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Abstract

In this paper, we introduce a new class of operators acting on a complex Hilbert space
H which is called triple operators. An operator T € B(H') is called triple operator if
(TT*)T = T(TT"), where T" is the adjoint of the operator T.

We investigate some basic properties of such operators and study the relation between
the triple operators and some other operators.
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1- Introduction

Through this paper, B(H) denoted
to the algebra of all bounded linear
operators acting on a complex
Hilbert space H. An operator
T € B(H) is said to be isometry if
T*T =1, unitary if T'T =TT" =
I [1] and partial isometry if
TT*T =T [4], where T' is the
adjoint of T. The operator T €
B(H) is called normal if TT' =
T°T [3] and quasi-normal if
T(T'T) = (T*T)T [5].

2- Triple operators

In this section, we will study some
properties which are applied for the
triple operators.

Definition (2.1): The operator

T € B(H) is called triple operator
if (TT*)T = T(TT"), where T"
is the adjoint of the operator T.

Example (2.2): Let T = (é ?)

be an operator on two-dimensional
Hilbert space €. Then (TT*)T =
1 0y _ '

( 9)=rar

Therefore T is triple operators.

Example 2.3): If T = G ?) is

an operator on two-dimensional
Hilbert space C* .Then (TT")T =

2 1 I < SR
(3 2)*TaTI=(; 3)
Thus T is not triple operators .

In the following proposition, we
give some properties of the triple
operators.
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Proposition (2.4): If T is triple
operator on a Hilbert space H.
Then:

1- aT is triple operator for
every complex number a.

2- If § is unitarily equivalence
to T. then § is triple
operator,

3- If M is closed subspace of
H, then (T/M) is triple
operator.

Proof:

(1) [(aT)(aT)"](aT) =
a@a(TT*)T

=aaa T(TT)
= (aT)[(aT)(aT)’]
So that (aT) is Triple operator.

(2) since S is unitarily equivalence
to T. Then there exists unitary
operator U such that § = UTU”", so
that

§S*'=ur"y

(S$)S = (UTUUT"U)UTU"
= U(TTHTU"

Since T is triple operator, then
(§5%)S =

HTCLT W vaman 1)
On the other hand S(S §°) =
UTUNUTUUTUY) =

SN e T

Since (1)=(2),Thus § is triple
operator.
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@) [(T/M)(T/M)"|(T /M) = [(ST)(ST)'](ST)
[(T/M)(T*/M)IT /M) _ (2 0) (41 —3
0 8 2 =3
= (TT'/M)(T/M) _ (—2 —2)
=[(TT")T]/M 16 —16
= [T(TT*)|/M * {S?S[(ST)%ST}*I
= (T/M)[(TT")/M] B ( 4 —15)
= (T/M)[(T/M)(T/M)] Therefore (S + T) and (ST) are

Therefore T /M is triple operator.

The following example shows that
if §,T are triple operators, then
not necessary (S + T)and (S.T)
are triple operators.

Example (2.5): Let S =, 0)

0 2
and T = (—-11 B 1) are operators

on two dimensional Hilbert space
c?* .

Since
5s95= (5 3o 2)=
(é g)=5{55') and
argr=, I )
e ==y
_( 2 —-2)
= T(TT")

Then § and T are triple
operators.

But [(S+T)S+T)]|(S+T)=
1 = -

(—1 21)([1) 11)=

(‘21 ‘32)¢(5+T:.[(5+

TYS +T)] = (é _12) and
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not triple operators.

The following theorem show that
the condition of §, T are
commuting normal operators is
very necessary to becomes

(§ 4+ T) istriple operators.

Theorem(2.6): If S, T are triple
operators such that S, T are
commuting normal operators, then
(§ 4+ T) is triple operators.

Proof: by (Putnam —Fuglede
theorem)[ 2] then ST" =
T'Sand TS" =8§8°T

Thus [(S+T)(S+T)|(S+
T)=[E+T)S"+TH](ES+T)

= (S5S + (ST)S + (TS)S +
(TTH)S +(SSIT + (8T +
(T59T +[TT%)T

=S(55*) + S(ST*)+S(TS") +
S(TT*) + T(S5*) + T(ST*) 4
T(TS") + T(rT")

=@ +TS+TIS+T)]

The following theorem show that
the condition of §, T are normal
operators is very necessary to
becomes (ST) is triple operators.
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Theorem (2.7): Let §,T are
triple operators such that §, T are
normal operators. Then (ST) is
triple operator.

Proof: [(ST)(ST)*](ST) =
[(ST)(T*S)](ST)
= (ST)(T*S5°'T)
= (STYST"TS")
= (ST)(STT"S")
= STSTI(ST)']

Therefore (ST) is triple
operator.

Remark (2.8): (1) If T is unitary
operator. then T is triple operator.

(2) If T is isometry operator, then
T is triple operator.

(3) If T 1s a partial isometry
operator, then T is triple operator.

But the converse of the three
above- mentioned points is not true
as we saw in the following
example:

Example 2.9): I T = ([1] (2))

is an operator on two-dimensional
Hilbert space C* .Then T is triple
operator as we scen in example
(2.5)

Y N _ I O
But(TT)—(TT}—(U 4):&
I .Thus T is not unitary, isometry

operator.
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TTAT e (é E?) # T .Therefore

T is not partial isometry.
Proposition (2.10): If T is triple

operator and normal operator, then
T~ is triple operator.

Proof:_since T is triple operator,
then (TT*)T =T(TT") taking
inverse of two sides, we get

T T P T

TE(r =)=
(TIT* T Ysince T is
normal,then T~' is normal operator]

Then T~ ! is triple operator.

The following two examples show
that quasi normal operators and
triple operators are independent.

Example(2.11): Let U/ bea

unilateral shift operator on {5,

(e U (X, 25, %5, ... ) =
(0,x1, %5 %3 ... ) .Then U(U'Y) =
U= (U

Thus U is quasi normal operator .
But(UUNU =U=+UUU") =
U?U* ,Then U is not triple
operator.

Example (2.12): Let U" be the
adjoint of the unilateral shift
operator on /. (i.e.

U (2, 200, X5 40 ) =

(Xo, Xg: %4 e })

Since (U"UH)U* =U" =U"(UU).
Then U” is triple operator.

ButU*(UU") =U" = (UU)U" =

UU** Thus U* is not quasi normal
operator.
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Theorem (2.13): Let Ty, T, ..., Ty =

be triple operators in B(H'). Then (TR T,® ...8T,)[(T\®T,®
(hi@&T,® ..8T,)and *
(Mi®T,® ...R®T,,) are triple MRN8 ..QT,)]
operators.

Proof

(BT, ..0T, ) (T\BT,..8T,)"]

(Mmene ..eT,)

=[O T8 .8T)(T'ET,® ..8T,)
(Ti®T,® ..8T,)

= (MTT@1,T,® ..8T,Tyn) (T T8 ..0T,)
= (17T ® (T, )T® ... (T, T ) Tin)

Since Ty, Ty, ..., T}, are triple
operators. Then

= (T, (T, T, t]@ Tz{Tsz*)EB . DTy [TmTr;I))
= (Tlea TE$ aTm)
(T T,& ..@T,)(T,®T.,® .. @T,,)Rferences
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