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Abstract: In this paper we are proved that if the function            
     , 

change the monotone finitely many times in an interval         , then there exist 

an algebraic polynomial       , which comonotony of approximation with  at 

every point in an interval  , such that the best approximation can be estimate by 

        
 
          .   
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الخقشيب الشحيب , الخقشيب المحافظ على الشحابت , دسجت افضل حقشيب , مقياس الىعىمت , الكلماث المفتاحيت :

 مخعذدة الحذود الجبشيت .

           في هزا البحث بشهىا اوه ارا كاوج الذالت  المستخلص :
حخغيش سحابخها بشكل مىخهي في       

  والخي حكىن محافظت على الشحابت مع الذالت        فاوه حىجذ مخعذدة حذود جبشيت            الفخشة 

, بحيث اوه افضل حقشيب يمكه حخميىه بىاسطت مقياس   عىذ كل وقطت مه وقاط الفخشة 

        .الىعىمت
 
              

1. Introduction and definitions: 



   We are interested in this paper in how well can approximations of a function 

          
     ,           which changes its monotony by a polynomial 

      . In this case the polynomial     are comonotony of approximation with the 

function   at every point in an interval     . Let     be a function which changes 

monotonicity finitely many  time  say     , times on     say               

      for       and a function    in         we denote to the error of best 

approximation by :        
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      ‖
       

  and note that  

  
               

               

 



 (where             be the set of all functions     which change monotony at the points 

      . Recall that the order Ditizain-Totik modulus of smoothness is given by ([3] 

): 
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Where  ‖ ‖        denotes the weighted quasi normed space [3] on an interval  

           . The weighted quasi normed space               have form :  
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and the quasi normed ‖ ‖          , and 
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is the symmetric difference ([3]) and in this paper we used new chebyshev partition  

       
  

 
 ([3]), and proved the following theorem: 

Theorem (1.1): There exists absolute constant          such that for every   

which change monotony in         there is a polynomial         which is 

comonotony of approximation with   and satisfies: 

‖    ‖                
            . 

2. Auxiliary Results: Now the following Lemmas are crucial for the proof of theorem 

(1.1). 

Lemma (2.1): Let   be the same as in theorem (1.1) then there exist a function 

           ,comonotony of approximation with   in    ,such that: 
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                     … (2.1.1                      
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are satisfy.                                              

Proof: To prove (2.1.1) we must to show that 
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is the Lagrange polynomial of degree    ([2]), which interpolates at  ́     and  ́́  by 

using the inequality   

‖        ‖               
             , 

 when    , for      we set  ̌  be the polynomial of degree    which vanishes at 

   in the form  
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and by using the above presentation of  ̌  and             we get 
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   Hence (2.1.3) is proved. It is well known ([5],[6]) that there exists a polynomial 

    , of degree   satisfying  
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                                              …. (2.1.4 

   And by using definition the piecewise polynomial function     , and the function 

      ,    ([3]), not that    is comonotony of approximation with   in    , hence it 

is comonotony of approximation with   in    ,hence 
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Satisfy from the inequality (2.1.3) and (2.1.4) .     

Know to prove (2.1.2) for      we use the above presentation  ̌   
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Where ([1]), 
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Since  ̌       ̌   ́    and  ̌   ́́  are monotony then the only zero of  ̌  in    is    . 

hence  ̌  is comonotony of approximation with   in    .Also 
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is a linear function and 
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  , are of the same monotony which implies 

that  ́̌  does not change monotony at    for       we get  
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From the relationship  |  |           and           
 
    ([3]),we get 
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Lemma (2.2): Let   be the same as in theorem (1.1) then there exist a polynomial 

          ,    , such that  
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Proof: by (2.1.4) in Lemma (2.1) there exist a polynomial       comonotony of 

approximation with   by a well-known on difference 
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 By definition of   
            , when      we get  
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Lemma (2.3): Let   be the same as in theorem (1.1), then there exist a function 

           , comonotony of approximation with   in   , such that 
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Proof: Now by using Kolmogorov type inequality ([4]),  
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Where                   , using fact that              |  | ,      , ([3]) 
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Applying (2.3.1) for ‖      ̌ 
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 , and Markova's inequality for 
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 , together with (2.1.3) and the fact 
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             , and lemma (2.2) we get 

‖    
   
‖
       

 

   |  |
 ∑  |  |

   ‖    ‖
       

 |  |
  ‖   ̌ ‖       

  
   |  |

   ‖ ‖       . 

Hence 

‖    
   
‖
       

         
            . 

Proof (1.1): Let        be fixed and let           , be an integer, also let 

           , be a function which was described in lemma(2.1). Lemma (2.3) can be 

written as:  ‖      
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It follows from lemma (2.2) that there exist a polynomial             , which   
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we prescribe    , to be such that     (
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for instance        (*      
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It follows from (1.1.1) that for               the following estimate is valid 
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since               . 

   Together with lemma (2.1.2) this implies that monotony of          the same as of 

monotony of             
 
   .In turn, it follows that        , is comonotony of 

approximation with   in    
 
    , and also by lemma (2.1.1) and (1.1.1), we get      
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   Together with lemma (2.1.1) this yields the assertion of theorem (1.1) for    

     
                    . 
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