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ABSTRACT  

A modified TPE approach to perform finite deflection analysis of slender beam-column 

elements has been developed. The proposed approach utilizes the energy principal method and 

takes into account the geometric nonlinearity including the effects of axial force on bending 

stiffness, the end moments on axial stiffness (bowing), and the initial imperfection. A new 

equation of the deformation curve that approaches to the exact solution is used in the strain-

displacement relation to obtain a more accurate beam-column response. The derived 

formulation of displacement of the beam-column under axial compressive load with single 

curvature bowing is presented with initial imperfection and different end eccentricities. The 

Green strain tensor equation is developed to consider higher-order bowing term. Nonlinear 

analysis of central finite deflection is carried out using Newton-Raphson iteration that includes 

high order terms of total potential energy (TPE).  The beam-column stability is verified by 

computing the hessian determinant of the total potential energy. The validity of the new 

approach is established by comparing the numerical results obtained using the proposed 

equations against data previously published in the literature. Outputs from the analysis indicate 

that the proposed approach is capable of capturing the deflection of the beam-column with 

enhanced accuracy, ranging from 8.5% for e = 0.025 and up to 23.5% when e = 0.125. 
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1. INTRODUCTION 

Beam-column deflection is a critical aspect to consider in the design and analysis of structural 

elements such as columns, beams, and beam-columns. It refers to the deformation or bending 

of a beam-column under applied loads, which can affect the structural integrity and stability of 

the element. The determination of beam-column deflection is crucial for ensuring that the 

structure can withstand the anticipated loads and maintain its functionality and safety.  

      Closed form solution of the beam-column finite deflection problem required dealing with 

elliptical integrals of a nonlinear differential equation. Due to the difficulty of performing finite 

deflection closed form solution, several studies suggested more practical approximate and 

numerical solutions, such as the energy method, finite difference, finite integral, and finite 

element analysis (Kabir & Aghdam, 2019) (Bert & Malik, 1997) (Wang, et al., 2020). However, 

it is important to note that the accuracy and applicability of these methods may vary depending 

on the complexity of the beam-column element and the specific boundary conditions. An 

example of such a solution can be found in the study conducted by (Oran.C, 1973), in which a 

tangent stiffness matrix was established for in-plane linear elastic beam-column. The derived 

tangent stiffness matrix included the effects of axial force on bending stiffness as a major source 

of geometric nonlinearity. The effect of flexure bowing of deformed strut was also included. 

Later on, (Oran & Kassimali, 1976) introduced the stability solution method of analysis of 

elastic skeletal structures under static and dynamic loads. The general solution type of stability 

functions, bowing functions, and tangent stiffness matrix, presented earlier by (Oran.C, 1973) 

was used to model the structure geometrical nonlinearity in the elastic range. (Goto & Chen, 

1987) established methods of second order analysis of frames, which were derived by virtual 

work and plane member differential equations. The nonlinear Green strain tensor was 

formulated using displacement components and stiffness matrices. Also, (Goto, et al., 1991) 

presented the effect of bowing on the axial displacements of rigid frames by introducing closed 

form stiffness and tangent stiffness matrices. Nonlinear buckling behavior of portal frames was 

examined under primary bending moment.  

       Finite deflection of eccentrically loaded beam-column was introduced by (Kalaga & 

Alduri, 2000). The derivation of stress equation was investigated using total potential energy 

(TPE) principle. A central deflection formulation was utilized. In addition, the equilibrium and 

hessian matrix of TPE was used to check the beam-column member stability. The finite 

deflection response of uniaxial loaded beam-column using the TPE principles was also derived 

and examined by (Kalaga & Alduri, 2000). The solution involved an approximate third-order 

deflection equation, i.e. it neglects the higher order terms of deflection. The bowing and initial 
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imperfection of the member were included. A study of slender beam-column member with 

bowing effects was conducted by (Kalaga & Alduri, 2001), in which the end moments effect 

on member bending stiffness was explored. Three types of analysis of the deflection functions 

were presented. The effective stiffness concept was used and the stiffness degradation due to 

bowing effects was expressed in terms of load amount and its eccentricity. Geometric 

nonlinearity of cantilever beam column with large deflection was also presented by (Banerjee, 

et al., 2008). In this study, a new variation method of nonlinear beam column shortening was 

investigated. The large deflection of the desired member under arbitrary load was solved and 

compared with elliptical integral.    

In a more recent study, a refined Updated-Lagrangian method (UL) was developed to account 

for the large deflection. (Areiza-Hurtado, 2019) also presented a structural method for second 

order analysis of beam column element on elastic foundation. The proposed method takes into 

account the simultaneous effects of bending, shear deformations, and axial forces at both ends. 

Fourier series was used to model the transverse loads and the initial deflections, which allows 

to model of all types of applied loads and initial imperfections. The large deflection analysis 

was also studied for prismatic and tapered beam-columns by (Areiza-Hurtado, 2020). In this 

study, a new method based on the Differential Transform Method (DTM), but with more 

efficiency, was proposed. The governing integro-differential equation of the problem was 

converted into a polynomial equation. Another study on large deformation analysis was 

performed by (Chen, et al., 2020), at which a new beam column element was derived. The 

Gaussian quadrature method was utilized to overcome the difficulty in computing the section 

stiffness when forming the element stiffness matrix.  

The load deflection behavior of the beam-column can be considered as an important aspect in 

the structural analysis. Accounting for some factors, such as shear deformation and second-

order effects in the finite deflection problem may significantly impact the overall deformation.         

Thus, an accurate prediction of the finite deflection of beam-columns is crucial in assessing 

structural integrity and ensuring the safety of buildings and other structures. Accordingly, an 

analytical solution for nonlinear finite deflection analysis of beam-column elements using the 

TPE principle was developed. The proposed model can be used instead of the elliptical 

integration method, which involves solving complicated governing equations. The geometric 

nonlinearity, which includes the effects of axial force on bending stiffness, the end moments 

effects on axial stiffness, and the initial imperfection was also considered. A new equation of 

the deformation curve was proposed and used in the strain-displacement relation to obtain a 

more accurate beam-column response. The Green tensor was formulated to take into account 
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the effect of bowing deformation accurately. A nonlinear analysis of central finite deflection 

was implemented using Newton-Raphson iterations, which included higher order terms of TPE.   

Load-displacement behaviors of simply supported beam-column members were presented for 

various values of load eccentricities and initial imperfections. The proposed model was 

validated by comparing the predicted displacement with numerical and experimental data.     

2. ANALYTICAL FORMULATIONS 

2.1. Member Geometry 

A typical prismatic plane frame member is shown in Fig. 1. The member is subjected to an axial 

force and moments. The problem is described using the rectangular coordinates system (x,y). 

In the reference state, the x-axis is aligned with the longitudinal axis of the beam member and 

it passes through the centroid of the cross section at each ends. The element considered in the 

study is a plane frame element, which is a two dimensional beam column element. The cross 

sectional properties of the plane frame element include the modulus of elasticity E, cross-

sectional area A, moment of inertia I, and length L. The plane frame element is modeled so that 

it can deform in the longitudinal and transvers directions of the member. Hence, the member 

can carry axial forces, and moments. Accordingly, the element has 3 degree of freedom (3DOF), 

rotational DOF at each end, and axial displacement. The study is based on the following 

assumptions:                                                                           

1- Plane section perpendicular to the longitudinal axis before deformation remains plane and 

perpendicular to the longitudinal axis after deformation. 

2- Loads are applied in the xy plane only. 

3- The material is linear elastic, isotropic, and homogeneous. 

4- Deformations are relatively moderate, but the strains are small. 

 

 

 

    

 

 Fig. 1, Typical plane frame member  

M M 
P P 

θ θ 
X 

Y 

L-u 

L 

u 



Kufa Journal of Engineering, Vol. 16, No. 1, January 2025              237 

 
 

2.2. Deformation Formula 

In this study, a modified beam-column deformation formula is proposed instead of the well-

known approximate sine curve formula. The suggested formula, given by Eq. 1, is an exact 

fitting of the beam-column element deformation at three points (L/6, L/2, and 5L/6 respectively) 

multiplied by the sine curve. The main advantage of using the proposed formula is to attain a 

more accurate response compared to the sine deformation formula used by (Kalaga & Alduri, 

2000), (Kalaga & Alduri, 2001), and (Kalaga & Alduri, 2000). The proposed deformation 

equation can be applied only to simply supported prismatic members, at which the equation 

may satisfy the end conditions (zero deflection at both ends). In addition, it is well established 

that multiplying the sine curve by a polynomial, particularly if it was fitted to an exact data, can 

significantly enhance the accuracy of the solution. This becomes very true when the problem is 

so complex, such as the cases that involve high geometrical nonlinearity, where a simple sine 

curve may not be able to fully capture the nonlinear behavior. Accordingly, using the exact 

curve fitting polynomial will allow introducing additional terms that can adjust the shape of the 

deflection curve, which in turn leads to a better prediction of the displacement behavior with 

high nonlinearity problems.  

𝑉 = 𝑉𝑚 (1.25 −
𝑥

𝐿
+

𝑥2

𝐿2
)  𝑠𝑖𝑛 (

𝜋 𝑥

𝐿
)                                                                                (1) 

Where Vm is beam-column central deflection, V is the deflection, L is the length of the member, 

and x is the distance from support to any point in the member. 

2.3. Improved Expression of the Total Potential Energy (TPE) 

An improved expression of the TPE was derived in this study by using a modified and more 

accurate equation of the Green strain tensor 𝜖𝑥𝑥 . The Green strain tensor can be defined in 

terms of axial displacement U and deflection V, which also considers the exact bowing 

deformation term and as in Eq. 3. 

𝜖𝑥𝑥 =
𝑑𝑈

𝑑𝑥
+ (√1 + (

𝑑𝑉

𝑑𝑥
)

2

− 1) −
𝑦 (

𝑑2𝑉
𝑑𝑥2 )

[1 + (
𝑑𝑉
𝑑𝑥

)
2

]

1.5                                                          (2) 

Where y is the distance measured from the natural axis to the extreme fiber.  

The higher order terms in Eq. 2 may be expanded as follows:  
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For the bowing term  (√1 + (
𝑑𝑉

𝑑𝑥
)

2

− 1),  let  
𝑑𝑉

𝑑𝑥
= 𝑥, then the bowing term can be expressed 

as f (𝑥) = (√1 + (𝑥)2) − 1)  

knowing that the Maclaurin’s series formula is: 

f (x) = ∑ (
𝑓𝑛(𝑥𝑜)

𝑛!
) (𝑥 − 𝑥𝑜)𝑛

∞

𝑛=0
, where 𝑥𝑜 = 0 and n = derivative order. The value of n was 

considered equal to 4, thus 

𝑓′(𝑥𝑜 = 0) = (
𝑥

(1+𝑥2)1/2
) = 0 𝑓′′(𝑥𝑜 = 0) = (

𝑥2

(1+𝑥2)3/2
) = 0 

𝑓3(𝑥𝑜 = 0) = (
3𝑥

(1+𝑥2)5/2) = 0 𝑓4(𝑥𝑜 = 0) = (
12𝑥2−3

(1+𝑥2)7/2) = -3 

Inserting the above derivative terms, and x = 
𝑑𝑉

𝑑𝑥
  in Maclaurin’s series leads to 

𝑓 (
𝑑𝑉

𝑑𝑥
) =  

1

2
 (

𝑑𝑉

𝑑𝑥
)

2

−
1

8
 (

𝑑𝑉

𝑑𝑥
)

4

  

The same procedure was used to expand the strain term due to flexural curvature. 

Substituting the higher order terms of Eq. 2 yields 

𝜖𝑥𝑥 =
𝑑𝑈

𝑑𝑥
+ (

1

2
 (

𝑑𝑉

𝑑𝑥
)

2

−
1

8
 (

𝑑𝑉

𝑑𝑥
)

4

)    

− 𝑦 (
𝑑2𝑉

𝑑𝑥2
) [1 − 1.5 (

𝑑𝑉

𝑑𝑥
)

2

+ 1.875  (
𝑑𝑉

𝑑𝑥
)

4

]                                              (3) 

Including higher-order terms in solving Eq.3 will lead to a more accurate representation of the 

beam-column's deformation, which in turns increase the accuracy of the solution. 

Introducing parameters, B and C and substituting Eq. 1 into Eq. 3 leads to Eq. 4. 

𝜖𝑥𝑥 =
𝑑𝑈

𝑑𝑥
+ (

1

2
 𝐵2 −

1

8
 𝐵4) − 𝑦 𝐶[1 − 1.5 𝐵2 + 1.875  𝐵4]                                               (4) 

in which, 

𝐵 =
5 𝑉𝑚

4 𝐿3
[𝜋 (𝐿2 −

4

5
𝑥 𝐿 +

4

5
𝑥2)  𝑐𝑜𝑠 (

𝜋 𝑥

𝐿
) −

4

5
 𝐿 (𝐿 − 2𝑥)𝑠𝑖𝑛 (

𝜋 𝑥

𝐿
)]                        (5) 
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𝐶 =
−5 𝑉𝑚

4 𝐿4
[((𝜋2 −

8

5
) 𝐿2 −

4

5
𝜋2𝑥 𝐿 +

4

5
𝜋2𝑥2) 𝑠𝑖𝑛 (

𝜋 𝑥

𝐿
)

+
8

5
 𝐿𝜋 (𝐿 − 2𝑥)𝑐𝑜𝑠 (

𝜋 𝑥

𝐿
)]                                                                               (6) 

The general formula of strain energy SE may be expressed as 

𝐸 =
𝐸

2
∫ 𝜖𝑥𝑥

2  𝑑𝑉                                                                                                                 (7)
𝑉

 

Where E is the modulus of elasticity. 

By inserting Eq. (4) into (7) and performing integration to the whole beam-column volume, the 

resulted beam-column improved strain energy with higher order displacements terms is given 

by  

𝑆𝐸 =
𝐸𝐴 𝑈2

2 𝐿
+

2.6678 𝐸𝐴 𝑈 𝑉𝑚
2

𝐿2
−

6.363 𝐸𝐴 𝑈 𝑉𝑚
4

𝐿4
+

30.943 𝐸𝐼 𝑉𝑚
2

𝐿3
 +

6.363  𝐸𝐴 𝑉𝑚
4

𝐿3
 

−
461.16  𝐸𝐼 𝑉𝑚

4

𝐿5
−

35.836 𝐸𝐴 𝑉𝑚
6

𝐿5
+

8279.5  𝐸𝐼 𝑉𝑚
6

𝐿7
+

54.622 𝐸𝐴 𝑉𝑚
8

𝐿7

−
83572  𝐸𝐼 𝑉𝑚

8

𝐿9
 +

6.1587 × 105  𝐸𝐼 𝑉𝑚
10

𝐿11
                                            (8) 

Where A is the cross-sectional area of the member. 

The end rotation can be obtained by differentiating Eq. 1 with respect to x and applying x=0. 

The modified end rotation 𝜃 is given by  

𝜃(0) =
5 𝜋 𝑉𝑚

4 𝐿
                                                                                                                       (9) 

The potential energy, PE, generated from the external loads (axial load, P, and end moments, 

2Pe) may be defined as  

𝑃𝐸 = −𝑃𝑈 − 2 𝑃𝑒 𝜃(0)                                                                                                            (10) 

Application of Eq. 9 into Eq. 10 leads to  

𝑃𝐸 = −𝑃𝑈 −
5 𝑃𝑒 𝜋 𝑉𝑚

2 𝐿
                                                                                                             (11) 

The first term of Eq. 11 is due to axial shortening of the beam-column, while the second term 

is resulted from the end rotations. 

The improved formula of the total potential energy (TPE) can then be calculated by adding 

Eq.11 to Eq. 8, which yields 
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𝑇𝑃𝐸 =
𝐸𝐴 𝑈2

2 𝐿
+

2.6678 𝐸𝐴 𝑈 𝑉𝑚
2

𝐿2
−

6.363 𝐸𝐴 𝑈 𝑉𝑚
4

𝐿4
+

30.943 𝐸𝐼 𝑉𝑚
2

𝐿3
 +

6.363  𝐸𝐴 𝑉𝑚
4

𝐿3
 

−
461.16  𝐸𝐼 𝑉𝑚

4

𝐿5
−

35.836 𝐸𝐴 𝑉𝑚
6

𝐿5
+

8279.5  𝐸𝐼 𝑉𝑚
6

𝐿7
+

54.622 𝐸𝐴 𝑉𝑚
8

𝐿7

−
83572  𝐸𝐼 𝑉𝑚

8

𝐿9
 +

6.1587 × 105  𝐸𝐼 𝑉𝑚
10

𝐿11
− 𝑃𝑈

−
5 𝑃 𝑒 𝜋 𝑉𝑚

2 𝐿
                                                                                                   (12) 

Where U is the axial shortening that can be calculated considering the first derivative of Eq.12 

with respect to U (
𝜕(𝑇𝑃𝐸)

𝜕𝑈
= 0), which yields 

𝑈 =
𝑃𝐿

𝐸𝐴
−

2.6678 𝑉𝑚
2

𝐿
+

6.363 𝑉𝑚
4

𝐿3
                                                                                        (13) 

2.4. Total Finite Deflection Vm  

A modified expression of deflection may be defined based on the improved TPE equation which 

was derived in the previous section. The TPE can be expressed in terms of central displacement 

Vm by substituting Eq. 13 into Eq. 12, which leads to 

𝑇𝑃𝐸 =
1

𝐸𝐴 𝐿11
[(34.378 𝑉𝑚

8𝐿4 − 18.861𝑉𝑚
6𝐿6 + 2.8044 𝑉𝑚

4𝐿8)𝐸2𝐴2

+ ((2.6678 𝑉𝑚
2𝑃 − 7.854 𝑃 𝑒 𝑉𝑚)𝐿10 + (30.943 𝐸𝐼 𝑉𝑚

2 − 6.363 𝑉𝑚
4𝑃)𝐿8

− 461.16 𝐸𝐼 𝑉𝑚
4𝐿6 + 8279.5 𝐸𝐼 𝑉𝑚

6𝐿4 − 83572 𝐸𝐼 𝑉𝑚
8𝐿2 + 6.1587 

× 105 𝐸𝐼 𝑉𝑚
10) 𝐸𝐴

− 0.5 𝑃2𝐿12]                                                                                                           (14) 

Differentiating Eq. 15 with respect to Vm yields: 

𝜕𝑇𝑃𝐸

𝜕𝑉𝑚
=

1

𝐿11
(49677 𝐸𝐼 𝑉𝑚

5𝐿4 − 7.854 𝑃 𝑒 𝐿10 − 1844.6 𝐸𝐼 𝑉𝑚
3𝐿6 − 6.6858 

× 105 𝐸𝐼 𝑉𝑚
7𝐿2 − 61.886 𝐸𝐼 𝑉𝑚 𝐿8 − 113.16 𝐸𝐴 𝑉𝑚

5𝐿6 + 275.02 𝐸𝐴 𝑉𝑚
7𝐿4

+ 11.218 𝐸𝐴 𝑉𝑚
3𝐿8 − 25.452 𝑃 𝑉𝑚

3𝐿8 + 5.3356 𝑃 𝑉𝑚 𝐿10 + 6.1587 

× 106 𝐸𝐼 𝑉𝑚
9)

= 0                                                                                                                          (15) 

𝜕2𝑇𝑃𝐸

𝜕𝑉𝑚
2 =

1

𝐿11
(2.48385 × 105 𝐸𝐼 𝑉𝑚

4 𝐿4 − 5533.8  𝐸𝐼 𝑉𝑚
2 𝐿6 − 4.68 × 106 𝐸𝐼 𝑉𝑚

6 𝐿2

+ 61.886  𝐸𝐼  𝐿8 − 565.8 𝐸𝐴 𝑉𝑚
4 𝐿6 + 1925.14  𝐸𝐴 𝑉𝑚

6 𝐿4

+ 33.654  𝐸𝐴 𝑉𝑚
2 𝐿8 − 76.356 𝑃 𝑉𝑚

2 𝐿8 + 5.3356 𝑃 𝐿10 + 5.54283

× 107 𝐸𝐼 𝑉𝑚
8)                                                                                                   (16) 
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Vm can be calculated by solving Eq. 15 with the aid of Newton-Raphson iteration and by 

keeping the higher order of Vm up to 10. The numerical solution of Vm is given by Eq. 17, 

which continues until |
𝜕𝑇𝑃𝐸

𝜕𝑉𝑚
𝜕2𝑇𝑃𝐸

𝜕𝑉𝑚2

| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. In the first iteration, (𝑉𝑚)𝑛 is the start value, which 

can be estimated using the proposed approximate Eq. 18. The first and second derivatives of 

Eq. 14 with respect to Vm are required to obtain the solution of Eq. 17. These derivatives are 

given in Eqs. 15 and 16. In case of presence of initial imperfection, V0, it is possible to add its 

value to Vm directly. 

(𝑉𝑚)𝑛+1 = (𝑉𝑚)𝑛 −

𝜕𝑇𝑃𝐸
𝜕𝑉𝑚

𝜕2𝑇𝑃𝐸

𝜕𝑉𝑚
2

                                                                                                     (17) 

(𝑉𝑚)𝑛=1 =
7.854 𝑃 𝑒 𝐿2

61.886 𝐸𝐼 + 5.335 𝑃 𝐿2
                                                                                     (18) 

2.5. Stability Hessian Matrix 

The stability formulations of elastic frames are a crucial aspect in the design and construction 

of structures. It ensures that the structure can withstand various loads and environmental 

conditions without experiencing excessive deformations or failure. The stability is mainly 

concerned with field displacements (Vm and U) and equilibrium condition of the beam-column, 

which requires that the hessian determinant |𝐻| ≥ 0 , where the hessian determinant may be 

defined as 

|𝐻| =
𝜕2𝑇𝑃𝐸

𝜕𝑈2
 
𝜕2𝑇𝑃𝐸

𝜕𝑉𝑚
2 − [

𝜕2𝑇𝑃𝐸

𝜕𝑈 𝜕𝑉𝑚
]

2

                                                                         (19) 

The determinant of the hessian matrix is considered as a key parameter in assessing the stability 

of structures. A positive determinant signifies a stable behavior, which assures the structure's 

reliability and safety. Conversely, a negative determinant raises concerns about instability, 

prompting engineers to take necessary measures to rectify the situation. A more refined Hessian 

equation was developed in this study by differentiating Eq. 12 with respect to the field 

displacement, along with the substitution of Eqs. 15 and 16 into Eq. 19, which leads to  
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|𝐻| =
𝐸𝐴

𝐿12
(−565.82 𝐸𝐴 𝑉𝑚

4𝐿6 + 1925.2 𝐸𝐴 𝑉𝑚
6𝐿4 + 5.5428 × 107 𝐸𝐼 𝑉𝑚

8

− 5533.9 𝐸𝐼 𝑉𝑚
2𝐿6 + 2.4838 × 105 𝐸𝐼 𝑉𝑚

4𝐿4 − 76.356 𝑉𝑚
2 𝐿8 𝑃

+ 33.653 𝐸𝐴 𝑉𝑚
2 𝐿8 + 5.3356  𝐿10 𝑃 − 4.68 × 106 𝐸𝐼 𝑉𝑚

6𝐿2

+ 61.886 𝐸𝐼 𝐿8)                                                                                                   (20)  

3. CASE STUDIES 

To validate the proposed model, the predicted results computed using the modified formulations 

were compared with numerical results carried out by (Kalaga & Alduri, 2000), (Oran.C, 1973), 

, (Oran & Kassimali, 1976), and with (Lin & Hsiao, 2001), as illustrated in the subsections that 

follow. 

3.1. Case Study I: simply supported beam subjected to eccentric axial force 

A uniaxial simply supported beam-column subjected to axial compressive end loads was 

studied by (Kalaga & Alduri, 2000), as shown in Fig. 2. The axial loads are applied eccentrically 

for three different eccentricities, namely, for e = 0.025, 0.05, and 0.125 in. The beam-column 

data is: Length L= 57.7 in, Area A = 1 in2, Moment of inertia I = 0.0833 in4, Slenderness ratio 

L/r = 200, and Modulus of elasticity E = 29,000 ksi. The Euler load of the column is Pcr = - 

7.16 kips. Additionally, the effect of initial imperfection on the deflection was also studied for 

values range from 0 to 0.1.   

 

 

3.1.1. Results and Analysis  

Using the deformation formula proposed in this study, the deflection was calculated for three 

different eccentricities. That is, at eccentricity e = 0.025, 0.05, and 0.125 in. The predicted 

values of deflection, as a function of distance, were compared with the exact solution and also 

with numerical results obtained from (Kalaga & Alduri, 2000), as illustrated in Fig. 3. As can 

be seen in Fig. 3, the predicted values are in good agreement with the exact and the approximate 

results. The proposed equation, however, seems to yield the best match with the exact solution 

compared with the approximate one, particularly at certain points along the span. It worth 

             Fig. 2. Simply supported eccentrically loaded beam-column 

member 
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mentioning that the displacement is positive in the upward direction and the force, P, is positive 

in tension.  

The validity of the proposed expression of the TPE was also investigated by comparing the 

predicted values from the current study with numerical results obtained from (Kalaga & Alduri, 

2000). The values of eccentricity considered in the analysis are e = 0.025, 0.05, and 0.125 in. 

Fig. 4 shows the predicted TPE values as a function of central deflection obtained using the 

proposed equation and from (Kalaga & Alduri, 2000). It can be seen that the discrepancy 

between the modified formula and (Kalaga & Alduri, 2000) solution increases with the increase 

of the displacement and continues to deviate until it reaches up to 190%, when the displacement 

is equal to 2 in. Such a difference implies that excluding the higher order terms in the TPE 

equation has a considerable effect on the TPE values and leads to overly underestimate the 

results, particularly, at higher values of displacement. Fig. 5 shows the predicted values of axial 

shortening and the values obtained from (Kalaga & Alduri, 2000). It can be also noted that there 

is a difference between the axial shortening values computed from the modified formula and 

(Kalaga & Alduri, 2000) solution, reaches up to 7%.   

To establish the validity of the proposed hessian matrix, the determinant of the hessian matrix 

was calculated and compared with numerical results (Kalaga & Alduri, 2000) for three different 

values of axial load, which are: P = 0, P = Pcr, and P = 2Pcr. As can be seen in Fig. 6, the 

desired beam-column uniaxial bent is still stable, since |H|>0 under the effects of nonlinear 

moderately finite deflection system. Also, it may be noted that the state of critical stability, 

namely at |H|=0, is reached when P = Pcr = -7.16 kips. However, when the applied load is equal 

to 2Pcr = -14.32 kips, the member state becomes unstable, that is |H|<0. On close inspection to 

Fig. 6, It can be noted that (Kalaga & Alduri, 2000) solution overestimates the determinant of 

the hessian matrix at early stages of loading. The overestimation continues to increase at later 

stages of loading, i.e. at higher displacements values, up to 132%. 

Such a difference implies that excluding the higher order terms in the Hessian matrix has a 

considerable effect on its values and leads to overly underestimate the results, particularly, at 

higher values of lateral displacement. This discrepancy in evaluating the determinant of the 

Hessian matrix can have severe consequences on assessing the structural integrity and may lead 

to substantially overestimate the overall stability.  

To further demonstrate the effectiveness of the proposed model, a nonlinear finite deflection 

analysis of a beam-column subjected to an eccentric axial load was investigated, in which three 

different values of eccentricity were adopted, particularly the eccentricities e = 0.025, 0.05, and 

0.125. The effect of initial imperfection on the deflection was also studied for values range from 
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0 to 0.1. The predicted values from the proposed deflection equation were compared with the 

values obtained from (Kalaga & Alduri, 2000), as illustrated in Fig.7. Moreover, the results 

were also compared with (Oran.C, 1973) and (Oran & Kassimali, 1976), in which the stiffness 

method was utilized and the effects of bowing and geometric nonlinearity were included, Fig.7. 

In addition, it can be seen that there is a notable enhancement of the predicted results, in terms 

of trends and values, compared to Kalaga solution. This becomes more obvious at larger values 

of eccentricity and initial imperfection. For example, for load values larger that Pcr, 

particularly, at P = 8 k, the prediction of deflection is enhanced by 8.5% for e = 0.025 and up 

to 23.5% when e = 0.125. 

 

  

(a) e = 0.025 in. (b) e = 0.05 in. 

(c) e = 0.125 

 

 

Fig. 3, Beam-column elastic curves    
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(a) e = 0.025 in.  (b) e = 0.05 in. 

 

(c) e = 0.125 in. 

 

 

 

  

Fig. 5, Beam-column axial shortening U Fig. 6, Beam-column hessian determinant 

Fig. 4, Beam-column TPE, e = 0.025 in. 
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Fig. 7, Load-central deflection curves for several e and Vo values 
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Fig. 7, Load-central deflection curves for several e and Vo values 
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3.2. Case Study II: simply supported beam Under Varied Loading Conditions  

3.2.1. Central concentrated force  

In this example, a simply supported beam subjected to a concentrated force at mid-span is 

considered, as shown in Fig.8 . This example was studied both experimentally and theoretically 

by (Woolcock & Trahair, 1974). The same example was considered later by (Lin & Hsiao, 

2001) to validate their proposed solution. The geometrical and material properties of the beam 

are L = 143.9 in, b = 0.86 in, tf = 0.22 in, tw = 0.085 in, h =2.862 in, Young’s modulus E = 

9,300,000 psi. The buckling load of the member is 17.65 Ib. 

 

 

Fig. 8 Load displacement of simply supported beam subjected to a central point load 

3.2.2.  Eccentric axial force 

An analytical investigation was conducted on a simply supported W14 × 34 beam by (Lawrence 

A. Soltis,1972), where the beam was subjected to an eccentric axial force at each ends, as shown 

in Fig.9, with the load deflection curve of the beam presented. Later, (Lin & Hsiao, 2001) 

examined this case study for validation purposes. In this context, the same simply supported 

beam column is considered here to validate the displacement prediction obtained from the 

numerical model. The geometrical and material properties of the beam are L = 264,6 in. and 

Young’s modulus   E = 29,000 psi. and the buckling load is 150.1 kip.  

3.2.3. Results and Analysis 

The validity of the proposed model to predict the deflection of beam-column members 

subjected to axial and transverse forces was investigated by comparing the results obtained 

h 

b 

tf 

tf 

tw 

L/2 

P 

L/2 
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from the developed displacement expression with both experimental and numerical data. Figs.8 

and 9 show the load deflection-curve of the present study with numerical and measured values. 

It can be seen that there is a good agreement between the predicted, the numerical, and the 

measured displacements. However, as the applied load approaches the critical load value, minor 

discrepancies in the load-deflection curves may be noted. This can be attributed to the fact that 

the proposed model doesn’t account for geometrical nonlinearities and large deformation that 

occur after buckling, namely, post bucking behavior was not considered in this study. The 

proposed model, however, is more effective within the elastic range and for loads below the 

critical threshold. 

4. CONCLUSIONS  

A new numerical model to conduct finite deflection analysis of slender beam column members 

was developed. The model utilizes the total potential energy approach with enhanced accuracy. 

Several nonlinearities were taken into account, such as geometric nonlinearity, the effects of 

axial force on bending stiffness, the end moments on axial stiffness (bowing), and the initial 

imperfection. A new deformation curve was used in the strain-displacement relation to obtain 

a more accurate beam-column response. The nonlinear Green strain tensor was also modified 

by considering more (higher-order) accurate bowing deformation terms. In addition, a modified 

expression of the total deflection was defined based on an improved TPE equation.  

The validity of the proposed model was established by comparing the predicted results against 

experimental and numerical data. Based on the numerical results, it can be concluded that the 

 

 

Fig. 9 Load displacement of simply supported beam subjected to an eccentric axial force 
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developed model is capable of predicting the load-displacement behavior with enhanced 

accuracy. In addition, it may be noted that the proposed model is more effective within the 

elastic range and for loads below the critical value. To accurately predict deflections beyond 

the critical load, more advanced models that account for geometric and material nonlinearities 

are required. These models can deal with large deformations and provide realistic predictions 

of post-buckling behavior. Future research should focus on developing more refined models 

that account for post buckling behavior, in which further sources of nonlinearity can be 

included. Namely, shear deformation, tapered members, flexible end conditions, and material 

nonlinearity. Additional experimental studies that deal with different cases of loading 

conditions are recommended to validate these models.  
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