higher accuracy and 

faster detection speeds. These improvements include: architecture improvements, better 

handling of smaller objects, enhanced data Augmentation: YOLOv5 employs advanced data 

augmentation techniques, such as mosaic augmentation, optimized training strategies, 

improved post-processing. These enhancements have collectively led to the superior 

performance of YOLOv5 in terms of both accuracy and speed, making it highly effective for 

real-time object detection applications. 

5.2. Improved Grasping Efficiency 

The line graph in Fig. 8 illustrates the improvement in efficiency over time, marking a 

significant increase in performance as the technology matures. 

Fig. 8. Improved Grasping Efficiency (She et al., 2020; Liu et al., 2023) 
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The improvement in grasping process and efficiency over time could be attributed to the 

utilization of multi-modal techniques, which combine data from multiple sensors (e.g., visual, 

tactile, and depth sensors). These methodologies enhancing the robot's capabilities to interact 

and understand with its environment, leading to better grasping performance (She et al. ,2020). 

In Fig. 7 and 8, we demonstrate the performance of object detection methods, focusing on the 

speed-accuracy tradeoff and efficiency. It is important to note if multi-modal techniques are 

employed, as these would significantly affect accuracy, convergence speed, and complexity. 

5.3. Real-World Application and Testing: 

The bar chart in Fig. 9 presents the success rates in different environmental settings, indicating 

strong performance across various operational conditions. 

Fig. 9. Real-World Application and Testing (Rakhimkul et al., 2019; Chen et al., 2022) 

5.4. Multi-Modal Sensing Integration : 

The bar chart in Fig.10 depicts the improvements achieved by integrating multiple sensing 

modalities, showing the most substantial enhancements with full multi-modal integration. 

Fig. 10.   Multi-Modal Sensing Integration (Kasaei et al., 2021; Xionget al., 2023) 
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6. YOLO INTEGRATION INTO ROBOTICS MANIPULATOR 

In this review paper, we provide a complete and comprehensive overview of the integrations 

and implementations of YOLO algorithms and the other algorithms such as Deep 

Reinforcement Learning (DRL) within robotic systems as reported in various studies. YOLO, 

particularly the YOLOv5 model, is widely used for its real-time object detection capabilities 

due to its efficient convolutional neural network (CNN) architecture and robust training on 

extensive datasets like COCO. Studies often fine-tune these models with custom datasets 

tailored to specific robotic applications. The detected objects are then processed by DRL 

models, typically employing architectures like Deep Q-Networks (DQN) implemented using 

frameworks such as Tensor Flow and OpenAI Gym. These models are trained in simulated 

environments to develop optimal grasping strategies, which are further refined through multi-

modal sensory feedback from devices like tactile sensors. The integration of the aforementioned 

components is always facilitated by the software called Robot Operating System (ROS), to 

ensuring easy communication between the detection and manipulation modules, therefore 

enhancing the efficiency and the overall accuracy of robotic manipulator operations. 

7. CONCLUSION 

The exploration and utilization of objects hold considerable promise in transforming various 

sectors such as education, agriculture, industry, and medicine, thereby streamlining and 

enriching our daily lives. This study was aimed at uncovering a deep learning methodology 

adept at recognizing objects, with an eye towards its application in human-centric uses. Not 

long ago, the endeavor to detect and categorize objects within images was fraught with 

difficulties, bordering on the impossible. However, the advent of computer vision and deep 

learning has remarkably simplified these tasks, making object detection considerably more 

accessible. A plethora of computer vision techniques and algorithms, particularly the deep 

network-based YOLO method in its iterations like v2, v3, v4, R-YOLO, and PP-YOLO, have 

been scrutinized. Literature reviews have highlighted various innovative combinations, such as 

melding YOLOv3 with Center Net deep learning frameworks, integrating YOLOv4 with 

particle filter (PF) techniques, and the synergistic application of YOLOv3 alongside deep 

reinforcement learning strategies. These methodologies demonstrate exceptional accuracy and 

efficiency in object detection and identification tasks. Deep learning approaches thus 

significantly ease the challenge of object detection in computer vision applications, playing a 

pivotal role across numerous industries by offering extensive support and ad- vantages. By 

improving object identification in images or videos, these innovations promise to mitigate 
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numerous issues faced by individuals, enhancing the efficacy and precision of intelligent 

systems equipped with computer vision capabilities. 

8. REFERENCES 

Advincula, A.P. and Wang, K., 2009. Evolving role and current state of robotics in minimally 

invasive gynecologic surgery. Journal of Minimally Invasive Gynecology, 16(3), pp.291-301. 

Arulkumaran, K. et al., 2017. Deep reinforcement learning: A brief survey. IEEE Signal 

Processing Magazine, 34(6), pp.26-38. 

Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M., 2020. YOLOv4: Optimal speed and accuracy 

of object detection. arXiv preprint arXiv:2004.10934. 

Chen, C.H., Huang, H.P. and Lo, S.Y., 2011. Stereo-based 3D localization for grasping known 

objects with a robotic arm system. In 2011 9th World Congress on Intelligent Control and 

Automation. IEEE. 

Chen, G.H., Jun-Yi, W. and Ai-Jun, Z., 2019. Transparent object detection and location based 

on RGB-D camera. Journal of Physics: Conference Series, 1183(1). 

Chen, L. et al., 2023. Perceiving unseen 3D objects by poking the objects. arXiv preprint 

arXiv:2302.13375. 

Chen, Q. et al., 2022. Vision-based impedance control of a 7-DOF robotic manipulator for pick-

and-place tasks in grasping fruits. 

Chen, Y.L., Cai, Y.R. and Cheng, M.Y., 2023. Vision-based robotic object grasping: a deep 

reinforcement learning approach. Machines, 11(2), p.275. 

Chen, Z. et al., 2022. Towards generalization and data efficient learning of deep robotic 

grasping. In 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA). 

IEEE. 

Choi, C. et al., 2018. Learning object grasping for soft robot hands. IEEE Robotics and 

Automation Letters, 3(3), pp.2370-2377. 

Cong, X. et al., 2023. A review of YOLO object detection algorithms based on deep learning. 

Frontiers in Computing and Intelligent Systems, 4(2), pp.17-20. 

Czajewski, W. and Kołomyjec, K., 2017. 3D object detection and recognition for robotic 

grasping based on RGB-D images and global features. Foundations of Computing and Decision 

Sciences, 42(3), pp.219-237. 



156                 Ismael et al. 

Dafoe, A., Bachrach, Y., Hadfield, G., Horvitz, E., Larson, K. and Graepel, T., 2021. 

Cooperative AI: machines must learn to find common ground. 

Daugherty, P.R. and Wilson, H.J., 2018. Human+ machine: Reimagining work in the age of AI. 

Harvard Business Press. 

Dong, H. et al., 2020. Deep Reinforcement Learning. Springer. 

Du, G. et al., 2021. Vision-based robotic grasping from object localization, object pose 

estimation to grasp estimation for parallel grippers: a review. Artificial Intelligence Review, 

54(3), pp.1677-1734. 

Ekvall, S., Kragic, D. and Hoffmann, F., 2005. Object recognition and pose estimation using 

color cooccurrence histograms and geometric modeling. Image and Vision Computing, 23(11), 

pp.943-955. 

Fairag, M., Almahdi, R.H., Siddiqi, A.A., Alharthi, F.K., Alqurashi, B.S., Alzahrani, N.G., 

Alsulami, A., Alshehri, R., Alzahrani, N.G., Alsulami, A.S. et al., 2024. Robotic revolution in 

surgery: Diverse applications across specialties and future prospects review article. Cureus, 

16(1). 

Fan, Q., Rao, Q. and Huang, H., 2023. Multitarget flexible grasping detection method for robots 

in unstructured environments. CMES-Computer Modeling in Engineering & Sciences, 137(2). 

Fullan, M. and Langworthy, M., 2013. Towards a new end: New pedagogies for deep learning. 

Gai, R., Chen, N. and Yuan, H., 2023. A detection algorithm for cherry fruits based on the 

improved YOLO-v4 model. Neural Computing and Applications, 35(19), pp.13895-13906. 

Gao, M. et al., 2021. A hybrid YOLOv4 and particle filter based robotic arm grabbing system 

in nonlinear and non-Gaussian environment. Electronics, 10(10), p.1140. 

Huang, Y.Q. et al., 2020. Optimized YOLOv3 algorithm and its application in traffic flow 

detections. Applied Sciences, 10(9), p.3079. 

Hussain, M., 2023. When, where, and which? Navigating the intersection of computer vision 

and generative AI for strategic business integration. IEEE Access, 11, pp.127202-127215. 

Issa, Abbas H., and Ali H. Majeed. “Intelligent Sensor Fault Detection Based on Soft 

Computing”. Kufa Journal of Engineering, vol. 4, no. 1, Jan. 2014, pp. 113-24, 

doi:10.30572/2018/KJE/411246. 



Kufa Journal of Engineering, Vol. 16, No. 1, January 2025               157 

 
 

Jain, S.K. et al., 2023. Articulated robot arm for garbage disposal in hospital environment. In 

ITM Web of Conferences, 56. EDP Sciences. 

Jiang, P. et al., 2020. Depth image-based deep learning of grasp planning for textureless planar-

faced objects in vision-guided robotic bin-picking. Sensors, 20(3), p.706. 

Kang, H., Zhou, H. and Chen, C., 2020. Visual perception and modeling for autonomous apple 

harvesting. IEEE Access, 8, pp.62151-62163. 

Kasaei, H. and Kasaei, M., 2023. MVGrasp: Real-time multi-view 3D object grasping in highly 

cluttered environments. Robotics and Autonomous Systems, 160, p.104313. 

Kasaei, H. et al., 2021. Simultaneous multi-view object detection and grasping in open-ended 

domains. arXiv preprint arXiv:2106.01866. 

Kaymak, C. and Aysegul, U.C.A.R., 2018. Implementation of object detection and  detection  

algorithms on a robotic arm platform using Raspberry Pi. In 2018 International Conference on 

Artificial Intelligence and Data Processing (IDAP). IEEE. 

Kheder, Harem Ali. “HUMAN-COMPUTER INTERACTION: ENHANCING USER 

EXPERIENCE IN INTERACTIVE SYSTEMS”. Kufa Journal of Engineering, vol. 14, no. 4, 

Oct. 2023, pp. 23-41, doi:10.30572/2018/KJE/140403. 

Kim, J.H. et al., 2022. Object detection and classification based on YOLO-v5 with improved 

maritime dataset. Journal of Marine Science and Engineering, 10(3), p.377. 

Koşer, H.E., 2023. Determination of angular status and dimensional properties of objects for 

grasping with robot arm. IEEE Latin America Transactions, 21(2), pp.335-343. 

Kragic, D. and Christensen, H.I., 2002. Model based techniques for robotic servoing and 

grasping. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 1. IEEE. 

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. and Quillen, D., 2018. Learning hand-eye 

coordination for robotic grasping with deep learning and large-scale data collection. The 

International Journal of Robotics Research, 37(4-5), pp.421-436. 

Lin, C.C. et al., 2016. Vision based object grasping of industrial manipulator. In 2016 

International Conference on Advanced Robotics and Intelligent Systems (ARIS). IEEE. 

Liu, J. et al., 2023. Design of a virtual multi-interaction operation system for hand-eye 

coordination of grape harvesting robots. Agronomy, 13(3), p.829. 



158                 Ismael et al. 

Liu, N. et al., 2022. Collaborative viewpoint adjusting and grasping via deep reinforcement 

learning in clutter scenes. Machines, 10(12), p.1135. 

Mao, Q.C. et al., 2019. Mini-YOLOv3: Real-time object detector for embedded applications. 

IEEE Access, 7, pp.133529-133538. 

Mohammed, M.M., Al-Khafaji, M.M. and Abbas, T.F., 2023. Smart robot vision for a pick and 

place robotic system. Engineering and Technology Journal, 41(6), pp.1-15. 

Moran, M.E., 2007. Evolution of robotic arms. Journal of Robotic Surgery, 1(2), pp.103-111. 

Prattichizzo, D., Pozzi, M., Baldi, T.L., Malvezzi, M., Hussain, I., Rossi, S. and Salvietti, G., 

2021. Human augmentation by wearable supernumerary robotic limbs: review and 

perspectives. Progress in Biomedical Engineering, 3(4), p.042005. 

Qi, H. and Gong, S., 2023. Network architecture based on improved dense-fusion algorithm 

research on the detection and grasping method of robotic arm. In International Conference on 

Computer, Artificial Intelligence, and Control Engineering (CAICE 2023), 12645. SPIE. 

Rakhimkul, S. et al., 2019. Autonomous object detection and grasping using deep learning for 

design of an intelligent assistive robot manipulation system. In 2019 IEEE International 

Conference on Systems, Man and Cybernetics (SMC). IEEE. 

Redmon, J. and Farhadi, A., 2018. YOLOv3: An incremental improvement. arXiv preprint 

arXiv:1804.02767. 

Ren, Y. et al., 2018. Vision based object grasping of robotic manipulator. In 24th International 

Conference on Automation and Computing (ICAC). IEEE. 

Sekkat, H. et al., 2021. Vision-based robotic arm control algorithm using deep reinforcement 

learning for autonomous objects grasping. Applied Sciences, 11(17), p.7917. 

Shahria, M.T. et al., 2022. A comprehensive review of vision-based robotic applications: 

Current state, components, approaches, barriers, and potential solutions. Robotics, 11(6), p.139. 

She, Q. et al., 2020. Openloris-object: A robotic vision dataset and benchmark for lifelong deep 

learning. In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 

Sun, T. et al., 2023. A  detection  method for soft objects based on the fusion of vision and 

haptics. Biomimetics, 8(1), p.86. 



Kufa Journal of Engineering, Vol. 16, No. 1, January 2025               159 

 
 

Tutsoy, O., 2023. A review of recent advancements in deep machine learning, artificial 

intelligence, object detection, and human-robot interactions approaches for assistive robotics. 

Ph.D., Fatma Gongor. 

Wang, Q. et al., 2023. Design, integration, and evaluation of a robotic peach packaging system 

based on deep learning. Computers and Electronics in Agriculture, 211, p.108013. 

Wei, A.H. and Chen, B.Y., 2020. Robotic object recognition and grasping with a natural 

background. International Journal of Advanced Robotic Systems, 17(2), p.1729881420921102. 

Xiong, S., Tziafas, G. and Kasaei, H., 2023. Enhancing fine-grained 3D object detection using 

hybrid multi-modal vision transformer-CNN models. In IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS 2023). 

Yu, J. and Zhang, W., 2021. Face mask wearing detection algorithm based on improved YOLO-

v4. Sensors, 21(9), p.3263. 

Yu, Y. et al., 2020. Real-time visual localization of the picking points for a ridge-planting 

strawberry harvesting robot. IEEE Access, 8, pp.116556-116568. 

Zarif, M.I.I. et al., 2022. A vision-based object detection and localization system in 3D 

environment for assistive robots’ manipulation. In Proceedings of the 9th International 

Conference of Control Systems, and Robotics (CDSR’22). 

Zhao, Y., Shi, Y. and Wang, Z., 2022. The improved YOLOv5 algorithm and its application in 

small target detection. In International Conference on Intelligent Robotics and Applications. 

Springer, pp.679-688. 

Zhong, M. et al., 2019. Assistive grasping based on laser-point detection with application to 

wheelchair-mounted robotic arms. Sensors, 19(2), p.303. 


