Influence of Sowing Dates on Growth, Yield and Quality of Some Flax Genotypes (*Linum usitatissimum L*.)

Dr. Saad Ahmed Mohamed Al-Doori

Department of Science College of Basic Education/ University of Mosul

Received: 20/10/2011 ; Accepted: 16/2/2012

Abstract:

Two field experiments were carried out at Sheikh Mohamed location which is far about 30 km west north Mosul city conducted during 2007-2008 and 2008-2009 winter seasons to study three genotypes performance of flax crop (*Linum usitatissimum L.*), three planting dates, and their interactions on some growth characters, yield and its components traits as well as oil yield. The main findings could be summarized as follows:

The results showed that planting dates significantly affected in growth characters, yield and its component as well as oil yield in both seasons. The sowing of flax crop on the first November gave the highest number of capsules per plant, number of seeds per capsule, weight of thousand seed, seed, oil yield per hector. Sowing on the first November surpassed these sown on mid November in seed yield per hectare⁻¹ by 20.32% and 20.67% as well as sown on mid October by 17.80% and 12.55% in the first and second seasons respectively.

Flax crop genotypes significantly differed for all studied yield and its component in both seasons. The highest number of capsules per plant, weight of thousand seed, seed and oil yield per hectare⁻¹ were produced from Strain genotype in both seasons. The results indicated that Strain genotype exceeded Belinka genotype by 12.88% and 15.59% and Hera genotype by 15.26% and 18.86% in total seed yield per hectare⁻¹ in the first and second seasons, respectively.

The interaction between planting dates and genotypes significantly affected in plant height, stem diameter, number of fruiting branches, number of capsules per plant, number of seeds per capsule, weight of thousand seed, total seed yield per hector, oil percentage and oil yield in both seasons, except for number of capsules per plant, number of seeds per capsule, weight of thousand seed and oil percentage in the second season only. The sowing of Strain genotype in the first of November gave the highest number of capsules per plant and total seed yield per hectare⁻¹ in both seasons.

تأثير مواعيد الزراعة في نمو وحاصل ونوعية بعض التراكيب الوراثية من الكتان (Linum usitatissimum L.)

د. سعد احمد محمد الدوري قسم *العلوم* كلية التربية الأساسية/ جامعة الموصل

ملخص البحث:

نفذت تجربتين حقليتين في موقع الشيخ محمد الذي يبعد 30 كم غرب شمال مدينة الموصل أثناء فصل الشتاء للعامين 2007 -2008 و 2008 -2009 لدراسة أداء ثلاثة تراكيب وراثية من محصول الكتان (.Linum usitatissimum L) وثلاثة مواعيد زراعة وتداخلاتهم في بعض صفات النمو والحاصل ومكوناته، بالإضافة إلى حاصل الزيت.

ويمكن تلخيص النتائج الرئيسة بالاتي: ـ

أشارت النتائج بان مواعيد الزراعة أثرت معنوياً في صفات النمو والحاصل ومكوناته، بالإضافة إلى حاصل الزيت في كلا الموسمين. أعطى محصول الكتان عند زراعته في الأول من تشرين الثاني أعلى عدد من الكبسولات.نبات⁻¹، عدد البذور .كبسولة⁻¹، وزن الألف بذرة وحاصل البذور الكلي والزيت.هكتار⁻¹. تفوق موعد الزراعة في الأول من تشرين الثاني على موعد الزراعة في منتصف تشرين الثاني في حاصل البذور الكلي بنسبة 20.32% و 20.67%، بالإضافة إلى انه تفوق على موعد الزراعة في منتصف تشرين التوالي.

اختلفت التراكيب الوراثية لمحصول الكتان بشكل معنوي في جميع صفات الحاصل المدروسة ومكوناته في كلا الموسمين. أنتج التركيب الوراثي سترين أعلى عدد من الكبسولات.نبات الموزن الألف بذرة وحاصل البذور الكلي وحاصل الزيت في كلا الموسمين. أشارت النتائج بان التركيب الوراثي سترين نفوق على التركيب الوراثي بلنكا بنسبة 12.88% و 15.59% والتركيب الوراثي هيرا بنسبة 15.26% و 18.86% في حاصل البذور الكلي.هكتار ⁻¹ في الموسمين الأول والثاني على التوالي.

اثر التداخل بين مواعيد الزراعة والتراكيب الوراثية معنوياً في ارتفاع النبات، قطر الـساق، عدد الأفرع الثمرية، عدد الكبسو لات.نبات⁻¹، عدد البذور كبسولة⁻¹، وزن الألف بـذرة وحاصـل البذور الكلي هكتار⁻¹ ونسبة وحاصل الزيت في كلا الموسمين، عدا عدد الكبسو لات.نبات⁻¹، عـدد البذور كبسولة⁻¹، وزن الألف بذرة ونسبة الزيت في الموسم الثاني فقط. أعطى التركيب الـوراثي

Influence of Sowing

سترين عند زراعته في الأول من تشرين الثاني أعلى عدد الكبسو لات وحاصل البذور الكلي. هكتار⁻¹ في كلا الموسمين.

Introduction:

Oilseed flax (Linum usitatissimum L.) is grown primarily for the oil that is produced in its seed. A high content of linolenic acid in linseed oil makes it a good drying oil because it oxidizes rapidly (Diepenbrock and Porksen, 1993). The oil crushed from the seeds can either be used for industrial or edible purposes, depending on the fatty acid composition (Burton, 2007). Since flaxseed oil contains more than 50% linolenic acid, it is well suited for industrial use in protective coatings such as varnishes, paints, stains and lacquers. An important product also made from flaxseed oil is linoleum flooring, which is durable, long lasting, and biodegradable. Furthermore, flaxseed oil is a component in other products such as soaps, automotive brake linings, and printer's ink. Oil from flax cultivars contains less than 5% linolenic acid, making it suitable for use as a cooking or salad oil (Abd El-Rahman and Youssef 1979; Declercq, 2004). Seeding date and its influence on flax performance is linked to weather, with early or later seeded flax having a higher chance of encountering frost or drought (Casa et al., 1999). An early spring frost may injure a crop, but the potential loss from a fall frost is far greater. Sheppard and Bates (1988) also found earlier seeding resulted in greatest seed yield. Later seeding significantly decreased the mean yields. A study conducted in Alexandria university in Egypt, found that a late sowing date to December 1st and December 15th led to reduced seed, oil yield and oil percentage (Ibrahim, 2009). El-Refaey et al. (2010) conducted a study in Egypt, and found that oil yield decreased when seeding was postponed past November 25th. The primary objective of this study was to determine the effects of sowing dates on growth, yield and quality of some flax genotypes (Linum usitatissimum L.).

Materials and Methods:

Two field experiments were carried out at Sheikh Mohamed which is far about 30 km west north Mosul city. Field experiments were conducted during 2007-2008 and 2008-2009 winter seasons to study three genotypes performance of flax with three planting dates, and their interactions on yield and its components traits as well as oil yield/hector.

The preceding crop was sunflower (*Helianthus annuus L.*) in both seasons. The experimental soil was sandy loam in texture, the pH was 7.2, 8.4, available nitrogen was 26.6, 28.4 ppm, the available phosphorus was 12.2, 13.6 ppm in both seasons, respectively (table1), determined by using the methods described by Black, 1965; Jackson, 1973; Page *et al.*, 1982 and Tandon, 1999.

	easons at 0 to 30 depth	le
Seasons	2007-2008	2008-2009
ph	ysical characters	
Sand (%)	59.00	45.00
Silt (%)	21.00	39.00
Clay (%)	20.00	13.00
Texture	Sandy loom	Silty sandy
ch	emical characters	
O.M. (mg.kg ⁻¹)	0.824	0.986
Available N (ppm)	26.60	28.44
Available P (ppm)	12.20	13.68
Available K (ppm)	154.00	162.00
Total CaCo ₃ (mg.kg ⁻¹)	1.64	2.42
рН	7.20	8.42
E.C. mmhos/cm	0.84	0.66

Table -1-The physical and chemical characters of soil filed experimentsin both seasons at 0 to 30 depth.

A factorial experiment in a Randomized Completely Block Design was used in each experiment. Each plot consisted of twelve rows 4 meter long and 30 cm apart occupying an area of $14.4m^2$ (4*3.6). Flax genotypes were obtained from the crops industrial company, Baghdad. Seeds of flax genotypes (Belinka, Strain and Hera) were hand sown in 15th October, 1st November and 15th November in 2007-2008 and 2008-2009 seasons, and harvested at 170, 172, 176 and 175, 174, 176 days after sowing for each genotypes Belinka, Strain and Hera to both seasons 2007-2008, 2008-2009 respectively in the one separate experiment in each season. Plants were thinned 14 days after sowing to one plant per hill at 20 cm distance to insure 166666 plants/hector. The nitrogen fertilizer in the form of urea 80 kg hectare⁻¹ (46%N) was applied in two equal doses, half with sowing and the remaining half after thinning. Phosphorus in the form of calcium super phosphate (45% P₂₀₅) at a rate of 150 kg.hectare⁻¹ and potassium in the form of potassium sulphate (48%K₂0) at a rate of 50 kg/hector, were incorporated to the soil during the sowing period. All other agronomic practices were kept normal and uniform for all the treatments. two inner rows were taken to determine the following characters (weight of thousand seed, number of seeds. capsules⁻¹, yield and oil yield). The following data were recorded: Plant height (cm), stem diameter (cm), number of fruiting branches, number of capsule per plant. Oil seed content was determined using Soxhlet method (A.O.A.C., 1980). Data were exposed to the proper statistical analysis of variance of the factorial experiment in a Randomized Completely Block Design with three replications as mentioned by Snedecor and Cochran (1982). Then Duncan's multiple range test (Duncan, 1955) at 0.05 % and 0.01 % level of significance were used to compare treatment means.

	2007-2008												
	Te	emperature	(C°)	Months	relative								
Month	Max	Min	Mean	Precipitation	humidity								
		101111	wican	(mm)	(%)								
October	28.2	11.0	19.6	0.0	60.2								
November	20.4	8.6	14.5	36.0	62.0								
December	18.8	4.2	11.5	18.2	65.6								
January	12.0	-2.2	4.9	21.5	63.0								
February	15.6	2.9	9.2	39.2	69.0								
March	25.2	9.9	17.5	28.9	53.0								
April	30.9	14.9	22.9	0.8	38.0								
May	33.3	17.2	25.2	0.001	33.0								
June	40.5	23.0	31.7	0.001	26.0								
Total				144.60									
		008-2009											
October	30.4	15.6	23	34.2	48.0								
November	22.3	8.6	15.4	72.6	62.0								
December	15.0	3.2	9.1	18.6	71.0								
January	14.3	-0.1	7.1	0.001	68.0								
February	17.5	5.6	11.5	24.9	63.0								
March	19.7	8.5	14.1	28.1	60.0								
April	25.8	11.7	18.7	35.7	52.0								
May	34.2	18.2	26.2	0.001	37.0								
June	40.3	23.6	31.9	0.001	26.0								
Total				214.10									

 Table -2

 The temperature, months precipitation and relative humidity in Sheikh Mohamed

 location at 2007-2008, 2008-2009 seasons, respectively.

Funding seismographic and meteorological commission.

Results and Discussion: 1-Sowing dates effect:

The rainfall and mean values for minimum and maximum temperatures which related to the main stages of vegetative and reproductive development of flax sown at the different dates in 2007-2008 and 2008-2009 are presented in table 2. The results concerned average number of capsules per plant, number of seeds per capsules, weight of thousand seed, seed, oil yields per hectare⁻¹ as affected by sowing dates are shown in Table 3. Sowing dates significantly affected all studied yield and its component characters (table 6). The results indicated that sowing flax on the first of November surpassed the other sowing dates in number of capsules per plant, weight of thousand seed,

Al-Doori, Saad A.

seed, oil yield.hectare⁻¹ in both seasons. Moreover, sowing flax on the first November surpassed these sown on mid November by 20.32%, 20.67% in seed yield per hector, by 30.85,% 29.67 % in oil yield per hectare and surpassed these sown on mid October by 17.80%, 12.55% in seed yield per hector, by 22.31% 16.97% in oil yield per hectare⁻¹ in the first and second seasons respectively. The increases in seed yield per hectare⁻¹ due to sown on the first of November may be attributed to increases in number of fruiting branches per plant which reflected increases in capsules number as well as seed number per unit area and that in turn reflected increases in seed yield per hector. The inferiority of delaying sowing to mid November may be attributed to the short period of vegetative growth, the adverse weather conditions such as temperature and months precipitation (table 2), which were beyond the optimum degree for vegetative and reproductive stages that resulted in low photosynthetic products accumulated in the source (leaves) and transported to the sink (seeds). Ghanem, (1990) reported that increases of seed yield due to increases of dry matter accumulation in the later formed capsules may be attributed to high temperature and long photoperiod that exist during capsules development (table 2). The increases in seed yield per hectare⁻¹ due to sowing on the first of November may be due to the increases in number of branches per plant and number of capsules per plant reflecting increase in seed yield. Similar conclusions were reported by El-Refaey et al (2010). The increases in oil yield per hectare⁻¹ in the first November sowing compared the other studied sowing dates may be due to the increases in both oil percentage and seed yield per hector. Similar conclusions were reported by Ghanem, 1990; El-Deeb and Abd El-Fatah, 2006 and Ibrahim, 2009.

2-Genotypes performance:

The results in table 4 indicate that flax genotypes significantly differed in plant height, stem diameter, number of fruiting branches, number of capsules per plant, no. of seeds per capsule, 1000 seeds weight (g.), seed yield per hector, oil percentage and oil yield (ton.ha⁻¹) in both seasons. Strain genotype exceeded Belinka and Hera genotypes in plant height, stem diameter, number of fruiting branches, number of capsules per plant, no. of seeds per capsule, 1000 seeds weight (g.), seed yield per hector, oil percentage and oil yield (ton.ha⁻¹) in both seasons. However, Strain genotype exceeded Belinka genotype by 12.88% and 15.59% and Hera genotype by 15.26% and 18.86% in total seed yield per hectare⁻¹ in the first and second seasons, respectively. Strain genotype exceeded Belinka and Hera genotypes in number of seeds per capsules in both seasons. The differences between flax genotypes in seed yield per hectare⁻¹ might be attributed to their differences in growth traits such as number of fruiting branches reflected differences in yield components such as number of capsule per plant as well as 1000 seed weight and hence increased seed yield per plant as well as per unit area. Similar results were obtained by many investigators such as Gubbels, and Kenaschuk, 1989; El-Shimy *et al*, 1997; Sankari, 2000; El-Shimy, *et al*, 2001; Rennebaum, *et al*, 2002; Couture *et al*, 2002; El-Sweify, *et al*, 2003; Dimmock *et al*, 2005; Salem, *et al*, 2006; El-Deeb and Abd El-Fatah 2006; Hussein, 2007 and El-Sweify, *et al*, 2007. The increases of Strain genotype in oil yield per hectare⁻¹ compared with Belinka and Hera genotypes may be attributed to the genetically variation among the tested genotypes in yield components and consequently seed yield as well as oil percentage. Similar results were obtained by many investigators such as El-Sweify *et al*, 2006 and Abd El-Fatah, 2007.

3- Significant interactions:

The interaction between planting dates and flax genotype had a significant effect on plant height, stem diameter, number of fruiting branches, number of capsules per plant, no. of seeds per capsule, 1000 seeds weight (g.), seed yield per hector, oil percentage and oil yield (ton.ha⁻¹) in both seasons, except for number of capsules per hector, number of seeds per capsule, weight of thousand seed and oil percentage in the second season only as shown in table 5. The results indicated that planting Strain genotype in the first November produced the highest number of capsules per plant and maximum total seed yield per hectare⁻¹ in both seasons, which were 26.48, 2.66 (ton. hectare⁻¹) and 27.96, 3.07 (ton.ha⁻¹) in the first and second season respectively. However, the lowest number of capsules per plant and seed yield per hectare⁻¹ were produced from sowing Belinka genotype on mid of November in both seasons. Similar conclusions were obtained by Ghanem, 1990; El-Deeb and Abd El-Fatah, 2006. It could be concluded that maximizing seed and oil yields per unit area could be achieved by sowing flax Strain genotype on the first November under the environmental conditions of west north Mosul city.

	sowing	plant	stem	number of	2009 seasons, respectively pr of number of no.	- Cec	f no. of seeds/	f no. of seeds/ 1000 seeds	of seeds/ 1000 seeds
seasons	dates	height	diameter	fruiting	capsule /plant	0.000		capsule	capsule
		(cm)	(cm)	branches					
	15 th October	103.38b	2.06b	8.24b	22.45b		5.71b	5.71b 7.38b	
2007-2008	1 st November	117.37a	2.73a	9.74a	25.12a		6.43a	6.43a 8.50a	
	15 th November	r 94.44c	2.00b	7.91b	20.07c		5.25c		6.29c
	15 th October	107.05b	2.13b	9.02b	23.07b		7.07b	7.07b 7.97b	7.97b
2008-2009	1 st November	115.26a	2.99a	10.39a	26.45a		7.79a	7.79a 9.21a	
	15 th November	r 101.22c	2.19b	8.35c	21.24c		6.21c	6.21c 7.32c	7.32c
:	* The means values within column followed by the different letter are significant at 0. Table -4-	es within co		ed by the diffe	rent letter ar Table	e sig	e significant at 0.01 e - 4 -	e significant at 0.01% and 5% probability levels, respectively. e -4-	-4-
Me	The means valu	es within co some grow	h character	ed by the diffe s, yield comp	rent letter ar Tabl onents and asons, respe	e sig qual	e significant at 0.01 e -4- quality as affected	e significant at 0.01% and 5% prob e-4- quality as affected by genotypes c	
Me	The means valu	some grow	th character	s, yield comp	rent letter are Table onents and q asons, respectively on the second sec	sig	-4- -4- cively.	 significant at 0.01% and 5% prob -4- -4-<th>-4- uality as affected by genotypes during 2007-2: tively.</th>	-4- uality as affected by genotypes during 2007-2: tively.
Me seasons	The means valu ans number of genotypes	es within co some growi Plant height (cm)	th character Stem diameter (cm)	s, yield comp s, yield comp number of fruiting branches	Table Table onents and q asons, respec number of capsule /pla	nt tive	significant at 0.01 -4- uality as affected tively. no. of seeds/ capsule	-4- -4- no. of seeds/ nt capsule veight (g.)	-4- uality as affected by genotypes during 2007-2 tively. no. of seeds/ 1000 seeds yield capsule weight (g.) (ton.ha ⁻¹)
Me seasons	The means valu ans number of genotypes Belinka	es within co some growi Plant height (cm)	th character diameter (cm)	s, yield comp s, yield comp se number of fruiting branches 8.58b	Table Onents and qu asons, respect number of capsule /plar	Lit Lial 4- Sig	significant at 0.01 4- 14- 14- 10. of seeds/ 14 15 92h	4- 4- ively. no. of seeds/ capsule 5 92h 7 23h	-4- uality as affected by genotypes during 2007-2 ively. no. of seeds/ 1000 seeds yield tt capsule weight (g.) (ton.ha ⁻¹) 5 92h 7 23h 1 04h
Me seasons 2007-2008	The means valu ans number of genotypes Belinka Strain	es within co some growi Plant height (cm) 106.44b 116.18a	th character Stem diameter (cm) 2.34b	s, yield comp s, yield comp se number of fruiting branches 8.58b 9.23a	Table Onents and q asons, respec number of capsule /pla 21.92b 23.81a	nt tiv	significant at 0.01 -4- uality as affected tively. nt capsule 5.92b 6.33a	-4- -4- no. of seeds/ seeds/ tively. nt capsule 5.92b 5.92b 5.92b 7.23b 8.06a	-4- uality as affected by genotypes during 2007-2 tively. no. of seeds/ 1000 seeds yield capsule weight (g.) (ton.ha ⁻¹) 5.92b 7.23b 1.94b 6.33a 8.06a 2.19a
Me seasons 2007-2008	The means valu ans number of genotypes Belinka Strain Hera	some growi Plant height (cm) 116.18a 92.578c	th character Stem diameter (cm) 2.34b 2.53a 1.93c	s, yield comp s, yield comp se number of fruiting branches 8.58b 9.23a 8.07c	Table- Onents and qu asons, respect number of capsule /plar 21.92b 23.81a 21.91b	Lit Lial 4- Sig	significant at 0.01 4- 4- 11 uality as affected 11 ively. 11 capsule 5.92b 6.33a 5.14c	-4- Ino. of seeds/ 1000 seeds it capsule 5.92b 5.14c 5.14c	4- Iality as affected by genotypes during 2007-2 ively. no. of seeds/ 1000 seeds yield capsule weight (g.) (ton.ha ⁻¹) $5.92b$ 7.23b 1.94b $6.33a$ 8.06a 2.19a $5.14c$ $6.88c$ 1.90b
Me seasons 2007-2008	The means valu ans number of genotypes Belinka Strain Hera Belinka	some growi Plant height (cm) 106.44b 116.18a 92.578c 110.22b	th character Stem diameter (cm) 2.34b 2.53a 1.93c 2.47b	s, yield comp s, yield comp se number of fruiting branches 8.58b 9.23a 8.07c 9.03b	Table - Table - onents and qu asons, respect number of capsule /plan 21.92b 23.81a 21.91b 23.18b		significant at 0.01 4- ively. no. of seeds/ capsule 5.92b 6.33a 5.14c 6.44c	4- Ino. of seeds/ t capsule 5.92b 6.33a 5.14c 6.44c 1000 seeds/ weight (g.) 7.23b 8.06a 5.18c 7.89b	4- inality as affected by genotypes during 2007-2 ively. no. of seeds/ 1000 seeds yield capsule weight (g.) (ton.ha ⁻¹) 6.33a 8.06a 2.19a 5.14c 6.88c 1.90b 6.44c 7.89b 2.18b
Me seasons 2007-2008 2008-2009	The means valu ans number of genotypes Belinka Strain Hera Belinka	some growi Plant height (cm) 116.18a 92.578c 110.22b	th character Stem diameter (cm) 2.34b 2.53a 1.93c 2.47b 2.83a	s, yield comp s, yield comp se number of fruiting branches 8.58b 9.23a 8.07c 9.03b 9.82a	fferent letter are signif Table -4- nponents and quality seasons, respectively f number of no capsule /plant no 21.92b 23.81a 21.91b 23.18b 25.15a		4- tality as affected ively. no. of seeds/ capsule 5.92b 6.33a 5.14c 6.44c 7.49a	4- ality as affected by genotypes (ively. no. of seeds/ 1000 seeds t capsule weight (g.) 5.92b 7.23b 6.33a 8.06a 5.14c 6.88c 6.44c 7.89b 7.49a 8.96a	4- Iality as affected by genotypes during 2007-2 ively. no. of seeds/ 1000 seeds yield capsule weight (g.) (ton.ha ⁻¹) 5.92b 7.23b 1.94b 6.33a 8.06a 2.19a 5.14c 6.88c 1.90b 6.44c 7.89b 2.18b 7.49a 8.96a 2.52a

740

2.32000 37.130 0.8010 3.070a 39.07a 1.199a 2.148cd 35.97c 0.772cd 1.931e 34.09e 0.658f 2.131ce 36.33c 0.774cd		The subscription of the su	21 10 0	0 51-5	1 00-	80 JAA	Hera	
37.130 39.07a 35.97c 34.09e	8.19de	6.60d	22.10ed	8.50ef	2.70c	112.60c	Strain	November
39.07a 35.97c	6.63g	5.20e	20.14g	8.00f	1.98e	101.80d	Belinka	15 th
39.07a	8.47cd	7.90b	24.85c	9.40c	2.20d	102.70d	Hera	
37.130	9.97a	8.48a	27.96a	11.59a	3.57a	125.70a	Strain	November
101 70	9.20b	7.00cd	26.55b	10.20b	3.21b	117.40b	Belinka	1 st
2.020de 34.72d 0.701ef	7.34f	6.70d	20.97fg	8.80de	1.96e	90.10e	Hera	
	8.72c	7.40bc	25.40c	9.36cd	2.23d	119.60b	Strain	Uctober
2.318bc 36.15c 0.837bc	7.86e	7.13cd	22.85d	8.90ce	2.22d	111.46c	Belinka	15 ^m
		1	2008-2009 season	2008-20				¢.
1.86bc 33.01 0.614d	5.88	4.40	19.99	7.76d	1.78d	83.26e	Hera	
1.93bc 35.93 0.695bd	6.83	5.80	20.76	8.23cd	2.30b	102.9cd	Strain	November
1.83bc 33.99 0.625cd	6.16	5.56	19.47	7.73d	1.94cd	97.13d	Belinka	15 th
2.04b 36.23 0.741b	8.00	5.80	24.25	8.46c	2.13bc	105.36c	Hera	
2.66a 38.74 1.033a	9.17	7.01	26.48	10.84a	3.13a	128.36a	Strain	November
2.05b 36.93 0.759b	8.33	6.50	24.65	9.93b	2.94ab	118.40b	Belinka	1 st
1.79c 34.72 0.623cd	6.76	5.23	21.50	8.00cd	1.89d	89.10e	Hera	
2.00bc 37.21 0.744b	8.18	6.20	24.20	8.63c	2.16bc	117.26b	Strain	October
1.95bc 36.01 0.702bc	7.19	5.70	21.65	8.10cd	2.13bc	103.80cd	Belinka	15 th
		1	2007-2008 season	2007-20				-
			/plant	branches				
(ton.ha^{-1}) (%) (ton.ha^{-1})	weight (g.)	capsule	capsule	fruiting	(cm)	(cm)		dates
oil	1000 seeds	seeds/	of	of	diameter	height	genotypes	Sowing
		no. of	number	number	Stem	plant		•

Influence of Sowing

741

	Total	Error	S×G	G	S	Replications	S.O.V	Total	Error	S×G	G	S	Replications			S.O.V)) 4		Analysis of v
	26	16	4	2	2	2	D.f	26	16	4	2	2	2			D.f	1		arian
*		3.259259	18.412**	1475.7**	448.04**	3.592593			16.523	16.88*	1267.0**	1202.4**	217.81	(cm)	height	Plant		-	ce F values f
** Significan		0.006548	0.3350**	1.5106**	2.0786**	0.000048			0.014740	0.1432**	0.8321**	1.4764**	0.2028	(cm)	diameter	stem		a a	for some gro
t at the 0.05 and		0.09821944	1.05441**	2.16141**	9.77230**	0.22734444			0.12019815	0.9326**	3.0418**	8.6278**	1.784948	branches	fruiting	number of			wth characte
, ** Significant at the 0.05 and 0.01 probability levels, respectively. and n.s. not Significant		0.2447120	3.70024**	17.75183**	62.89957**	0.8400037	M.S.		0.4222815	0.81369 n.s.	10.779**	57.447**	7.96094		capsule /plant	number of	M.S.	respectively.	Analysis of variance F values for some growth characters, vield and vield commonents and
evels, respectivel		0.08358704	0.908059**	2.567837**	5.649837**	0.17717037	M.S. for 2008-2009 season		0.10483704	0.0996 n.s.	3.3025**	3.1998**	9.772503		capsule	no. of seeds/	M.S. for 2007-2008 seaso	vely.	ld comnonents
y. and n.s. not ?		0.0572231	0.34966**	4.32769**	8.27744**	0.0737148	eason		0.0635898	0.0440 n.s.	3.2971**	**686'01	3.283514		weight (g.)	1000 seeds	eason	and duanty of	and anality di
Significant.		0.01295876	0.238280**	0.412961**	0.416090**	0.01361293			0.01417704	0.0933**	0.2316**	0.3906**	0.474065		(ton.ha ⁻¹)	yield		007-7007 Sur 11	anglity during 2007-2008 and 2008-2000 seasons
		0.1019259	0.6313**	15.607**	14.344**	0.192292			0.1999777	0.153 n.s.	15.975**	20.207**	0.07847		(%)	oil		0 AIIU 2000-2	8 and 2008-21
		0.0013925	0.04013**	0.11009**	0.10755**	0.0013341			0.0020730	0.014**	0.067**	0.098**	0.06454		(ton.ha ⁻¹)	oil yield		UU7 SEASUIIS,	nno sagenne

Table- 6-

Al-Doori, Saad A.

Referances:

- A.O.A.C. 1980. Official Methods of Analysis of the Association of Official Analytical Chemists. 15th Edition, Published by Association of Official Analytical Chemists, Arlington, Virginia, USA.
- Abd El-Fatah, A.A.E. 2007. Comparative study on some flax cultivars. J. Agric. Sci. Mansoura Univ., 32 (9): 7111-7119.
- Abd El-Rahman, A.H.Y. and S.A.M. Youssef 1979. Maturity and oil quantity and quality of developing flaxseed. Grasasy Aceites 30 (4): 235-238.
- Black, C.A. 1965. Methods of soil analysis. Part 2. Chemical and microbiological properties. Amer. Soc. of Agronomy . Inc. publisher Madison. USA.
- Burton, A. 2007. Field Plot Conditions for the Expression and Selection of Straw Fiber Concentration in Oilseed Flax. Ph. D. thesis. University of Saskatchewan Saskatoon, Saskatchewan, Canada.
- Casa, R., G. Russell, B. Locascio, and F. Rossini. 1999. Environmental effects on linseed (*Linum usitatissimum* L.) yield and growth of flax at different stand densities. European J. of Agro. 11: 267-278.
- Couture, S.J., W.L. Asbil, A. Ditommaso, and A.K. Watson. 2002. Comparison of European Fiber Flax (*Linum usitatissimum*) Cultivars under Eastern Canadian Growing Conditions. J. of Agro. and Crop Sci. 188: 350-356.
- Declercq, D. 2004. Quality of western Canadian linseed 2004. Canadian Grain Commission. Page 3.
- Diepenbrock, W. and N. Porksen. 1993. Effect of stand establishment and nitrogen fertilization on yield and yield physiology of linseed (*Linum usitatissimum L.*). Industrial Crops and Products. 1: 165-173.

- Dimmock, J.P.R.E., S.J. Bennett, D. Wright, G. Edwards Jones, and I.M. Harris. 2005. Agronomic evaluation and performance of flax varieties for industrial fiber production. J. of Agric. Sci.143:299-309.
- Duncan, D.B. 1955. Multiple range and multiple F-test. Biometrics, 11: 1-42.
- El-Deeb, E.E.A. and A.A. Abd El-Fatah 2006. Effect of sowing and harvesting dates on yield and its quality for some flax varieties. J. Agric. Sci. Mansoura Univ. 31(9): 5557-5566.
- El-Refaey, R.A.;E.H. El-Seidy and I.A.E., El-Deeb 2010. Effect of sowing dates under different environment condition on yield and quality of some flax genotypes. Alex. J. Agric. Res., 55 (2): 33-41.
- El-Shimy, G.M.; S.H.A. Mostafa and S.Z. Zedan 1997. Studies on yield, yield components, quality and variability in some flax genotypes. Egypt. J. Agric. Res. 75(3): 697-715.
- El-Shimy, G.M.; S.H.A. Mostafa and E.A. Moawed 2001. Effect of mineral and biophosphorus fertilization on productivity and quality of Sakha 1 and Giza 8 flax varieties. Egypt. J. Appl. Sci., 16 (8): 101-117.
- El-Sweify, Amna, H.H.; M.A. Tag El-Din and H.A.M. Sharaf El-Deen 2003. Effect of some flax genotypes and harvesting dates on seed chemical composition, yield and fiber quality. Annals of Agric. Sci., Moshtohor, 41(1): 19-37.
- El-Sweify, Amna, H.H.; M.A. Abd El-Daim and M.M.M. Hussein 2006. Response of some flax genotypes to pulling date under newly reclaimed sandy soil and sprinkler irrigation conditions. Egypt. J. Agric. Res., 84(4): 1103-1115.
- El-Sweify, Amna H.H.; M.A.Abd El-Dayem and M.M.M. Hussein 2007. Evaluation of some introduced flax varieties comparing with Giza 4

cultivar under three N-fertilization level in sandy soil. Egypt. J. Agric. Res., 85 (4): 1381-1397.

- Ghanem, S.A.I. 1990. The influence of N fertilization and sowing, harvesting dates on oil, fiber yields and their contributing characters of flax. Zagazig. J. Agric. Res. 17(3): 575-587.
- Gubbels, G.H., and E.O. Kenaschuk. 1989. Effect of seeding rate on plant and seed characteristics of new flax cultivars. Canadian Journal of Plant Science. 69: 791- 795.
- Hussein, M.M.M. 2007. Response of some flax genotypes to bio and nitrogen fertilization. Zagazig J. Agric. Res., 34(5): 815-844.
- Ibrahim, H.M. 2009. Effect of sowing date and N-fertilizer levels on seed yield, some yield components and oil content in flax. Alex. J. Agric. Res., 54 (1): 19-28.
- Jackson, M.L. 1973. Soil Chemical Analysis. New Delhi, Prentice Hall of India Private Limited, New Delhi, p. 326-338.
- Page, A.L.; R.H., Miller and D.R., Kenney 1982. Methods of soil analysis. Part (2) Agronomy number 9 Madison. USA.
- Rennebaum, H., E. Grimm, K. Warnstorff, and W. Diepenbrock. 2002. Fiber quality of linseed (*Linum usitatissimum L.*) and the assessment of genotypes for use of fibers as a by product. Industrial Crops and Products. 16: 201-215.
- Salem, M.S.A.; S.Z. Zidan and M.M. Esmail 2006. Effect of some biological and mineral fertilizers on some growth and yield characters of two flax cultivars. Bull. Fac. Agric., Cairo Univ., 57 (2): 261-276.
- Sankari, H.S. 2000. Linseed (*Linum usitatissimum L.*) Cultivars and Breeding Lines as Stem Biomass Producers. J. of Agro. and Crop Sci. 184: 225-131.

- Sheppard, S.C. and T.E. Bates. 1988. Probability of response of flax to nitrogen fertilizer dependent upon planting date and weather. Canadian J. of Soil Sci. 68: 271-286.
- Snedecor, G.W. and W.G. Cochran 1982. Statistical methods Applied to Experiments in Agriculture and Biology: 54-68. 7th Ed. Seventh Reprinting. The Iowa State Univ. Press, Ames. Iowa, USA.
- Tandon, H. 1999. Methods of analysis of soil, plants, water and fertilizers. Fertilizer Development and Consultation Organization, New Delhi, India, pp: 144.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.