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Abstract. Let R be a commutative ring with identity and M be a unitary left R-module. A submodule N
of an R-module M is called pure if, IN =N nIM for all ideal / of R. In this paper, we shall investigate
and study some various properties of the concept of pure multiplication modules, which is appeared in [3]
as a proper generalization of multiplication modules, where an R-module M is called pure multiplication
if for every pure submodule N of M there exists an ideal / of R such that N = IM . We give a number of
results concerning pure multiplication modules. Also, we discussed some properties of pure submodules

of pure multiplication modules.
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Introduction

Let M be an R-module. For submodule K of
M, [K:, M]={reR:¥M c K} is the residual
ideal of K by M in R. The annihilator of M in R
is ann,M =[0:, M]. Recall that an R-module M

is called faithful if, ann,M =0. An R-module

M is called multiplication, provided for each
submodule N of M there exists an ideal / of R
such that N = IM [4]. An R-submodule N of a
module M is called pure if, IN=N nIM for
each ideal / of R, and an R-module M is called
regular if all its submodules are pure [7]. Also,
we say that an R-module M is pure simple if,
the trivial submodules of M are the only pure
submodules [6]. Atani in [3], introduced and
study the concept of pure multiplication modules
as a proper generalization of multiplication

modules. An R-module M is said to be pure

multiplication if for each pure submodule N
of M, there exists an ideal [/ of R such that
N =1IM . Our objective is to investigate the
concept of pure multiplication modules. This
work consists of two sections. In section one,
we give several properties of pure multiplication
modules. We prove that, if M is an anti-hopfian

module then End (M) is a pure multiplication

ring, where an R-module M is said to be anti-
hopfian if M is nonsimple and all nonzero factor
modules of M are isomorphic to M [10]. Also,
we presented some relations between pure
multiplication modules and other modules. In
section two, we investigate pure submodules of
pure multiplication modules and presented some

properties of such submodules.

Finally, it is remarked that all rings R considered
in this work are commutative with identity and

all R-modules are left unitary. We will refer to
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the submodule (direct summand) N of a module
M by N<M (N<® M), the endomorphism
ring of a left R-module M by End,(M).

1. Pure Multiplication Modules And
Related Modules

We begin this section with the following
Remarks and Examples :

Remarks and Examples 1.1

(i) The Z-module Z, is pure multiplication,
where p is prime, since it is pure simple. But it
is well-known that not multiplication.

(if) Every simple module is pure multiplication.
In particular Z-module Z , is pure multiplication,

where p is a prime number.

(@ii)y Eachof Z,Z, and Z, as Z-modules are

pure multiplication .
(iv) Z, as Z-module is pure multiplication, but
it is not pure simple .

(v) Z-module Z @ Z is not pure multiplication,
since N=Z®(0)
Z®Zbut N=Z@(0)=[.(Z@Z) for all ideal

is a pure submodule of

I of Z . Notice, this example shows the direct
sum of pure multiplication modules need not be

pure multiplication.

(vi) If M is a regular module. Then the concepts
multiplication module and pure multiplication

module are coincide for M.

Recall that an R-module M is said to be
semisimple if every submodule of M is a direct
summand [11].

(vii) Since every semisimple module is regular,
thus if M is a semisimple module, then M is
a pure multiplication module if and only if M is

11

a multiplication module.

(viii) Every commutative ring with identity is

multiplication, and so it is pure multiplication.

Recall that an R-module M is cancellation if
for any two ideals 4, B of R with AM = BM
implies that 4 =B [13].

In the next result, we state Proposition for
pure multiplication module under multiplication

finitely generated faithful modules.

Proposition 1.2 Let M be a multiplication
finitely generated faithful R-module and 4 be
an ideal of R. Then AM is a pure multiplication
module if and only if 4 is a pure multiplication
R-module.

Proof. Suppose that AM is a pure multiplication
R-module. Let / be a pure ideal of A4, then
JI =1 JA for all ideal J of R. Since M is a
multiplication finitely generated faithful module,
soJ(IM)=(JDM =(I N JAM =(IM)NJ(AM)
this mean /M is a pure in AM. Since AM is
pure multiplication, then there exists an ideal K
of R such that IM = K(AM)=(KA)M , hence
1 =KA, since M is a cancellation module, by
[1,Th. 3.1]. Thus 4 is pure multiplication.

Conversely, let N be a pure submodule of
AM. Since M is a finitely generated faithful
multiplication R-module, so N = BM , where B
is an ideal of A. Thus, for all ideal [ of R,
IN = NI(AM) ,then (IB)M = BM ~ (IAM =
(BN IA)M , but M is a cancellation module, so
IB = BN IA, this mean that B is a pure ideal
of A4, but A4 is pure multiplication, so B =JA4 for
some ideal Jof R, hence N =BM =(JA).M

=J(AM). Thus AM is pure multiplication. [
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Remarks 1.3

(/) Let M be an R-module, N <M . If M/N is
a pure multiplication R-module then it is not
necessarily that M is so, as the following
example: consider M = Z ® Z as Z-module and
let N=2Z@®3Z be asubmodule of M, so we

M_ ez
N 22@3Z

multiplication as Z-module, but M =Z ® Z is

have

=7,®Z, =7, whichis a pure

not a pure multiplication as Z-module [see
(Rem.and.Ex. 1.1) (iv), (v)] .

(if) Consider the following short exact sequence
0 »A—L—>B—~->C 0. If each of

A and C is a pure multiplication R-module,

then B may not be Pure multiplication, as the
following example shows: consider
0 I—>7®7—+L>7

is the inclusion map, and p is the projection
map. By [(Rem.and.Ex 1.1)(ii@),(v)], Z as Z-

module is pure multiplication, but Z @ Z is not

0, where i

pure multiplication

Proposition 1.4 Let M be a divisible module
over an integral domain R. ThenM is a pure
simple R-module if and only if M is a pure

multiplication R-module.

Proof. Let M is a pure simple R-module, so the
trivial submodules are the only pure submodules
of M, hence clear that M is a pure multiplication

R-module.

Conversely, assume M is pure multiplication
and let N be a non-zero pure submodule of M,
then there exists an ideal / of R such that
N =IM, but M is a divisible module over an
integral domain R, then /M =M and hence
N =M . Thus M is a pure simple R-module. [

Proposition 1.5 If M is an anti-hopfian R-
module, S = End (M) is a pure multiplication
ring.

Proof. Since M is an anti-hopfian module, thus
S =FEnd,(M) is an integral domain, by [10];
this mean S = End (M) is a commutative ring

with identity, thus by [(Rem.and.Ex.1.1)(viii)]
S = FEnd, (M) is a pure multiplication ring . O

Recall that an R-module M is said to have
the pure intersection property (briefly PIP) if
the intersection of any two pure submodules of
M is again pure [2] .

Now, we shall introduce the next result .

Proposition 1.6 Every pure multiplication
module has the PIP.

Proof. Let M be a pure multiplication R-module
and let 4, B be two pure submodules of M, thus
A=IM and B=JM forsomeideals / and J
in R. Since A4 and B are pure submodules of
M, then KA=ANKM and KB=BnNKM for
every ideal K in R. Thus, (ANB)NKM =

(IM "JIM)YNKM ,also KIM =IM N KM ,
KIM =JM N KM . Therefore (IM NJM)N

KM =IM N (JM nKM)=IM N KJM = KIJM
c K(A N B), this mean that (ANB)N KM <

K(ANB). But, it is clear that K(4 N B)
c (AN B)N KM , hence we get K(AN B)=
(ANB)N KM for every ideal K in R. Thus
ANBispureinM. O

Let M be a module over an integral domain
R. The set T(M)={meM :rm=0 for some

nonzero » € R} is called a torsion submodule of
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M. If T(M) =0, then M is called a torsion free
module [16].

The converse of Proposition 1.6 is not true

in general, as the following example shows.

Example 1.7 Let M =Z®Z as Z-module.
Since M is a torsion free module over Z, thus
by [2, Cor. 2.3.2] M has the PIP. But M is not a
pure multiplication as Z-module [(see Rem.and.
Ex. 1.1) (v)] .

Recall that an R-module M is called scalar if,
for each f € End (M) ,there exists a € R such
that f(m)=am forall me M [17].

Proposition 1.8 Let M be a scalar R-module
with ann, M is prime in R, then S = End ,(M)
is a pure multiplication ring .

Proof. By [14, Lemma 6.2, p.80], we have that
S=End,(M)=R/ann,M , since M is a scalar
R-module. On the other hand, ann,M is prime,
implies R/ann,M is an integral domain, then
R/ann,M is a commutative ring with identity;
that is S = End ,(M) a commutative ring with

identity, and hence by [(Rem.and.Ex. 1.1)(viii)]
S = End, (M) is a pure multiplication ring . [

Corollary 1.9 If M is a prime scalar R-module,

then S = End (M) is a pure multiplication ring.

Proof. It is easy to check . O

Corollary 1.10 Let M be a faithful scalar R-
module. Then R is a pure multiplication ring if

and only if S = End , (M) is pure multiplication.

Proof. Since M is a scalar R-module, then
S=End,(M)=R/ann,M by [14, Lemma 6.2,
p-80], but M is a faithful R-module, therefore

S=End,(M)=R/(0)=R. Hence the result is
obtained . O

A submodule N of a module M is said to be
essential if, every nonzero submodule of M has
nonzero intersection with N. Recall that an
R-module M is called uniform if, M #0 and
every nonzero submodule of M is essential in M
[9]. An R-module M is said to be essentially
quasi-Dedekind if, Hom,(M/N ,M) =0 for all
essential submodule N of M , that is; every

essential submodule of M is quasi-invertible [8].

Proposition 1.11 Let M be a pure multiplication
uniform module over a regular ring R, then
every finitely generated submodule of M is

equal to zero .

Proof. Since R is a regular ring, thus M is
a regular R-module. If M is a pure multiplication
module over a regular ring R, then by [Rem.
and.Ex 1.1(vi)] M is a multiplication module
over regular ring R, thus by [15, Cor. 3.8]
End,(M) is a regular ring, so by [8, Prop
2.3.8] M is essentially quasi-Dedekind, and so
every essential submodule of M is quasi-
invertible. Thus every nonzero submodule of M
is quasi-invertible, since M is uniform, and hence
every nonzero submodule of M is not direct
summand. On the other hand, since End,(M)
is a regular ring, thus by [15, Th. 3.3] every
finitely generated submodule of M is a direct
summand, so every finitely generated submodule

of M is equal to zero . 0O

Corollary 1.12 Let M be a pure multiplication
uniform module over aregular ring R. If M is
a finitely generated R-module, then M =0.
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In the next, we will investigate the behavior
of pure submodules and pure multiplication
modules under localization. Before that, we

need the following Lemma.

Lemma 1.13 Let M be an R-module, N <M
and let S be a multiplicative closed subset of R.

If N is pure in M as R-module, then S™'N is
pure in 7'M as S”'R-module. The converse

hold whenever S7A4=S"B iff A=B for any
R-modules 4, B.

Proof. If N is a pure submodule of M as R-
module, so IN = N " IM for each ideal / of R ,
then S~ (IN)=S"' (NN IM)=S"'N nS™'IM ,s0
(STINSTN)Y = ST (N) A (SIS M) for all
ideal S7'7 of S7'R, therefore S™'N is a pure
submodule of S™'M as S™' R -module.

Conversely, assume that S™'N is pure in
S~'M as S™'R-module, so for every ideal S™'J
of STR,(STI)ST'N)=ST'N(STINS'M),
thus STUN=S'"NnS'JM =S (NJM)so
by assumption, JN = N nJM for every ideal J
of R. Thus N is pure in M as R-module. O

Theorem 1.14 Let M be an R-module and let

S be a multiplicative closed subset of R such
that S 4=S"B iff A=B for any R-modules
A, B. Then M is a pure multiplication as R-
module if and only if S™'M is a pure

multiplication as S ™' R -module.

Proof. Assume that M is a pure multiplication
as R-module. Let S™'N be a pure submodule of

S™'M as S'R-module, then by Lemma 1.13,
N is a pure submodule of M as R-module,
N =IM for some ideal I of R, since M is a pure

multiplication module. Hence S™' N =S8~ (IM) =
(S7'I)S'M) for some ideal S7'7 of S7'R.
Thus S™'M is a pure multiplication as S™'R -
module.

Conversely, let N be a pure submodule of
M as R-module, so by Lemma 1.13, S7'N is
a pure submodule of S”'M as S™'R-module,
but S7'M is a pure multiplication module, then
there exists an ideal S™'7 of S™'R such that
S'N=(S"1)N(S'M)=S"(IM), so N=IM,
by assumption, for some ideal / of R. Thus the

result is obtained. O

Corollary 1.15 Let M be an R-module. Then M
is a pure multiplication as R-module if and only

if M, is a pure multiplication as R,-module,

for every maximal ideal P of R.

2. Pure Submodules Of Pure Multiplication
Modules

In this section, our objective is to investigate
pure submodules of pure multiplication modules.
We give some properties of this concept of
submodules, also we study the direct summand

of pure multiplication module.

However, we begin this section with another
proof of following Proposition which appeared
in [3, Prop. 2.6(i5)].

Proposition 2.1 Every pure submodule of a
pure multiplication module is pure multiplication.

Proof. Suppose that N is a pure submodule of
a pure multiplication R-module M. Let K be
a pure submodule of N, then by [19, notes 2.7(1),
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p.15] K is a pure submodule of M, but M is
a pure multiplication module, then there exists
anideal I of R such that K = IM . Also, since N
ispure in M, then IN=NNIM =NNnK =K.

Hence N is a pure multiplication R-module . O

The converse of Proposition 2.1 need not be
true in general, as the following example
shows: in M =Z® Z as Z-module, we have
Z @ (0) is a proper non-trivial pure submodule.
On the other hand, we have Z @ (0) = Z which
is a pure multiplication as Z-module, but Z @ Z

as Z-module is not pure multiplication [see
(Rem. and.Ex.1.1) (i), (v)] .

Corollary 2.2 Let M be an R-module. Then M
is pure multiplication if and only if every direct

summand of M is pure multiplication.

Proof. Let M be a pure multiplication R-module.
Suppose that N is a direct summand of M, so by
[19, notes 2.7(3), p.15] N is pure in M. Hence,
the result is obtained by Proposition 2.1.

Conversely, follows by taking N <® M and
N=M. 0O

Corollary 2.3 Every pure ideal of a ring R is
a pure multiplication R-module .

Proof. It follows by [(Rem.and.Ex. 1.1)(viii)]
and Proposition 2.1 . O

Let M be an R-module and N, L submodules
of M. Consider the set N * L := Hom(M,L)N =

Z{(p(N)| @:M — L}. A submodule N of M

is called idempotent if, N* N =N [12].

Equivalently, a submodule N of M is called
idempotent if and only if N =(N:, M)N . An
ideal / of a ring R is called idempotent if,

15

I’ =1.Then [ is an idempotent submodule of

<R ifand only if / is an idempotent ideal of R.

Proposition 2.4 Let M be a pure multiplication
R-module. Then every pure submodule of M is

an idempotent submodule .

Proof. Suppose that NV is a pure submodule of
M. Since M is a pure multiplication module,
thus by [3, p.35] we have that N = (N :, M)M .
On the other hand, N is pure in M and (N :, M)
is an ideal of R, (N:;, M) N=NN(N:, M)M ;
this means (N:, M)N =N, and hence N is an

idempotent submodule. O

We need the following Lemma to prove the

next result .

Lemma 2.5 Let M be a pure multiplication
cancellation R-module such that N is a pure
submodule of M, then (N :, M)=1n (N:, M)

for each ideal / of R .

Proof. Let N be a pure submodule of M, then
IN = N N IM for every ideal ] of R. It is clear
that /(N :, M)< I n (N :, M) .Conversely,
IN(N:y MYc (M :, MYN (N :, M) =
UIMANN:, M)=(N:, M), but (IN:, M)c
I(N:, M); to see this: let ae (IN:, M) then
aM cIN,but N=(N:, MM, thus a.M c
I(N:, M)M , hence aeI(N:, M), since M
is cancellation. Thus I " (N:, M) I(N:, M)

and hence the result is obtained . O

Proposition 2.6 Let M be a pure multiplication
cancellation R-module such that N is a pure
submodule of M, then (N :, M) is an idempotent

ideal of R .
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Proof. By Lemma 2.5, we have (N:, M)’ =
(N:, M)(N:, M)=(N:, M)n(N:, M)=
(N:, M). Hence (N:, M) is an idempotent
ideal of R . O

A submodule N of an R-module M is called
characteristic if, for all automorphisms ¢ of M,

@(N)= N [5]. And, we say that a submodule N
of a module M is fully invariant if p(N)<c N
for each endomorphisms ¢ of M [18].

Proposition 2.7 Let M be a pure multiplication
R-module. Then every pure submodule of M is
a characteristic submodule.

Proof. Suppose that N is a pure submodule of
M, so there exists an ideal / of R such that
N=1IM.Let ¢ € Aut(M), @ is an epimorphism,
and sop(N)=p(IM)=1p(M)=IM = N . Thus

N is characteristic. O

The converse of above Proposition need not
be true in general, as the following example:
consider Z as Z-module and N =27 . It is well
known that Z is a pure multiplication Z-module,
also N is characteristic in Z, but N is not pure in
Z. In fact, if /=27 is an ideal of Z, then
2e NnIM =272 (2Z) ,but 2¢ IN =2.22).

Corollary 2.8 Let M be a pure multiplication
R-module and N be a pure submodule of M. Then

every pure submodule of M/N is a characteristic

submodule.

Proof. By [3, Prop. 2.6(ii)], we have that M/N

is a pure multiplication R-module. Thus by

Proposition 2.7, the result follow . O

Proposition 2.9 Let M be a pure multiplication
R-module. Then every pure submodule of M is

a fully invariant submodule.

Proof. Analogous proof of Proposition 2.7 . O
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