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Abstract

Recently, there has been an increasing interest in the study of regular and perturbed systems.
The aim of this paper is to design artificial neural networks for solve regular perturbation problems
with initial and boundary conditions. We design a multi-layer collocation neural network having
one hidden layer with 5 hidden units (neurons) and one linear output unit the sigmoid activation
function of each hidden unit is ridge basis function where the network trained by back propagation
with different training algorithms such as quasi-Newton, Levenberg-Marquardt, and Bayesian
Regulation. Finally the results of numerical experiments are compared with the exact solution in
illustrative examples to confirm the accuracy and efficiency of the presented scheme.

Keywords: Artificial neural network, back propagation training algorithm, regular perturbed

problems.
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1. Introduction

Many methods have been developed so
far solving regularly perturbed initial value
problems (RPIVP) and perturbed boundary
value problems (RPBVP) , nowadays there
is a new way of computing denominated
artificial  intelligence =~ which  through
different methods is capable of managing
the imprecision's and uncertainties that
appear when trying to solve problems

related to the real world , offering strong
solution and of easy implementation.

One of those techniques is known as
Artificial Neural Networks (ANN). Inspired,
in their origin, in the functioning of the
human brain, and entitled with some
intelligence. These are the combination of a
great amount of eclements of process—

artificial neurons interconnected that
operating in a parallel way get to solve
problems related to aspects of classification
. The construction of any given ANN we
can identify, depending on the location in

the network, three kind of computational
neurons: input, output and hidden.

Very often, a mathematical problem
cannot be solved exactly or, if the exact
solution is available, it exhibits such an
intricate dependency in the parameters that
it is hard to use as such. It may be the case,
however, that a parameter can be identified,
say ¢, such that the solution is available and
reasonably simple for € = 0. Then, one may
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wonder how this solution is altered for non-
zero but small . [9]

Regularly perturbed problems (RPP)
with initial or boundary conditions in
ordinary differential equations (ODE) are
characterized by the presence of a small
parameter €. These problems have been
treated numerically by means of
exponential-fitting, adaptive meshes, and
ideas based on the method of matched. This
paper is organized as follows: The next
section definition the Regularly perturbed
problems .In section 3,We define Artificial
Neural Network(ANN). Section 4 ANN
characterized. Neural Network Topology in
section 5. Description of method given in
section 6. Section 7 illustrate the method,
section 8 report our numerical finding
accuracy of method. Finally conclusions the
last part of the paper.

2. Regularly Perturbed Problems

A perturbation problem is called
regular if its solution y features smooth
dependence on the parameter, i.e., Since €
usually represents a physically meaningful
parameter, letting € tend to 0 corresponds to
neglecting the effect of small perturbations.

The 2nd order regular perturbation problem
has the form:

y'=f(xy.y'€) a<x<h
initail or boundary condition

(D

where f is in general nonlinear functions
of their arguments, and

f (x,y,¥,€) € C([a, bR [0, 1])

of
—— X Yy,Y,e)#0,(X,y, Y, ¢) € ([a, b]
oe

xR?x [0, 1]).

Assume that our problem contains
only one small, positive parameter € (0 < €
«1), denote the problem by Pe. What
happens if €—0? we have the reduced
problem P,. We want to study the
relationship between the solution of P. and
the solution of P, under appropriate

assumptions. A perturbation problem (1) is
called regular perturbation problems (RPP)

> if  yele,x) ——— Yrequcea (%)
convearge

uniformly as e— 0, y(e,x) and
Vreducea (X) denote the solutions to a RPP
when 0 < e << 1 and € = 0 respectively [7].

3. Artificial Neural Networks [§]

An Artificial Neural Network (Ann)
is an information processing paradigm that
is inspired by the way biological nervous
systems, such as the brain, process
information. The key element of this
paradigm is the novel structure of the
information processing system. It is
composed of a large number of highly
interconnected processing elements
(neurons ) working in unison to solve
specific problems. Ann's, like people, learn
by example. An Ann is configured for a
specific application, such as pattern
recognition or data classification, through a
learning process. Learning in biological
systems involves adjustments to the
synaptic connections that exist between the
neurons. This is true of Ann's as well. That
is Artificial Neural Networks are relatively
crude electronic models based on the neural
structure of the brain. The brain basically
learns from experience. It is natural proof
that some problems that are beyond the
scope of current computers are indeed
solvable by small energy efficient
packages. This brain modeling also
promises a less technical way to develop
machine solutions. This new approach to
computing also provides a more graceful
degradation during system overload than its
more traditional counterparts.

These biologically inspired methods of
computing are thought to be the next major
advancement in the computing industry.
Even simple animal brains are capable of
functions that are currently impossible for
computers. Computers do rote things well,
like keeping ledgers or performing complex
math. But computers have trouble
recognizing even simple patterns much less
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generalizing those patterns of the past into
actions of the future.

4. ANN characterized [5]

1-Architecture: its pattern of connections
between the neurons.

2-training  Algorithm: its method of
determining the weight on the connections.
3- Activations function.

5. Neural Network Topology [10]

In an ANN expressions structure,
architecture or topology, express the way in
which computational neurons are organized
in the network. Particularly, these terms are
focused in the description of how the nodes
are connected and in how the information is
transmitted through the network. As it has
been mentioned, the distribution of
computational in the following:

Number of layers: neurons in the neural
network is done forming levels or layers of
a determined number of nodes each one. As
there are input, output and hidden neurons,
we can talk about an input layer, an
output layer and single layer or
multilayer hidden layers. By the
peculiarity of the behavior of the input
nodes some authors consider just two kinds
of layers in the ANN, the hidden and the
output.

Connection patterns: Depending on the
links between the elements of the different
layers. the ANN can be classified as:
totally connected, when all the outputs
from a level get to all and each one of the
nodes in the following level, if some of the
links in the network are lost, then we say
that the network is partially connected.
Information flow: Another classification
of the ANN is obtained by considering the
direction of the flow of the through the
layers, when any output of the neurons is
input of neurons of the same level or
preceding levels, the network is described
as feed forward. In counter position if
there is at least one connected exit as
entrance of neurons of previous levels or of

the same level, including themselves, the
network is denominated of feedback.

6. Description of the Method

In this section we will explain how
this approach can be used to find the
approximate solution  the regular
perturbation with initial value problems
(RPIVPs) and boundary value problems
(RPBVPs)

2 ! . . ..
% =F(x,yy,¢€) , with initial or
boundary condition )

where a subject to certain IC’s and BC’s €
D < R denotes the domain and y(x) is the
solution to be computed.

If y«(x, p) denotes a trial solution
with adjustable parameters p, the problem
is transformed to a discrete form

Ming 5, o iy om)yeCame) )

subject to the constraints imposed by the
IC’s and BC’s.

In the proposed approach, the trial
solution y; employs a FFNN and the
parameters p corresponding to the weights
and biases of the neural architecture. We
choose a form for the trial function yy(x)
such that it satisfies the IC’s and BC’s. This
is achieved by writing it as a sum of two
terms :

Ve(x.p)= A+ G (x.N(x.p)) @)
where N(x, p) is a single-output ANN with
parameters p and n input units fed with the
input vector x. The term A(x) contains no
adjustable parameters and satisfies the IC’s
and BCs, the second term G is not
depending on the IC’s or BC’s by
constructed, this term can be formed by
using suggested networks whose weights
and biases are to be adjusted using the
minimization technique.

This term can be formed by using an
ANN whose weights and biases are to be
adjusted in order to deal with the
minimization problem.

7. Illustration of the Method
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7.1 Illustration of the Method with
initial conditions

In this section we describe solution of
RPIVPs using ANN. To illustrate the
method, we will consider the 2™ order
SPIVPs:

{y"=f(x,y,y',e) a<x<bh 5)
iniail condition

where x € [a,b] and the IC: y(a) = 4, y (a)
= A'; a trial solution can be written as:
ye(p) =A+A(x—a)+

(x —a)*N(x,p) (6)
where N(x, p) is the output of an ANN
with one input unit for x and weights p.

7.2 Illustration of the Method with
boundary condition

In this section we describe solution of
RPBVPs using ANN. To illustrate the
method, we will consider the 2™ order
SPBVPs:

{y":f(x,y,y',e) a<x<bh e
boundary condition

where x & [ab] and the BC case of

Dirichlet BC: y (a) = A, y (b) = B or in case

of Neumann BC.

y’ (a) = A, y’ (b) = B or In the case of
mixed BC: y(a) = A, y'(b) =B, or y(a)=
A, y(b) = B; ; a trial solution can be written
as:

yetep) -85 =20. C=2)

®)
where N(x, p) is the output of an ANN
with one input unit for x and weights p.

X+ -a)x -b)Nx.p)

8. Numerical result

In this section we report some
numerical result and the solution of number
of model problem. In all cases we used a
multi-layer FFNN having one hidden layer
with 5 hidden units (neurons) and one
linear out output unit. The sigmoid
activation of each hidden is radbas ( radial
basis function ). For each test problem the

exact analytic solution y,(x) were known in
advance. Therefore we test the accuracy of
obtained solutions computing the mean
square error (MSE).

8.1 linear examples
Example 1 [3]

Consider the following 2™ order of
liner regular perturbation problem (RPP)
y'=—gy' —1, withl.C:

y(0) =0, y'(0)=1 x¢€[0,1]
and the analytic solution :

= mg)(i—z_egx)—f and st £=10"

According to the equation (6) the trial
neural form of the solution is taken to be:
ye(x) = x + x*N(x, p).

The FFNN trained using a grid of ten
equidistant points in [0,1]. Figure (8.1)
display the analytic and neural solution
with different training algorithms. The
neural result with different types of training
algorithms such as: Levenberg — Marquardt
(trainlm), quasi — Newton ( trainbfg ),
Bayesian Regulation (trainbr) introduced in
table (8.1) and its errors gave in table (8.2),
table (8.3) gave the performance of the train
for epoch and time, table (8.4) gave the
initial weight and bias of the design
network.

Example 2 [3]

Consider the following 2™ order of
liner regular perturbation problem (RPP)
y'+(1—ex)y=0, WithLC
y(0) =1, y (1) =0,x €[0,1]and the
analytic solution :
y = cosx + (z) [x2sinx + xcosx —

sinx] + €2 [(—%

(&) x2cosx — (&) xssinx] and s.te=10"

)x“cosx x3sinx +

According to the equation (6) the trial
neural form of the solution is taken to be:
ye(x) = x +x(x — DN(x,p).
The FFNN trained using a grid of ten
equidistant points in [0,1]. Figure (8.2)
display the analytic and neural solution
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with different training algorithms. The
neural result with different types of training
algorithms such as: Levenberg — Marquardt
(trainlm), quasi — Newton ( trainbfg ),
Bayesian Regulation (trainbr) introduced in
table (8.5) and its errors gave in table (8.6),
table (8.7) gave the performance of the train
for epoch and time, table (8.8) gave the
initial weight and bias of the design
network.

8.2 Nonlinear examples
Example 3 [6]
Consider the following 1¥ order non-

liner regular perturbed boundary-value
problem (RPBVPs)

y =y%sin(ex), WithB.C
&
y(O) =1, y(l) " (e—1)+cose ’
€[0,1] and the nalytic solution :
y=———— and s.te=10"

(e-1)+cos ex

According to the equation (8) the trial

neural form of the solution is taken to be:
ye(x) =1+ 0.0525x + x(x —
1) N(x,p).

The FFNN trained using a grid of ten
equidistant points in [0,1]. Figure (8.3)
display the analytic and neural solution
with different training algorithms. The
neural result with different types of training
algorithms such as: Levenberg — Marquardt
(trainlm), quasi — Newton ( trainbfg ),
Bayesian Regulation (trainbr) introduced in
table (8.9) and its errors gave in table
(8.10), table (8.11) gave the performance of
the train for epoch and time, table (8.12)
gave the initial weight and bias of the
design network.

Example 4 [1]
Consider the following second order

non-liner regular perturbed initial-value
problem (RPIVPs)

y' +y+ey?, Withl.Cy(0) =1,
y'(0) =0, x €[0,1] and the analytic
solution :

y =cos(x) + ¢ (% [cos3x — cosx] —

% xsinx) [2] ,ands.t £=10"

According to the equation (6) the trial
neural form of the solution is taken to be:

y:(x) =1+ x? N(x,p).

The FFNN trained using a grid of ten
equidistant points in [0,1]. Figure (8.4)
display the analytic and neural solution
with different training algorithms. The
neural result with different types of training
algorithms such as: Levenberg — Marquardt
(trainlm), quasi — Newton ( trainbfg ),
Bayesian Regulation (trainbr) introduced in
table (8.13) and its errors gave in table
(8.14), table (8.15) gave the performance of
the train for epoch and time, table (8.16)
gave the initial weight and bias of the
design network.

8. Conclusion

This paper present new technique to
solve 2™ order regular perturbed problems
using artificial neural network which have
the regularly perturbed ,the suggested
architecture of the ANN is efficient and
more accurate than other numerical method
and the practical results show which
contain up to a few hundred weights the
Levenberg-Marquardt algorithm (trainlm)
will have the fastest convergence, then
trainbfg and then trainbr. However,
"trainbr" it does perform well on function
approximation on problems, in contrast to
his performance in the solution of singular
perturbation problems. The performance of
the various algorithms can be affected by
the accuracy required of the approximation.
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Table 8.1: Analytic and Neural solution of example

input | Analytic solution Out of suggested FFNN y(x) for different training algorithm
X Ya(x) Trainlm Trainbfg Trainbr
0.0 0 4.36184828137977e-05 6.92555742637888e-06 5.25038450309868e-08
0.1 0.0949513557425235 0.0947693565460115 0.0946685580708633 0.0939425585113695
0.2 0.180021716660121 0.180004497690708 0.180024967046889 0.180021600793005
0.3 0.254989037988707 0.255046494855935 0.254994743523004 0.255229076482784
0.4 0.319964342052117 0.319965260810589 0.319765430379792 0.319965314046176
0.5 0.374947628995869 0.374928695695493 0.374696657569078 0.374944302314382
0.6 0.420049921027385 0.419988617596578 0.419844040667538 0.420057369738515
0.7 0.455049173557200 0.455064011110410 0.455013106541516 0.455037944688613
0.8 0.479945386294276 0.480024534008685 0.480018841562928 0.479956026177754
0.9 0.494960604351945 0.494879462028247 0.494899138071445 0.494954951924237
1.0 0.499983805231750 0.500018103388820 0.499997553425343 0.499985071343206
Table 8.2 : Accuracy of solutions for example
The error E(x) =| y(X) —ya(x) | where yq(x) computed by the following
training algorithm
Trainlm Trainbfg Trainbr

4.36184828137977e-05 6.92555742637888¢-06 5.25038450309868¢-08

0.000181999196511948 0.000282797671660132 0.00100879723115392

1.72189694137848e-05 3.25038676732281e-06 1.15867116123880e-07

5.74568672274123e-05 5.70553429618537¢-06 0.000240038494077000

9.18758471690762e-07

0.000198911672325275

9.71994058684977e-07

1.89333003760006e-05

0.000250971426791369

3.32668148728121e-06

6.13034308065696e-05

0.000205880359846256

7.44871113061985e-06

1.48375532101896e-05

3.60670156835941e-05

1.12288685870654e-05

7.91477144092001¢-05

7.34552686526557e-05

1.06398834784360e-05

8.11423236978803e-05

6.14662805000221e-05

5.65242770866892¢-06

3.42981570702339¢-05

1.37481935932882e-05

1.26611145634392¢-06
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Table 8.3:The performance of the train with epoch and time

Train Performan f .
Fun:tion ’ 0traian o Epoch Time MSE
Trainlm 3.08-33 31 0:00:00 5.180585694283459¢-09
Trainbfg 1.51-09 323 0:00:05 2.142440547089971e-08
Trainbr 3.78-11 913 0:00:11 9.778460826104464¢-08

Table 8.4 : Initial weight and bias of the network for different training algorithm

Weights and bias for trainlm Weights and bias for trainbfg
Net.IW{1,1} | Net.LW{2,1} | Net.B{1} Net.IW{1,1} | Net.LW{2,1} | Net.B{1}
0.2057 0.4845 0.2374 0.5518 0.9962 0.4547
0.3883 0.1518 0.5309 0.5836 0.3545 0.4134
0.5518 0.7819 0.0915 0.5118 0.9713 0.2177
0.2290 0.1006 0.4053 0.0826 0.3464 0.1257
0.6419 0.2941 0.1048 0.7196 0.8865 0.3089
Weights and bias for trainbr
Net.IW{1,1} | Net.LW{2,1} Net.B{1}

0.3983 0.9791 0.7565
0.7498 0.5493 0.4139
0.8352 0.3304 0.4923
0.3225 0.6195 0.6947
0.5523 0.3606 0.9727
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0.7 T T T T T T T
—— Exact

—#—— Trainlm
06 & Trainbfg -
—%— Trainbr

051 = e

0.4 —

03 / =
02 /@/ o

01} / _

/
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Figure 8.1: analytic and neural solution of example using : trainlm , trainbfg and trainbr training
algorithm



Al-Qadisiyah journal for pure science Vol. 21

No.4 Year 2016

Table 8.5: Analytic and Neural solution of example

input | Analytic solution Out of suggested FFNN y(x) for different training algorithm
X Va(X) Trainlm Trainbfg Trainbr
0.0 1 0.999999999363522 1.00000000175704 1.00000007391302
0.1 0.995004166941360 0.995004166222954 0.994718744265259 0.995003545972025
0.2 0.980066591068125 0.980068291833021 0.979918140854827 0.980067374279565
0.3 0.955336533319445 0.955335975715681 0.955303854276101 0.955329194911241
0.4 0.921061097285179 0.921061096682491 0.921061096822551 0.921059209077894
0.5 0.877582759945254 0.877582759157436 0.877582759635566 0.877585905496474
0.6 0.825335949484257 0.825335948943901 0.825335949856014 0.825333157491326
0.7 0.764842704379160 0.764849495639380 0.764843495678654 0.764843858849604
0.8 0.696707457137437 0.696721651794313 0.696707457330868 0.696726991738074
0.9 0.621610994808670 0.621610994271581 0.621610995692091 0.621610746473634
1.0 0.540303656617805 0.540303656163387 0.540303658154140 0.540303716758258

Table 8.6 : Accuracy of solutions for example

The error E(x) = | y«(X) —=ya(x) | where y«(x) computed by the following training

algorithm
Trainlm Trainbfg Trainbr
6.36478314497424e-10 1.75703629423651e-09 7.39130205928973e-08
7.18405779309705¢-10 0.000285422676100877 6.20969335507482¢-07
1.70076489591775e-06 0.000148450213298568 7.83211439481235e-07

5.57603763162717e-07

3.26790433432533e-05

7.33840820343890e-06

6.02687455497630e-10

4.62627491870649¢-10

1.88820728519445e-06

7.87818033032295e-10

3.09688052979595e-10

3.14555122005178e-06

5.40355538092285¢e-10

3.71757624684221e-10

2.79199293040655e-06

6.79126022007370e-06

7.91299493707598e-07

1.15447044413131e-06

1.41946568760210e-05

1.93431159978275¢e-10

1.95346006370833e-05

5.37088484797721e-10

8.83421780173421e-10

2.48335035646363e-07

4.54417947715058e-10

1.53633428201516e-09

6.01404528399741e-08

Table 8.7:The performance of the train with epoch and time

Trai.n Perform.ance of Epoch Time MSE
Function train

Trainlm 1.76-33 561 0:00:07 2.280118409860440¢-11
Trainbfg 4.14-24 484 0:00:08 9.506555990582628e-09

Trainbr 2.63-12 1029 0:00:12 4.173731601304228e-11

Table 8.8 : Initial weight and bias of the network for different training algorithm

Weights and bias for trainlm Weights and bias for trainbfg
Net.IW{1,1} | Net.LW{2,1} | Net.B{1} Net.IW{1,1} | NetLW{2,1} | Net.B{1}
0.7112 0.4242 0.0292 0.1068 0.9037 0.0305
0.2217 0.5079 0.9289 0.6538 0.8909 0.7441
0.1174 0.0855 0.7303 0.4942 0.3342 0.5000
0.2967 0.2625 0.4886 0.7791 0.6987 0.4799
0.3188 0.8010 0.5785 0.7150 0.1978 0.9047
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Weights and bias for trainbr
Net.IW{1,1} | Net.LW{2,1} Net.B{1}
0.2691 0.9831 0.6981
0.4228 0.3015 0.6665
0.5479 0.7011 0.1781
0.9427 0.6663 0.1280
0.4177 0.5391 0.9991
1 .2 T T T T T T T
—— Exact
* inl
1.1} —&— trainbfg
— % trainbr
1¢—e___ —— 7
.
09+ b i -
-
08} . -
.‘*"\“
0.7} e .
06} Mo
e
05 1 1 1 1 1 1 1 1 T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 1

Figure 8.2: analytic and neural solution of example using : trainlm , trainbfg and trainbr training
algorithm.

Table 8.5: Analytic and Neural solution of example

input | Analytic solution Out of suggested FFNN y«(x) for different training algorithm

X Ya(X) Trainlm Trainbfg Trainbr

0.0 1 0.999999999363522 1.00000000175704 1.00000007391302
0.1 0.995004166941360 0.995004166222954 0.994718744265259 0.995003545972025
0.2 0.980066591068125 0.980068291833021 0.979918140854827 0.980067374279565
0.3 0.955336533319445 0.955335975715681 0.955303854276101 0.955329194911241
0.4 0.921061097285179 0.921061096682491 0.921061096822551 0.921059209077894
0.5 0.877582759945254 0.877582759157436 0.877582759635566 0.877585905496474
0.6 0.825335949484257 0.825335948943901 0.825335949856014 0.825333157491326
0.7 0.764842704379160 0.764849495639380 0.764843495678654 0.764843858849604
0.8 0.696707457137437 0.696721651794313 0.696707457330868 0.696726991738074
0.9 0.621610994808670 0.621610994271581 0.621610995692091 0.621610746473634
1.0 0.540303656617805 0.540303656163387 0.540303658154140 0.540303716758258
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Table 8.6 : Accuracy of solutions for example

The error E(x) = | y«(X) —y.(x) | where y«(x) computed by the following training

algorithm
Trainlm Trainbfg Trainbr
6.36478314497424¢-10 1.75703629423651e-09 7.39130205928973¢-08
7.18405779309705e-10 0.000285422676100877 6.20969335507482e-07
1.70076489591775e-06 0.000148450213298568 7.83211439481235e-07

5.57603763162717e-07

3.26790433432533e-05

7.33840820343890e-06

6.02687455497630e-10

4.62627491870649¢-10

1.88820728519445e-06

7.87818033032295¢e-10

3.09688052979595¢e-10

3.14555122005178e-06

5.40355538092285¢-10

3.71757624684221e-10

2.79199293040655e-06

6.79126022007370e-06

7.91299493707598e-07

1.15447044413131e-06

1.41946568760210e-05

1.93431159978275e-10

1.95346006370833e-05

5.37088484797721e-10

8.83421780173421e-10

2.48335035646363e-07

4.54417947715058e-10

1.53633428201516e-09

6.01404528399741e-08

Table 8.7:The performance of the train with epoch and time

Trai'n Perform.ance of Epoch Time MSE
Function train

Trainlm 1.76-33 561 0:00:07 2.280118409860440¢e-11
Trainbfg 4.14-24 484 0:00:08 9.506555990582628e-09

Trainbr 2.63-12 1029 0:00:12 4.173731601304228¢-11

Table 8.8 : Initial weight and bias of the network for different training algorithm

Weights and bias for trainlm Weights and bias for trainbfg
Net.IW{1,1} | Net. LW{2,1} | Net.B{1} Net.IW{1,1} | Net. LW{2,1} | Net.B{1}
0.7112 0.4242 0.0292 0.1068 0.9037 0.0305
0.2217 0.5079 0.9289 0.6538 0.8909 0.7441
0.1174 0.0855 0.7303 0.4942 0.3342 0.5000
0.2967 0.2625 0.4886 0.7791 0.6987 0.4799
0.3188 0.8010 0.5785 0.7150 0.1978 0.9047

Weights and bias for trainbr
Net.IW{1,1} | Net.LW{2,1} Net.B{1}
0.2691 0.9831 0.6981
0.4228 0.3015 0.6665
0.5479 0.7011 0.1781
0.9427 0.6663 0.1280
0.4177 0.5391 0.9991
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Figure 8.2: analytic and neural solution of example using : trainlm , trainbfg and trainbr training

algorithm.

Table 8.13: Analytic and Neural solution of example

input | Analytic solution Out of suggested FFNN y«(x) for different training algorithm
X Ya(X) Trainlm Trainbfg Trainbr
0.0 1 1.00000007655193 0.999999997808015 1.00000010685247
0.1 0.995004160294658 0.995003827257243 0.995015934200908 0.995003695463547
0.2 0.980066558105699 0.980067075925372 0.980073040397284 0.980067199050823
0.3 0.955336445450629 0.955330837130449 0.955336670360704 0.955330217949129
0.4 0.921060918130658 0.921059638277053 0.921060348005196 0.921059327559432
0.5 0.877582446784167 0.877584736056700 0.877583059974158 0.877585041548535
0.6 0.825335454973318 0.825333424474878 0.825335234897047 0.825333095283871
0.7 0.764841978499587 0.764842852400115 0.764840294707549 0.764842902029670
0.8 0.696706449324700 0.696719952490333 0.696706484316267 0.696722326499033
0.9 0.621609656220266 0.621609491223232 0.621613015073610 0.621609460508001
1.0 0.540301942494808 0.540301992377265 0.540301963121660 0.540302033982766
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Table 8.14 : Accuracy of solutions for example

The error E(x) = | y(Xx) —y.(x) | where y(x) computed by the following training

algorithm
Trainlm Trainbfg Trainbr
7.65519345691246¢-08 2.19198481588023e-09 1.06852471981611e-07
3.33037414645965e-07 1.17739062507338e-05 4.64831110824626e-07

5.17819672363196e-07

6.48229158461966e-06

6.40945123420167e-07

5.60832018015045¢-06

2.24910074786422¢-07

6.22750149947837e-06

1.27985360465210e-06

5.70125461285542¢-07

1.59057122550710e-06

2.28927253276279¢-06

6.13189991560681e-07

2.59476436814676e-06

2.03049844083036e-06

2.20076271539860e-07

2.35968944706233e-06

8.73900528164384e-07

1.68379203746571e-06

9.23530083407620e-07

1.35031656330886e-05

3.49915669772827e-08

1.58771743330455e-05

1.64997034701742e-07

3.35885334390440e-06

1.95712265393944e-07

4.98824570538403e-08

2.06268523372799¢-08

9.14879579871908e-08

Table 8.15:The performance of the train with epoch and time

o | Ferormates o o | time | st
Trainlm 1.35¢-12 410 0:00:05 2.054261645454189¢-11
Trainbfg 1.07-13 651 0:00:11 1.777852198148876¢-11
Trainbr 1.82e-12 871 0:00:10 2.793047001635929¢-11

Table 8.16 : Initial weight and bias of the network for different training algorithm

Weights and bias for trainlm Weights and bias for trainbfg
Net.IW{1,1} | Net. LW{2,1} | Net.B{1} Net.IW{1,1} | Net.LW{2,1} | Net.B{1}
0.1112 0.0965 0.0598 0.7094 0.1626 0.5853
0.7803 0.1320 0.2348 0.7547 0.1190 0.2238
0.3897 0.9421 0.3532 0.2760 0.4984 0.7513
0.2417 0.9561 0.8212 0.6797 0.9597 0.2551
0.4039 0.5752 0.0154 0.6551 0.3404 0.5060

Weights and bias for trainbr
Net.IW{1,1} | Net.LW{2,1} Net.B{1}
0.6915 0.6981 0.9831
0.4228 0.6665 0.3015
0.5479 0.1781 0.7011
0.9427 0.1280 0.6663
0.4177 0.9991 0.5391
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Figure 8.4: analytic and neural solution of example using : trainlm , trainbfg and trainbr training
algorithm
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