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Abstract

This research to deal with ARIMA models it used in time series analysis.
Whereas this models are distinct with high flexible and accuracy in time series
analysis.

Theoretical part is concentrate on general concepts for ARIMA models,
and statistical tools that have proved useful in analyses time series.

Practice part is clear the practice part to our research, by using data
taken from web page (www.maths.monash.edu.au/hyndman/forecasting/) .

This data is representing the production of electrics capacity in australia
in (months) from (jan 1956 to aug 1995) after that, to be accomplishment
checking the adequate model to this data and so building the model and
forecasting with production of electrics for two year ahead (sep 1995 to aug
1997).
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1- Introduction

1.1 Time series analysis

A time series is a collection of observations made sequentially in time. The
statistical methodology dealing with the analysis of such a sequence of data is called
“time series analysis” . in many other areas of statistical analysis the observations are
assumed statistically independent, time series methods are used to analyze dependent
observation. It is this dependence which characterizes the dynamic or the “ memory”
of the underlying system. This dependence /dynamic/memory property of the system
enables the prediction of future values of the system from past values once we
quantify the dependence. the nature of the dependence or dynamics distinguishes one
time series from another .[Alankang 1980 p.2].

1.2 The objective of time series analysis

The initial objective of time series analysis is to make inference about the
properties or basic features of the stochastic process from the information contained in
the observed series. The first step in the analysis is usually to form certain summary
statistics, but the eventual aim is to construct a model from the data.

Once a model has been obtained, it can be used to generate synthetic data for
future study, forecast values of the series, and evaluate control related systems.
[Alankang 1980 p.2]

2- The aim of study

The aim of this study is computing forecasting values for production of electrics

in Australian from (sep 1995 to agu 1997 ), by using Box-Jenkins methodology .
1.3 The Box-Jenkins approach

The Box-Jenkins approach lets the data speak for itself. It provides an objective
and systematic approach to modeling and forecasting discrete time series. The Box-
Jenkins approach strives for the “best model” for forecasting or control purposes
based upon time series data. Their concept of “best model” is not the usual one found
by minimization of the fitting errors, a model is adequate if all parameters are
statistically significant and the errors from the model are independently distributed.

The Box-Jenkins methodology is a power full approach to the solution of many
time series analysis problem. [Ajoy 2005 P.3]

3.2 Examining correlation in the time series data

In this section we consider analysis that can be applied to our time series to

determine its statistical properties. [Spyros 1998 P.410]
3.2.1 The autocorrelation function (ACF)
The key statistic in time series analysis is the (correlation of time series with

itself, lagged 1,2, or more periods ). The formula of autocorrelation function as
follows: [Spyros 1998 P.411]

Doy, = VN Y. = )

t =k +1

r, = -
- 2

(yl_ y)
=T (3-1)

3.2.2 White noise model

Any forecasting model should have forecast errors containing on white noise,
equation (3-2) is a simple random model . [Box 1976 P.220]
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Where :
C is a constant term
et is error component

3.2.3 The partial autocorrelation function (PACF)

Partial autocorrelations are used to measure the degree of association between yt
and yt-k , when the effect of other time lags 1,2,....k-1.

The value of this can be seen in the following simple example. Suppose there
was a significant autocorrelation between yt and yt-1 . then there will also be a
significant correlation between yt-1 and yt-2 , since they are also one time unit a part,
consequently, there will be a correlation between yt and yt-2 because both are related
to yt-1 . so to measure the real correlation between yt and yt-2 this is what partial
autocorrelation . [Spyros 1998 P.413]

3.2.4 Recognizing seasonality in time series

Seasonality is defined as a pattern that repeat itself over fixed interval of time. In
general, seasonality can be found by identifying a large autocorrelation coefficient or
a large partial autocorrelation coefficient at the seasonal lag. So for monthly data,
large autocorrelations might also been at lag 12,24 , and even lag 36 . [Spyros 1998
P.415-416]

3.3 Examining stationary of time series data

Stationary is meaning on growth or decline in the data. The data must be
roughly horizontal a long the time axis. In other words the mean and the variance for
the data are constant.

The autocorrelation function also displays a typical pattern for a non — stationary
series, with a slow decrease in the size of the autocorrelations. The autocorrelation for
one time lag rl is very large and positive. The autocorrelation for two time lags is also
large and positive, but not as large as rl . because the random error components will
begin to dominate the autocorrelations . [Joseph 2006 P.9]

3.3.1 Removing non-stationary in time series
Trends, or other non-stationary pattern in the level of a series result in positive
autocorrelations that dominate the autocorrelation. One way of removing non-
stationary is through the model of differencing. We define the differenced series as
the change between each observation in the original series. [Alankang 1980 p.11]

yl:yt_yt—l (3-3)

In case the series contains on seasonality patterns, for this case equation (3-4) is
adequate .

yt=yt_yt—s (3_4)

Where : s is the number seasons, for monthly data (s=12), for quarterly data
(s=4). If the series non-stationary in the variance then we will take transformation* to
the series.

3.3.2 Back shift operator

The back shift operator is convenient for describing the process of differencing.

first difference can be written as: ¢ Yt Y1 = Vi T By, =(1-B)y, , the second
difference is a first difference of the first differences would be denoted 1-B2 . for
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monthly data , B12 is used and the notation is B12yt =yt-12 . a seasonal difference
follow by difference can be written as : (1-B)(1-Bs)yt . [Spyros 1998 P.420]

3.4ARIMA models for time series

We discussion the following equation

y,=b,+by, ,+b,y , +....+bpyt_p +e,

In this equation we denote that b0,bl,......bp are represented the

parameters for this equation while is the forecast variable which is dependent on
previous values yt-1,yt-2,.....,yt-p , and therefore the name auto regression (AR) . the
following equation while

Y =bythe  +bhe ,+..+be  +e, o
For this equation (3-6) , we denote that the forecast variable yt is dependent on
previous values for the error term et . because it is defined

Transformation”: the main approach for achieving stationary in variance is through a logarithm or
power transformation of the data.

as a moving average of the error series e, (MA) for this season is called
(ARIMA) , autoregressive integrated moving average .
The general non-seasonal model is known ARIMA(p,d,q):
AR: p=order of the autoregressive part .
I: d=degree of first difference involved.
MA:g= order of the moving average part .
And the general seasonal model is known as ARIMA(p,d,q) (P,D,Q)s
(p.d,q) is represent non-seasonal part of the model
(P,D,Q); is represent seasonal part of the model, when s is number of periods
per season. [Martins 2007P. 19-20]
3.4.1 High order moving average models
The general MA model of order q can be written as following:

q
y,=c+te—0O¢ —be¢ ,—...—0¢ =cte— Zé?jet_ j
Jj=1

Where:
C = constant term

/" jth moving average parameter
et-q=the error term at time t-q
Using back shift operator equation (3-7) can be written as:

y,=(1-6B—-6,B>—....—0,B)e, +c

Where is 0«" restricted between -1 and 1
3.5 How to recognize pattern in ACF and PACF
If we want recognize suitable patterns for time series data, that is does through
ACF and PACF which is compute of data. This process is clear by the following table.
[Milan 2007P. 265]

process ACF PACF
AR(1) | Exponential decay: on positive | Spike at lag 1, then cuts of to zero
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side if %>0 and alternating in
sign starting on negative side if

spike positive if ¢1>0, negative if
% <0.

off to zero.

% <0.

AR(p) Exponential decay or | Spikes al lag 1 to p then cuts off to
damped sine-wave the exact | zero.
pattern depends on the sign and
sizes 0f¢1,.....,¢" .

MA(1) | Spike at lag 1 then cuts off to | Exponential decay:on negative
zero: spike positive if 6 <0, side if @ >0 and alternating in
negative if 6 >0 sign starting on positive side if

6 <0
MA(q) | Spikes at lags 1 to q then cuts | Exponential decay or damped

sine-wave the exact pattern
depends on the sign and sizes of
6......0

q

4-Practice part
4.1 Plot the data

Plot the data is clear that the data is non-stationary in the mean and in the
variance because the variation in the magnitude of the fluctuations with time is referd

Table (3-1) How to recognize pattern in ACF and PACF

to non-stationary in the variance as show in figure (4-1).

First step is stabilize the data in the variance by using transformation

Plot of variable: VAR1
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Figure (4-1) non-stationary in the variance

Wt=log(Yt) ,show figure (4-2) stationary in the variance .

Plot of variable: VAR1
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Figure (4-2) stationary in the variance
After that, the data is become stabilize in the variance but it iS remain non-
stationary in the mean, because there are several a rounds and declines in the data, to
make stationary, we take first difference, because the data in figure (4-1) show the
seasonality in the series and this evidence on the seasonality data. Figure (4-3) show
the stationary in the mean after take seasonality difference.

Plot of variable: VAR1
In(x); D(-1); D(-12)
0.15 T T T T T T T T T 0.15
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>
-0.05 1 -0.05
Figure | 1-0.10
(4-3)
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ary n Case Numbers
the
mean
4.2 Model selection

In this point, we will examine the data ACF & PACEF, after get on the stationary
for time series examine ACF &PACF figure (4-4 a)&(4-4 b) are shows the ACF
&PACF respectively for stationary data .note that PACF is exponentially decay for
first few lags, in the ACF, the r; is significant reinforcing the non- seasonal MA(1)
model and ry; is significant a seasonal MA(1) model. And we end up with the
tentative identification: [Box 1976 P.289]

ARIMA (0,1,1)(0,1,1)12

Or

........... @-1)(1=B)1-B")y, =(1-6B)(1-0,B")e,

Pt f

Non-seasonal ~ Seasonal Non-seasonal ~ Seasonal MA(1)
Difference difference MA(1)
Autocorrelation Function
VAR1 In(x); D(-1); D(-12)
(Standard errors are white-noise estimates)
Lag Corr. S.E. T T T Q i)
1 —.469 .0463 | 2z 4102.4 0.000
2 —.013 .0463 | i 4 102.5 0.000
3 +.022 .o0462 | K 4102.7 o0.000
4 +.020 .0462 | Lt 4 102.9 0.000
5 —.022 .o0461 [ :|: {103.1 0.000
6 —.014 .o0461 | o 4103.2 0.000
7 +.023 .0460 } 1B 4103.4 0.000
8 —.044 .0460 } gt 4 104.3 .0000
9 +.058 .0459 | g 4105.9 .0000
10 -.037 .0459 | . 4 106.6 .0000
11 +.213 .0458 | m 4 128.2 0.000
12 —-.329 .0458 } m| 4179.9 0.000
13 +.039 .0457 } B 4 180.6 0.000
14 +.079 .0457 |} |% 4183.6 0.000
15 —.010 .0456 | :|I 4183.7 0.000
16 —-.057 .0456 | 8 4185.2 0.000
17 +.051 .0455 f 1B 4 186.5 0.000
18 +.080 .0455 | RZ 4189.6 0.000
19 —.143 .0454 | 1 4199.5 0.000
20 +.072 .0454 f |: 4202.1 0.000
21 +.038 .0453 | [/H 4 202.8 0.000
22 —.111 .0453 | %( 4 208.8 0.000
23 +.121 .0452 )@ 4215.9 0.000
24 —.174 .0452 | 4 230.8 0.000
] o] — — Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
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Figure (4-4 a) ACF

Partial Autocorrelation Function
VAR1 :In(x); D(-1); D(-12)
(Standard errors assume AR order of k-1)
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Figure (4-4 b) PACF

Note that this model is some time called the (air line model) because it was
applied to international air line data by Box& Jenkins (1970). It is one of most
commonly used seasonal ARIMA models .

4.3 Estimating the parameters

After make a tentative model identification for our problem the MA parameters
non-seasonal, seasonal Should be determined.

Computer program for fitting ARIMA models will automatically find
appropriate initial estimate of the parameters and then successively refine them until
the optimum values of the parameters are found using either the least square or
maximum likelihood criteria. The parameters for our model (0,1,1)(0,1,1)12 . Are
clear from the following table.

Parameters | Estimate | Std.error Z P-value
0, 0.66418 0.03607 18.413 0.000
(O 0.66264 | 0.03494 18.965 0.000

Table (4-1) parameters for ARIMA model (0,1,1)(0,1,1);,

4.4 identification revisted

After estimated an ARIMA model, it is necessary to revisit to see if the selected
model can be improved, there are many criteria to this purpose ,some of these criteria
are mean square error (MSE),mean absolute percentage error, and Akiake’s
information criteria (AIC) *.

To see that the following table clear some ARIMA models for the (production of
electrics in Australia ), by taking minimum (MSE,MAPE and AIC) of ARIMA model,
for these ARIMA models, the model (0,1,1)(0,1,1)12 , is the best ARIMA model for
our time series .

ARIMA. bde11.2)1- | MSBI1299 | MAPI9.085 | -AYQ04617 |
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(0,1,1)(0,1,1);, 3770881 12.043 -853.48265
(0,1,2)(0,1,2)12 5483764 14.791 -849.02081
(0,1,2)(0,1,1)1 3879010 12.364 -851.47951

Table (4-2) some ARIMA models for production of electrics

4.5 Diagnosis checking
For a good forecasting model, the residuals after fitting the model should be
simply white noise, there force, if the ACF & PACEF of the residuals are obtained, we
would hope to find no significant autocorrelation and no significant partial
autocorrelation. The residuals from the fitted our ARIMA model (0,1,1)(0,1,1)> are
analyzed in figure (4-5)(4-6) respectively . as show following :

2
Akiake’s information criteria (AIC)* , the form to AIC is: AIC=(n(1+log(2H))+(n log o
+2m)) .where m=p+q+P+Q be the number of terms estimated in the model .then we can choose the

2
values of p,d,P and Q by minimizing (AIC). O is the variance of the residuals and n is the number of
observations in the series .

VAR1
Lag Corr.
1 -.021
2 +.001
3 +.056
4 -.020
5 -.049
6 -.042
7 -.094
8 -.018
9 +.082
10 -.024
11 +.104
12 +.047
13 -.075
14 +.064
15 -.015
16 -.082
17 +.030
18 -.010

Autocorrelation Function

2In(x); D(-1); D(-12); ARIMA (0,1,1)(0,1,1) residuals

S.E. Q P

.0463 ih .21 .6483

L0463 :|: .21 .9010

.0462 || 1.69 .6388
gl

0462 ih 1.89 .7565

.0461 : : 2.99 .7009

0461 i 3.83 .6994

1

L0460 %. 8.02 .3311
i

L0460 L 8.16 .4176

L0459 12 11.38 .2508
1

0459 .ﬂ. 11.66 .3084
'p

.0458 A 16.85 .1123

0458 L 17.93 .1180

1

0457 | 20.62 .0808
g

0457 il 22.58 .0675

0456 l|: 22.68 .0912

0456 ! 25.89 .0557
gl

0455 h 26.31 0690

0455 Sk 26.37 .0918

0 . . . 0
1.0  -05 0.0 05 1.0

— = Conf. Limit

VAR1 :In(x); D(-1); D(-12); ARIMA (0,1,1)(0,1,1) residuals
Lag Corr. S.E. T T T
1 -.021 .0465 o
2 +.000 .0465 L.
R . "
3 +.056 .0465 -
R 1gl
.018 0465 o
- g |
5 -.050 .0465 ‘ !
6 -.048 .0465 e
|
-.094 .0465 % "
- - | |
8 -.017 .0465 ik
9 +.086 .0465 l %
|
10 -.013 .0465 || |
Ton naee I 7
11 +.100 .0465 ‘
12 +.032 .0465 Lyl
I
13 -.082 .0465 |
5 - Il
14 +.047 0465 B
15 -.012 .0465 l‘ | i
16 -.053 .0465 i
5 N - | |
17 +.035 0465 mk
18 +.001 .0465 o
0 . . .
-1.0 05 0.0 0.5 1.0

Partial Autocorrelation Function

== Conf. Limit

Y, =YtV Vo be—0Be_,+00¢_;+e,

Figure (4-5) residuals for ACF
Figure (4-6) residuals for PACF
We show that the spikes of ACF and PACF are within the limit of ACF &PACF
4.6 Forecasting with ARIMA model
An ARIMA (0,1,1)(0,1,1)12 model is described as

(1-B)(1-B")y, =(1-6B)(1-0,B%)e,

Forecasting equation for above model we can obtain by simple algebra
operation, for the model above , forecasting equation is:

Golog -2l iy ahe ¥ A AW Gl

8

...(4-3)



Sd=ly Simbmd ) ool i g £
2008 % A ==\
I o

In this research, consider the ARIMA (0,1,1)(0,1,1)12 fitted to the (production
of electrics in Australian ) . This model will be used to forecast for two years ahead.

Now in order to forecast for two years ahead (24 months) from (Sep 1995 to
Aug 1997) , forecast values are computing by statistica program v. 6 as show in table

(4-3).

month year Forecasting values

Sep 1995 14117
Oct 1995 13806
Nov 1995 13722
Dec 1995 13879
Jan 1996 14223
Feb 1996 13671
Mar 1996 14196
Apr 1996 14260
May 1996 14618
Jun 1996 14660
Jul 1996 15207
Aug 1996 14409
Sep 1996 14453
Oct 1996 14496
Nov 1996 14541
Dec 1996 14585
Jan 1997 14629
Feb 1997 14674
Mar 1997 14718
Apr 1997 14763
May 1997 14808
Jun 1997 14853
Jul 1997 14898
Aug 1997 14944

Table (4-3) forecasts for the production of electrics
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Forecasts; Model:(0,1,1)(0,1,1) Seasonal lag: 12

Input: VAR1
Start of origin: 1 End of origin: 476

— Observed --- Forecast

30000 30000
25000 1 25000
20000 1 120000
15000 | A 1 15000
10000 ¢ 1 10000
5000 1 1 5000
0r 10
-5000 . . . . . . . . . . -5000
0 50 100 150 200 250 300 350 400 450 500 550

Figure (4-7) forecast for the production of electrics
S. Recommendation and Conclusion

1-The model (0,1,1)(0,1,1),, it was adequate ARIMA model, because it is minimum
mean square error, mean absolute percentage error and minimum Akiake’s

information criteria .

2- The work is continuous to practice the ARIMA models on data taken from our

country.
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