Centralizing Higher Left Centralizers On Prime Rings

Receved:1/11/2015 Accepted:5/1/2016

Salah M. SalihMazen O. Karim

Department Of mathematics Department Of mathematics

College of Educations College Of Educations

Al-Mustansiriya University Al-Qadisiyah University

Dr.salahms2014@gmail.commazin792002@yahoo.com

Abstract:

In this paper we study the commutativity of prime rings satisfying certain identities involving higher left centralizer on it.

Math. Classification QAISO -27205

Key words: prime rings, higher left centralizer

1.Introduction:

Throughout this paper R is denote to an associative ring and it is center will denoted by Z(R) which equal to the set of all elements $x \in R$ such that xy = yx for all $y \in R$.

Now for any $x, y \in R$, the symbols [x, y] and $\langle x, y \rangle$ will denoted to xy - yx and xy + yx respectively which are called commutator (Lie product) and anti-commutator (Jordan product) respectively. [1], [2]. A ring R is called commutative if [x, y] = 0 for all $x, y \in R$.

The above commutator and anti-commutator satisfies the following[1],[2]:

1)
$$[xy, z] = [x, z] y + x[y, z]$$

2) $[x, yz] = y[x, z] + [x, y] z$
3) $(x, yz) = (x, y) z - y[x, z]$

$$= y\langle x,y\rangle + [x,y] z$$

3)
$$\langle xy,z\rangle = x\langle y,z\rangle - [x,z] y$$

= $\langle x,z\rangle y + x[y,z]$

A ring R is called prime if $xRy = \{0\}$ implies that x = 0 or y = 0 and it is called semi-prime if $xRx = \{0\}$ implies that x = 0[3].

An additive mapping $F: R \to R$ is called centralizing on a subset S of ring R if $[F(x),x] \in Z(R)$ and it is called commuting if [F(x),x] = 0 for all $x \in S[4]$, [5].

An additive mapping $T:R \to R$ is called left(right) centralizer on a ring R if T(xy) = T(x)y (T(xy) = xT(y)) holds for all $x, y \in R[6]$.

Many authors covers the concept of left centralizer and study the relation between the commutativity of ring and left centralizers.

K.K.Dey and A.C. Paul in [7] study the commutativety of Γ - ring in which satisfying certain identities involving left centralizers .

In this paper, we obtain the commutativity of a ring satisfying certain identities involving higher left centralizers on ring R, this work motivated from the work of K.K.Dey and A.C.Paul [7].

We generalized the definition of higher k- left centralizer on a Γ - ring [8] into a higher left centralizer on a ring R by taking k as the identity automorphism as the following

Definition 1.1 : let R be a ring and let $T = (T_i)_{i \in N}$ be a family of left centralizers on R . then $T_n: R \to R$ is called higher left centralizer on R if

$$T_n(xy) = \sum_{i=1}^n T_i(x)y$$

holds for all $x, y \in R$.

2. Commutativity of prime gamma rings: in this section we study the commutativity of the ringR by using higher left centralizer on it.

Theorem 2.1: let R be a prime ring and I be anon –zero ideal of R, suppose that R admits a family of non – zero higher left centeralizers $T = (T_i)_{i \in n}$ such that $\sum_{i=1}^n T_i(x) \neq x$ for all $x \in I$ and $i \in N$. if $T_n([x,y] - [x,y] = 0$ for all $x, y \in I$ then R is commutative.

Proof: Given that $T = (T_i)_{i \in N}$ afamily of left centralizens of R such that.

$$T_n([x,y]) - [x,y] = 0$$
(

for all $x, y \in I$.

Then
$$T_n(xy - yx) - (xy - yx) = 0$$

So that

$$\left(\sum_{i=1}^{n} T_{i}(x)y - \sum_{i=1}^{n} T_{i}(y)x\right) - \left(xy - yx\right) = 0$$

Which leads to

$$(\sum_{i=1}^{n} T_i(x) - x) y - \sum_{i=1}^{n} T_i(y) - y) x = 0$$
.....(2)

Replace x by xr in (2) we get

$$\left(\sum_{i=1}^{n} T_i(xr) - xr\right) y - \sum_{i=1}^{n} T_i(y) - y \right) xr = 0$$

Hence

$$(\sum_{i=1}^{n} T_{i}(x) - x) ry - (\sum_{i=1}^{n} T_{i}(y) - y) xr = 0$$
......(3)

For all $x, y \in I$, $r \in R$

Using (2) in (3) to simplify, we obtain

$$(\sum_{i=1}^{n} T_i(x) - x) [r,y] = 0$$
.....(4)

For all $x, y \in I, r \in R$.

Again replacing r by rs in (4)

$$(\sum_{i=1}^{n} T_{i}(x) - x) r [s,y] = 0$$

For all $x, y \in I$ and $r, s \in R$

$$(\sum_{i=1}^{n} T_i(x) - x) R[s,y] = 0$$

for all $x, y \in I$, $s \in R$

by primness' of R and since $\sum_{i=1}^{n} (T_i(x) - x) \neq 0$

hence [s,y] = 0 for all $y \in I$, $s \in R$

there fore $I \subset Z(R)$ and hence R is commutative.

Corollary 2.2: In theorem 2.1, if the family T of higher left centralizers is zero then R is commutative

<u>proof</u>: suppose that $T_n([x,y])-[x,y] = 0$ for any $x,y \in I$

if $T_n = 0$ then [x, y] = 0 for all $x, y \in I$

There fore I is commutative hence R is commutative .

<u>Theorem 2.3</u>: let R be a prime ring and I be a non – zero ideal of R suppose that R admits a family T of non – zero higher left centralizer

 $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq -x$ for all $x \in I$ and $i \in N$, for ther if $T_n([x,y]) + [x,y] = 0$ for all $x,y \in I$, then R is commutative

Proof: Given that $T = (T_i)_{i \in N}$ is a family of higher left centralizers of R such that.

$$T_n([x,y]) + [x,y] = 0$$
 for all $x,y \in I$ (1)

Then

$$T_n(xy - yx) + (xy - yx) = 0$$

So that

$$\left(\sum_{i=1}^{n} T_{i}(x)y - \sum_{i=1}^{n} T_{i}(y)x\right) + (xy - yx) = 0$$

Which leads to

$$(\sum_{i=1}^{n} T_i(x) + x) y - (\sum_{i=1}^{n} T_i(y) + y) x = 0$$
.....(2)

In (2) replace x by xr to get

$$\left(\sum_{i=1}^{n} T_{i}(xr) + xr\right) y - \left(\sum_{i=1}^{n} T_{i}(y) + y\right) xr = 0$$

Hence

$$(\sum_{i=1}^{n} T_i(x) + x)ry - (\sum_{i=1}^{n} T_i(y) + y)xr = 0 \qquad \dots \dots (3)$$

For all $x, y \in I, r \in R$

Using (2) in (3) to simplify, we obtain

$$\left(\sum_{i=1}^{n} T_i(x) + x\right) \beta [r, y]_{\alpha} = 0$$
.....(4)

For all $x, y \in I, r \in R$

Replace r by rs in (4)

$$\left(\sum_{l=1}^{n} T_{l}(x) + x\right) r [s, y] = 0$$

For all $x, y \in I, r, s \in R$

in other words

$$\left(\sum_{i=1}^{n} T_i(x) + x\right) R[s, y] = 0$$

For all $x, y \in I, s \in R$

By primness of R and since $\sum_{i=1}^{n} (T_i(x) + x) \neq 0$

we get [s, y] = 0 for all $y \in I$, $s \in R$

Therefore $I \subset Z(R)$ and hence R is commutative

Theorem 2.4: - let R be a prime ring and I be anow – zero ideal of R. Suppose that R admits a family of non – zero higher left centralizers. $T = (T_i)_{i \in n}$ such that $\sum_{i=1}^n T_i(x) \neq x$ for all $x \in I$ and $i \in N$, further if

$$T_n(\langle x, y \rangle) = \langle x, y \rangle$$

For all $x, y \in I$, then R is commutative.

Proof: - Given that

$$T_n(\langle x, y \rangle) - \langle x, y \rangle = 0$$

.....(1)

For all $x, y \in I$

This implies that

$$(\sum_{i=1}^{n} T_i(x) - x) y + (\sum_{i=1}^{n} T_i(y) - y) x = 0$$
.....(2)

Replace x by xr in (2) we obtain.

$$\left(\sum_{i=1}^{n} T_i(xr) - xr\right) y + \left(\sum_{i=1}^{n} T_i(y) - y\right) xr = 0$$

Hence

$$(\sum_{i=1}^{n} T_i(x) - x) ry - (\sum_{i=1}^{n} T_i(y) - y) xr = 0$$
......(3)

For all $x, y \in I, r \in R$

Using (2) in (3) we get

$$(\sum_{i=1}^{n} T_i(x) - x) ry + (\sum_{i=1}^{n} T_i(x) - x) yr = 0$$
(4)

For all $x, y \in I, r \in R$

That is

$$(\sum_{i=1}^{n} T_{i}(x) - x)[r, y] = 0$$

....(5)

For all $x, y \in I, r \in R$

Replace r by rs in (5) we get.

$$(\sum_{i=1}^{n} T_i(x) - x)r[s,y] = 0$$

....(6)

For all $x, y \in I, r, s \in R$

i.e:
$$(\sum_{i=1}^{n} T_i(x) - x)R[s, y] = 0$$

By primness of R and since $\sum_{i=1}^{n} (T_i(x) - x) \neq 0$

Then [s, y] = 0 for all $y \in I$

Hence $I \subset Z(R)$ there for R is commutative

<u>Theorem 2.5:</u> -let R be a prime ring and I be anon – zero ideal of R, suppose that R admits a family of non – zero higher left centralizers.

 $T = (T_i)_{i \in N}$ such that $\sum_{l=1}^n T_i(x) \neq -x$ for all $x \in I$ and $i \in N$, further if

$$T_n(\langle x, y \rangle) + \langle x, y \rangle = 0$$

For all $x, y \in I$, then R is commutative

<u>Proof</u>: - Given that $T = (T_i)_{i \in N}$ be a family of non - zero higher left centralizers of R such that

$$T_n(\langle x, y \rangle) + \langle x, y \rangle = 0$$

For all $x, y \in I$.

Then

$$(\sum_{i=1}^{n} T_i (xy + yx)) + (xy + yx) = 0$$

H hence

$$\sum_{l=1}^{n} T_{l}(x)y + \sum_{l=1}^{n} T_{l}(y)x + (xy + yx) = 0$$

$$(\sum_{i=1}^{n} T_i(x) + x)y + (\sum_{i=1}^{n} T_i(y) + y)x) = 0$$

....(.2)

In the above relation eplacex by xr we obtain.

$$(\sum_{i=1}^{n} T_i(xr) + xr) y + (\sum_{i=1}^{n} T_i(y) + y) xr = 0$$

So we get

$$(\sum_{i=1}^{n} T_i(x) + x)ry + (\sum_{i=1}^{n} T_i(y) + y)xr = 0$$
(3)

For all $x, y \in I, r \in R$

Substitute (2) in (3) to get

$$(\sum_{i=1}^{n} T_i(x) + x)[r, y] = 0$$
.....(4)

For all $x, y \in I, r \in R$

Now again replace r by rs in (4) we have

$$(\sum_{i=1}^{n} T_i(x) + x)r[s,y] = 0$$

.....(5)

For all $x, y \in I$ and $r, s \in R$

i.e:
$$(\sum_{i=1}^{n} T_i(x) + x)R[s, y] = 0$$

By primness of R and since $\sum_{i=1}^{n} (T_i(x) + x) \neq 0$

We have [s, y] = 0 for all $y \in I, s \in R$.

Hence $I \subset Z(R)$ there for R is commutative

<u>Corollary 2.6:</u> In theorem 2.4 and 2.5 if a higher left centralizers T_n is zero. then R is commutative.

Proof: For any $x, y \in I$, we have

$$T_n (\langle x, y \rangle = \langle x, y \rangle)$$

if $T_n = 0$ then $\langle x, y \rangle = 0$ for all $x, y \in I$

replace x by xz and using the fact

yx = -xy we conclude that

$$x[z, y] = \{0\}$$
 for all $x, y, z \in I$

In other words we have

IR[z,y] = 0 for all $y,z \in I$.

Since R is prime and $I \neq \{0\}$

So that [z, y] = 0 for all $y, z \in I$

then I is commutative and hence R is commutative.

Theorem 2.7:- let R be a prime ring and I be anow zero ideal of R, suppose that R admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) \neq (xy) = 0$ for all $x, y \in I$, then R is commutative.

proof:- for any $x, y \in I$ we have

$$T_n(xy) = (xy)$$

this implies that

$$T_n([x,y]) - ([x,y]) = 0$$

and hance by theorem 2.1 we have R is commutative

on the other hand if R is satisfy the condition $T_n(xy) + (xy) = 0$ for all $x, y \in I$.

then for any $x, y \in I$

we have
$$T_n(xy + yx) = -(xy + yx)$$

So that $T_n(\langle x, y \rangle) + (\langle x, y \rangle) = 0$ for all $x, y \in I$.

Then by theorem 2.5 we have R is commutative

Corollary 2.8: -let R be a prime ring and I be anon zero ideal of R, suppose that R admits a family of non -zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq \exists x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) \neq (yx) = 0$ for all $x, y \in I$ then R is commutative.

<u>proof</u>: For any $x, y \in I$ we have $T_n(xy) \mp (yx) = 0$

now if $T_n(xy) = (yx)$ this implies that $T_n([x,y]) - ([y,x]) = T_n([x,y]) + ([x,y]) = 0$

then by theorem 2.5 we have R is commutative

Now when $T_n(xy) + (yx) = 0$ then $T_n([x,y]) + ([y,x]) = 0$

this implies that $T_n([x,y]) + ([x,y]) = 0$ and hance by theorem 2.1 we have R is commutative

Al-Qadisiya Journal For Science

Vol.21 No. 1 Year 2016

3.The main results: in this section we introduce the main results of this paper

Theorem 3.1: let R be a prime ring and I be anon zero ideal of R suppose that R admits a family of non –zero higher left centralizers $T = (T_i)_{i \in \mathbb{N}}$ such that $\sum_{i=1}^{n} T_i(x) \neq x$ for all $x \in I$ and for all $i \in \mathbb{N}$, then the following conditions are equivalent:

- (i) $T_n([x,y]) ([x,y]) = 0$ for all $x, y \in I$
- (ii) $T_n([x,y]) + ([x,y]) = 0 \text{ for all } x,y \in I$ (iii) for all $x,y \in I$, either $T_n([x,y]) - ([x,y]) = 0$ $T_n([x,y]) + ([x,y]) = 0$

R is commutative

Proof:

(iv)

(i) \rightarrow (iv) suppose that $T_n([x,y]) - ([x,y]) = 0$

Then by theorem 2.1 we have R is commutative

(iv) \rightarrow (i) suppose that *R* is commutative then [x, y] = 0

and hence $T_n([x,y]) - ([x,y]) = 0$

(ii) \rightarrow (iv) suppose that

$$T_n([x,y]) + ([x,y]) = 0$$

for all $x, y \in I$

Then by theorem 2.3 we have R is commutative

(iv) \rightarrow (ii) suppose that R is commutative then [x, y] = 0 for all $x, y \in I$

And hence -[x, y] = 0 for all $x, y \in I$

Which implies that $T_n([x,y]) - ([x,y]) = 0$ for all $x, y \in I$

(iii) \rightarrow (iv) suppose that for all $x, y \in I$ either $T_n([x, y]) - ([x, y]) = 0$ or

$$T_n([x,y]) + ([x,y]) = 0$$

Then by theorem 2.1 or theorem 2.3 we have R is commutative

(iv) \rightarrow (iii) suppose that R is commutative

For each fixed $y \in I$ we set

$$I_1 = \{x \in I | T_n([x, y]) - ([x, y]) = 0\}$$

$$I_2 = \{x \in I | \overline{T}_n([x, y]) + ([x, y]) = 0\}$$

Then I_1 and I_2 are additive subgroups of I such that $I = I_1 \cup I_2$.

But a group cannot be the set theoretic union of two proper subgroups, hance we have either

$$I_1 = I$$
 or $I_2 = I$.

Further, using a similar argument, we obtain

$$I = \{y \in I | I_1 = I\} \text{ or } I = \{y \in I | I_2 = I\}$$

Thus we obtain that either $T_n([x, y]) - ([x, y]) = 0$ for all $x, y \in I$

or
$$T_n([x,y]) + ([x,y]) = 0$$
 for all $x, y \in I$

Hence R is commutative in both cases by theorem 2.1 (respectively theorem 2.3)

Theorem 3.2: let R be a prime ring and I be anon zero ideal of R, suppose that R admits a family of non-zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) - (xy) \in Z(M)$ for all $x, y \in I$ then R is commutative.

<u>Proof</u>: for any $x, y \in I$ we have

$$T_n(xy) - (xy) \in Z(R)$$
....(1)

This can be written as $\sum_{i=1}^{n} T_i(x)y - xy \in Z(R)$ for all $x, y \in I$ (2)

That is
$$[(\sum_{i=1}^n T_i(x) - x)y, r] = 0$$
 for all $x, y \in I, r \in R$ (3)

Which implies that

$$(\sum_{i=1}^{n} T_i(x) - x)[y, r] + [\sum_{i=1}^{n} T_i(x) - x, r] y = 0$$
(4)

for all $x, y \in I, r \in R$

in (4) replace x by xz, we have

$$(\sum_{i=1}^{n} T_i(x) - x)z[y,r] + [(\sum_{i=1}^{n} T_i(x) - x)z,r] y = 0$$
(5)

for all $x, y, z \in I, r \in R$

from (3) we get that (5) becomes

$$(\sum_{i=1}^{n} T_i(x) - x)z[y,r] = 0 \quad \text{for all } x, y, z \in I, r \in R.$$

This yields that

$$(\sum_{i=1}^{n} T_i(x) - x)RI[y, r] = \{0\}$$
 for all $x, y \in I, r \in R$

By primness of R implies that

$$I[y, r] = \{0\} \text{ or } \sum_{i=1}^{n} T_i(x) - x = 0$$

and since $I \neq \{0\}$ and $\sum_{i=1}^{n} T_i(x) \neq x$ for all $x \in I$

we get that I is central and hence R is commutative \blacksquare

Theorem 3.3: let R be a prime ring and I be anow zero ideal of . suppose that R admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq -x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) - (xy) \in Z(M)$ for all $x, y \in I$, then R is commutative.

proof: suppose that $T = (T_i)_{i \in N}$ be a family of non-zero higher left centralizers satisfying the

property
$$T_n(xy) - (xy) \in Z(R)$$
 for all $x, y \in I$

then the non-zero higher left centralizers (-T) satisfies the condition

$$(-T_n)(xy) - (xy) \in Z(R)$$
 for all $x, y \in I$

Hance by theorem 3.2 we have R is commutative.

Remark 3.4: in theorem 3.2 if the higher left centralizer is zero, then R is commutative.

Theorem 3.5: let R be a prime ring and I be a non zero ideal of R. suppose that R admits a family of non-zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) - (yx) \in Z(R)$ for all $x, y \in I$ then R is commutative.

<u>Proof</u>: we are given that a higher left centralizer of *R* such that

$$T_n(xy) - (yx) \in Z(R)$$

for all $x, y \in I$

this implies that

$$[T_n(xy) - (yx), \qquad r] = 0$$
....(1)

holds for all $x, y \in I$, $r \in R$

which implies that

$$\left[\sum_{i=1}^n T_i(x)y - yx, r\right] = 0$$

for all $x, y \in I$, $r \in R$

replacing y by yx in the above relation and use it hence

$$\left[\sum_{i=1}^{n} T_i(x)yx - yx^2, r\right] = 0$$

.....(3)

for all $x, y \in I$, $r \in R$

we find that

$$(\sum_{i=1}^{n} T_i(x)y - yx)[x,r] = 0$$

.....(4)

for all $x, y \in I$, $r \in R$

again replace r by rs in (4) to get

$$(\sum_{i=1}^{n} T_i(x)y - yx) r[x,s]$$

$$+(\sum_{i=1}^{n} T_i(x)y - yx)[x,r] \quad s = 0$$

for all $x, y \in I$, $r, s \in R$

From (4) the relation (5) becomes

$$(\sum_{i=1}^{n} T_i(x)y - yx) r[x,s] = 0$$

.....(6)

for all $x, y \in I$, $r, s \in R$

i.e.

$$(\sum_{i=1}^{n} T_i(x)y - yx) R[x, s] = 0$$

for all $x, y \in I$, $s \in R$

the primness of R implies that either [x, s] = 0 or $\sum_{i=1}^{n} T_i(x)y - yx = 0$

for all $x, y \in I, s \in R$

now put

$$I_1 = \{x \in I | [x, s] = 0 \text{ for all } s \in R \}$$

$$I_2 = \left\{ x \in I \middle| \sum_{i=1}^n T_i(x)y - yx = 0 \text{ for all } x, y \in I \right\}$$

Then clearly that I_1 and I_2 are additive subgroups of R, moreover by the discussion given I is the set-theoretic union of I_1 and I_2 but can not be the set-theoretic of two proper subgroups.

Hence $I_1 = I$ or $I_2 = I$.

If $l_1 = l$, then [x, s] = 0 for all $x \in l$, $s \in R$ and hence R is commutative.

On the other hand if $I_2 = I$ then $\sum_{i=1}^{n} T_i(x)y = yx$ for all for all $x, y \in I$.

That is $\sum_{i=1}^{n} T_i(x)y - yx = 0$ for all for all $x, y \in I$

This implies that $T_n([x, y]) - ([x, y]) = 0$ for all for all $x, y \in I$.

Hence apply theorem 2.1 yields the required result . ■

References:

- 1) Ali S., Basudeb D. and Khan M. S., 2014, " On Prime and Semiprime Rings with Additive Mappings and Derivations", Universal Journal of Computational Mathematics ,Vol.2, No.3, 48-55.
- Ur-Rehman N., 2002, "On Commutativity of Rings with Generalized Derivations", Math. J Okayama Univ., Vol.44, 43-49.
- 3) Vukman J. ,1997,"Centralizers on Prime and Semiprime Rings ", Comment. Math. Univ. Caroline ,Vol.38 , No.2 , 231-240.

AL-Qadisiya Journal For Science

Vol.21 No. 1 Year 2016

- 4) Braser M. ,1993," Centralizing Mappings and Derivations in Prime Rings ", Journal of Algebra, Vol.156, 385-394.
- 5) Vukman J.,1990,"Commuting and Centralazing Mappings in Prime Rings", Proceeding of the American Math. Society, Vol. 109, No.1, 47-52.
- 6) Ali S. and Dar N. A. ,2014," On Left Centralizers of Prime Rings with Involution ",Palestine Journal of Mathematics,Vol.3,No.1,505-511.
- 7) Dey K.K. and Paul A.C ,2014,"commutativity of prime gamma rings with left centralizers ", J. Sci.Res., Vol.6, No.1, 69-77.
- 8) Salih S.M.,kamal A.M. and hamad B. M. ,2013, "Jordan higher K-centralizer on Γ-rings ,ISOR Jornal of Mathematics ,Vol.7 No.1 ,6-14.

التمركزات العليا اليسرى على الحلقات الأولية

تاريخ القبول 2016/1/5

تاريخ الاستلام 2015/11/1

د. صلاح مهدي صالح في مازن عمران كريم قسم الرياضيات قسم الرياضيات كلية التربية كلية التربية المستنصرية جامعة القادسية

Dr.salahms2014@gmail.commazin792002@yahoo.com

الملخص:

في هذا البحث ندرس ابدالية الحلقات الاولية التي تحقق شروط معينة تتضمن تمركزات يسرى من الدرجات العليامعرفة على تلك الحلقات الاولية.

الكلمات المفتاحية الحلقات الأولية . تمركزات يسرى