Triple operators

Receved :24/12/2015 Accepted :16/2/2016

Elaf Sabah Abdulwahid Rijab

University of Tikrit, College of Education for girls, Department of Mathematics

Abstract

In this paper, we introduce a new class of operators acting on a complex Hilbert space \mathcal{H} which is called triple operators. An operator $T \in \mathcal{B}(\mathcal{H})$ is called triple operator if $(TT^*)T = T(TT^*)$, where T^* is the adjoint of the operator T.

We investigate some basic properties of such operators and study the relation between the triple operators and some other operators.

Mathematic Classification QA 299.6-433

Keywords: Triple operators, operators.

1- Introduction

Through this paper, $\mathcal{B}(\mathcal{H})$ denoted to the algebra of all bounded linear operators acting on a complex Hilbert space \mathcal{H} . An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be isometry if $T^*T = I$, unitary if $T^*T = TT^* = I$ [1] and partial isometry if $TT^*T = T$ [4], where T^* is the adjoint of T. The operator $T \in \mathcal{B}(\mathcal{H})$ is called normal if $TT^* = T^*T$ [3] and quasi-normal if $T(T^*T) = (T^*T)T$ [5].

2- Triple operators

In this section, we will study some properties which are applied for the triple operators.

Definition (2.1): The operator $T \in \mathcal{B}(\mathcal{H})$ is called triple operator if $(TT^*)T = T(TT^*)$, where T^* is the adjoint of the operator T.

Example (2.2): Let $T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ be an operator on two-dimensional Hilbert space \mathbb{C}^2 . Then $(TT^*)T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = T(TT^*)$ Therefore T is triple operators.

Example (2.3): If $T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ is an operator on two-dimensional Hilbert space \mathbb{C}^2 . Then $(TT^*)T = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \neq T(TT^*) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ Thus T is not triple operators.

In the following proposition, we give some properties of the triple operators.

Proposition (2.4): If T is triple operator on a Hilbert space \mathcal{H} . Then:

- 1- αT is triple operator for every complex number α .
- 2- If S is unitarily equivalence to T, then S is triple operator.
- 3- If M is closed subspace of \mathcal{H} , then (T/M) is triple operator.

Proof:

$$(1) [(\alpha T)(\alpha T)^*](\alpha T) = \alpha \bar{\alpha} \alpha (TT^*)T$$

$$= \alpha \alpha \bar{\alpha} T(T T^*)$$

$$= (\alpha T)[(\alpha T)(\alpha T)^*]$$

So that (αT) is Triple operator.

(2) since S is unitarily equivalence to T. Then there exists unitary operator U such that $S = UTU^*$, so that

$$S^* = UT^*U^*$$

$$(S S^*)S = (UTU^*UT^*U^*)UTU^*$$
$$= U(TT^*)TU^*$$

On the other hand
$$S(SS^*) = UTU^*(UTU^*UT^*U^*) = UT(TT^*)U^* \dots (2)$$

Since (1) = (2), Thus S is triple operator.

(3)
$$[(T/M)(T/M)^*](T/M) =$$

 $[(T/M)(T^*/M)](T/M)$
 $= (TT^*/M)(T/M)$
 $= [(TT^*)T]/M$
 $= [T(TT^*)]/M$
 $= (T/M)[(TT^*)/M]$
 $= (T/M)[(T/M)(T/M)^*]$

Therefore T/M is triple operator.

The following example shows that if S,T are triple operators, then not necessary (S+T) and (S,T) are triple operators.

Example (2.5): Let $S = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and $T = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ are operators on two dimensional Hilbert space \mathbb{C}^2 .

Since

$$(SS^*)S = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix} = S(SS^*) \quad \text{and}$$

$$(TT^*)T = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$

$$(TT^*)T = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -2 & -2 \\ 2 & -2 \end{pmatrix}$$
$$= T(TT^*)$$

Then S and T are triple operators.

But
$$[(S+T)(S+T)^*](S+T) = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 2 & 3 \end{pmatrix} \neq (S+T)[(S+T)^*] = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$
 and

$$[(ST)(ST)^*](ST)$$

$$= {2 \choose 0} {8 \choose 2} {-1 \choose 2}$$

$$= {-2 \choose 16} {-2 \choose 16}$$

$$\neq (ST)[(ST)(ST)^*]$$

$$= {-2 \choose 4} {-16}$$

Therefore (S + T) and (ST) are not triple operators.

The following theorem show that the condition of S, T are commuting normal operators is very necessary to becomes (S + T) is triple operators.

<u>Theorem(2.6):</u> If S, T are triple operators such that S, T are commuting normal operators, then (S + T) is triple operators.

Proof: by (Putnam – Fuglede theorem)[2] then $ST^* = T^*S$ and $TS^* = S^*T$

Thus
$$[(S+T)(S+T)^*](S+T) = [(S+T)(S^*+T^*)](S+T)$$

 $= (SS^*)S + (ST^*)S + (TS^*)S + (TT^*)S + (SS^*)T + (ST^*)T + (TS^*)T + (TT^*)T$
 $= S(SS^*) + S(ST^*) + S(TS^*) + S(TT^*) + T(SS^*) + T(ST^*) + T(ST^*)$

$$= (S+T)[(S+T)(S+T)^*]$$

 $T(TS^*) + T(TT^*)$

The following theorem show that the condition of S, T are normal operators is very necessary to becomes (ST) is triple operators.

Theorem (2.7): Let S, T are triple operators such that S, T are normal operators. Then (ST) is triple operator.

Proof: $[(ST)(ST)^*](ST) =$

 $[(ST)(T^*S^*)](ST)$

 $= (ST)(T^*SS^*T)$

 $= (ST)(ST^*TS^*)$

 $= (ST)(STT^*S^*)$

 $= (ST)[(ST)(ST)^*]$

Therefore (ST) is triple operator.

Remark (2.8): (1) If T is unitary operator, then T is triple operator.

(2) If *T* is isometry operator, then *T* is triple operator.

(3) If *T* is a partial isometry operator, then *T* is triple operator.

But the converse of the three above- mentioned points is not true as we saw in the following example:

Example (2.9): If $T = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

is an operator on two-dimensional Hilbert space \mathbb{C}^2 . Then T is triple operator as we seen in example (2.5)

But $(TT^*) = (T^*T) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \neq I$. Thus T is not unitary, isometry operator.

 $TT^*T = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix} \neq T$. Therefore T is not partial isometry.

<u>Proposition (2.10)</u>: If T is triple operator and normal operator, then T^{-1} is triple operator.

Proof: since T is triple operator, then $(TT^*)T = T(TT^*)$ taking inverse of two sides, we get $T^{-1}(T^{*-1}T^{-1}) = (T^{*-1}T^{-1})T^{-1}$

 $T^{-1}(T^{-1}T^{*-1}) =$ $(T^{-1}T^{*-1})T^{-1}[\text{since } T \text{ is normal,then } T^{-1} \text{ is normal operator}]$

Then T^{-1} is triple operator.

The following two examples show that quasi normal operators and triple operators are independent.

Example(2.11): Let U be a unilateral shift operator on ℓ_2 , (i.e. $U(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, ...)$. Then $U(U^*U) = U = (U^*U)U$. Thus U is quasi normal operator. But $(UU^*)U = U \neq U(UU^*) = U^2U^*$, Then U is not triple operator.

Example (2.12): Let U^* be the adjoint of the unilateral shift operator on ℓ_2 . (i.e. $U^*(x_1, x_2, x_3, ...) = (x_2, x_3, x_4 ...)$

Since $(U^*U)U^* = U^* = U^*(U^*U)$. Then U^* is triple operator.

But $U^*(UU^*) = U^* \neq (UU^*)U^* = UU^{*2}$ Thus U^* is not quasi normal operator.

Theorem (2.13): Let $T_1, T_2, ..., T_m$ be triple operators in $\mathcal{B}(\mathcal{H})$. Then $(T_1 \oplus T_2 \oplus ... \oplus T_m)$ and $(T_1 \otimes T_2 \otimes ... \otimes T_m)$ are triple operators.

$$= (T_1 \otimes T_2 \otimes \dots \otimes T_m)[(T_1 \otimes T_2 \otimes \dots \otimes T_m) \\ (T_1 \otimes T_2 \otimes \dots \otimes T_m)^*]$$

Proof

$$[(T_1 \oplus T_2 \oplus ... \oplus T_m)(T_1 \oplus T_2 ... \oplus T_m)^*]$$

$$(T_1 \oplus T_2 \oplus ... \oplus T_m)$$

$$= [(T_1 \oplus T_2 \oplus \dots \oplus T_m)(T_1^* \oplus T_2^* \oplus \dots \oplus T_m^*)]$$

$$(T_1 \oplus T_2 \oplus ... \oplus T_m)$$

$$= (T_1 T_1^* \oplus T_2 T_2^* \oplus \dots \oplus T_m T_m^*) (T_1 \oplus T_2 \oplus \dots \oplus T_m)$$

$$= (T_1 T_1^*) T_1 \oplus (T_2 T_2^*) T_2 \oplus ... \oplus (T_m T_m^*) T_m)$$

Since $T_1, T_2, ..., T_m$ are triple operators. Then

$$= (T_1(T_1T_1^*) \oplus T_2(T_2T_2^*) \oplus ... \oplus T_m(T_mT_m^*))$$

$$= (T_1 \oplus T_2 \oplus \dots \oplus T_m)$$

$$[(T_1 \oplus T_2 \oplus ... \oplus T_m)(T_1 \oplus T_2 \oplus ... \oplus T_m)$$
References

Also

$$[(T_1 \otimes T_2 ... \otimes T_m)(T_1 \otimes T_2 \otimes ... \otimes T_m)^*]$$

$$(T_1 \otimes T_2 \otimes ... \otimes T_m)$$

$$= [(T_1 \otimes T_2 \otimes \dots \otimes T_m)(T_1^* \otimes T_2^* \otimes \dots \otimes T_m^{\text{nup:}1})]$$

$$(T_1 \otimes T_2 \otimes ... \otimes T_m) =$$

$$(T_1T_1^*\otimes T_2T_2^*\otimes ...\otimes T_mT_m^*)(T_1\otimes T_2\otimes ...\otimes T_mT_m^*)$$

[1] Berberian S.K., "Introduction to Hilbert space", Chelsea Publishing Company, New Yourk, 1976.

[2] Chen, Yin, (2004) "On The Putnam – Fuglede Theorem". IJMMS, http://mms.hindawi.com, 53, pp: 2821-2834

[3] Kreyszig Erwin, (1978) "Introductory Functional Analysis With Applications".

 $(T_1T_1^*\otimes T_2T_2^*\otimes ...\otimes T_mT_m^*)(T_1\otimes T_2\otimes ...\otimes T_m)$ ork Santa Barbara London Sydney

[4] Paul R.Halmos, "A Hilbert space $((T_1T_1^*)T_1\otimes (T_2T_2^*)T_2\otimes ...\otimes (T_mT_m^*)T_m$ boblem book ". Springer- Verlag, New York Heidelberg Berlin, 1980.

Since $T_1, T_2, ..., T_m$ are triple operators. Then

[5] Shqipe Lohaj, "Quasi-normal operators", Int. Journal of Math. Analysis, Vol.4, No.47, (2010), 2311-2320.

 $(T_1(T_1T_1^*)\otimes (T_2(T_2T_2^*)\otimes ...\otimes (T_m(T_mT_m^*))$

المؤثرات الثلاثية

إيلاف صباح عبد الواحد رجب

تاريخ القبول 2016/2/16

تاريخ الاستلام 2015/12/24

جامعة تكريت ـ كلية التربية للبنات / قسم الرياضيات

الملخص

الهدف من هذا البحث هو تقديم نوع جديد من المؤثرات على فضاء هلبرت المعقد الذي أطلقنا عليه اسم المؤثرات الثلاثية المؤثر $T \in \mathcal{B}(\mathcal{H})$ يسمى المؤثر الثلاثي اذا كان $T^*(TT) = T(TT)$ حيث T^* هو المؤثر المرافق (المصاحب) للمؤثر T^* سوف نقدم في هذا البحث بعض الخواص الأساسية لهذا المؤثر وندرس العلاقة بين المؤثرات الثلاثية وبعض الأنواع الأخرى من المؤثرات

الكلمات المفتاحية: المؤثرات الثلاثية ، المؤثرات.