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Abstract

For any module M over a commutative ring R, Prim (M) is the collection of all primary

submodules.

In this research we investigate the interplay between the topological properties of Prim (M )

and module theoretic properties of M .

Also, for various types of modules M, we obtain some conditions under which Prim (M ) is
homomorphic with the Primary ideal space of some ring.
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1. Introduction

Throughout this research, R is a
commutative ring with non zero identity and
M is a unitary R-module. For any ideal I of R
containing AnnR (M ), R and T denote
R/Ann(M) and I/Ann(M) respectively.
Moreover the notation ”C” will denote the
strict inclusion.

For M as an R-module and N a submodule,
we recall the colon ideal of M into N,

(N:M)={reRMEN}.

A submodule P of M is said to be a primary
submodule if xmeP for x€R and meM
imply that either meP or x"€(P:M) for
some positive integer n[1]. If P is a primary
submodule, then (P : M ) is a primary ideal
of R.

Let Prim (M) is the collection of all
primary submodules of M.

If Prim (M) # @,the mapping y: Prim(M)—
Prim(R) such that y(P) = (P: M) for every

P € Prim (M ), is called the natural map of
Prim (M).
M is said to be primary ful if either M=(0) or
M #(0) and the natural map of Prim (M ) is
surjective.

M is said to be X -injective if either Prim
(M) = @ or Prim (M) # @ and the natural
map of Prim(M) is injective .

The Zariski topology on X = Prim (M) is the
topology ™™ described by taking the set

Z(M)={VM (N)|N is a submodule of M }
as the set of closed sets of X , where
VM(N)={PeEX|P:M)2(N:M)}.
When M = R, t™™ = 1R is the well known
Zariski topology on Prim (R) [2].

In the rest of this research Prim (M ) is
always equipped with the zariski topology
™.

The present authors introduced the concept
of  Primary-injective modules and
investigated some important properties of
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this family of modules. An R-modules M is
called Primary-injective if the natural map of
Prim (M ) is injective [3].

A topological space W is said to be Primary-
spectral if it is homeomorphic with the
Primary ideal space of some ring (see
Definition 3.17). Primary-spectral spaces
have been characterized by Hochster in [4,
Proposition 11].

In this research, we investigate the interplay
between the topological properties of Prim
(M) and module theoretic properties of M
(see Proposition 3.2, Theorem 3.6, Theorem
3.13, Corollary 3.15, Proposition 3.19, and
Theorem 3.22). Theorem 3.14 provides
useful information about the relationship
between topological properties of Prim (M)
and Prim (R). Also we consider the
conditions under which Prim (M) is a
Noetherian  topological space  (see
Proposition 3.2, Theorem 3.6, Theorem 3.14,
and Corollary 3.15). Moreover, we study the
topological space Prim (M) from the point of
view of Primary-spectral spaces (see
Theorem 3.22). It is shown that if M is a
Primary-injective module over a PID, then
Prim (M) is a Primary-spectral topological
space (see Theorem 3.22 (g)). These results
enable us to provide a large family of
modules such that their Primary submodules
are Primary-spectral.

2. Preliminaries

In this section we review some preliminary
results which will be needed in next section.

Definition 2.1. For a topological space X,
we recall

(a) X is quasi compact if it satisfies one of
the following two equivalent conditions.

(1) Every collection of open subsets whose
union is X contains a finite subcollection
whose union is X .

(2) Every collection of closed subsets whose
intersection is empty set contains a finite
subcollection whose intersection is empty set
(see [5,Definition 2.135]).

(b) X is said to be Noetherian if the open

subsets of X satisfy the ascending chain
condition (or maximal condition). (see [6,
Chap. 6, Example 5]).

(c) X is said to be connected if it is not the
union

X =Xy U X, of two disjoint closed non-
empty subsets X, and X (see [5, Definition
2.105)).

(d) X is said to be irreducible if X is not the
union of two proper closed subsets.

For X' € X, X' is irreducible if it is
irreducible as a space with the relative
topology. This is equivalent to
say that, if F , G are closed subsets of X such
that X’ € F U G, then
X"SForX' < G(see[7, Ch II)).

(e) A maximal irreducible subset of X is

called an irreducible component of X . It is

well known that every irreducible component

of X is closed in X (see [7, Ch. I1]).

Remark 2.2. Let X and Y be two topological

spaces.

(a) Let fbe a continuous mapping from X to

Y.

(1) If X is a connected (resp. quasi compact)

topological space, then f (X ) is a connected

(resp. quasi compact) topological space (see

[5,Theorem 2.107 and Theorem 2.138]).

(2) For every irreducible subset E of X , f (E

) is an irreducible subset of Y (see [7, Ch.

1)).

(b) If X is a Noetherian topological space,

then every subspace of X is a Noetherian

topological space, and X is a quasi compact

topological space (see [6, Chap. 6, Exc. 5]).

(c) Every Noetherian topological space has

only finitely many irreducible com-ponents

(see [7, Proposition 10]).

(d) Closed subspaces of quasi compact

topological spaces are quasi compact (see [5,

Theorem 2.137]).

(e) Every finite topological space is quasi

compact (see [5]).

(f) Closure of any connected (resp.

irreducible) subspace is connected (resp.

irreducible) (see [5, Corollary 2.112] and [7,

Ch. I1)).
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(g) Let A and B be subsets of X such that A
€ B € X, where B is closed in X and
equipped with the relative topology. Then A
is an irreducible closed subset of B if and
only if A is an irreducible closed subset of X
(see Definition 2.1 (d)).

3. Main results

As it was mentioned before, Prim (M ) is
always equipped with Zariski topology T™™ .

Lemma 3.1. Let M be an R-module and let
¢ : Prim (M) — Prim (R) be the natural map
of Prim (M ). Then the following hold.

(a) ¢ is a continuous map.
(b) If M is Primary-surjective, then ¢ is
closed and open mapping.

Proof. (a) This follows from the fact that

¢ (VR (1)) = VM (IM ) for every ideal I of
R containing Ann(M ).

(b) Let N be a submodule of M and let
VM(N ) be a closed subset of Prim (M ).

Then as in the proof part (a), we have
¢ '(VR((N= M) = VM((N: M )M ) =
VM(N).

Hence o(VM(N )) = VR (N : M )) because
¢ is surjective. Also ¢ is open by similar
arguments
and the proofis completed.

A topological space W is a cofinite
topological space

when its open sets are empty and W and all
subsets

with a finite complement. This topology is
denoted

byt fc.

Proposition 32. Let R be a ring such that the
intersection of every infinite collection of
Primary ideals of R is zero (for example,
when R is PID or one dimensional
Noetherian domain) and let M be an R-
module. Then Prim (M ) is a Noetherian
topological space.

Proof. Let VM(N ) be a closed subset of
Prim (M ) for some submodule N of M . If
VM(N) is infinite, then (N : M ) is contained
in an infinite number of Primary ideals of R.
Since the intersection of every infinite

collection of Primary ideals of R is zero, (N :
M) = (0) so that VM(N ) = Prim (M ). It
follows that T C 1 f ¢ and hence Prim (M)
is a Noetherian topological space because
every cofinite topological space is
Noetherian.

Notation 3.3. Let M be an R-module and W
be a subset of Prim (M ). We will denote the
intersection of all elements in W by J(W )

and the closure of W in Prim (M )by CL(W ).

Lemma 3.4. Let M be an R-module and W
be a subset of Prim (M ).

Then C1 (W )= VM (3 (W )). Hence, W is
closed ifand only if VM (3 (W )) =W .

Proof. Let W be a subset of Prim (M ). It is
well known that CI(W ) = CI(W ) N Prim (M
).

But CI(W )=V (3 (W)) by [11, Proposition
5.1]. It follows that CI(W ) = VM(J (W )).

For a proper ideal I of R, we recall that the
Primary-radical I, denoted by PJ(I), is the
intersection of all Primary ideals containing I
. Anideal I of R is a Primary-radical ideal if
I=PJI).

Definition 3.5. Let M be an R-module. The
Primary -radical of a submodule N of M,
denoted by PJ (N ), is the intersection of all
members of VM(N ). In case that VM (N ) =
@, we define PJ(N) = M. A submodule N of
M is said to be a PJ-radical submodule if N
=PJ(N).

Theorem 3.6. Let M be an R-module. Then
the following are equivalent.

(a) Prim (M ) is a Noetherian topological
space.

(b) The ascending chain condition for PJ-
radical submodules of M holds.

Proof. (a)=(b) Straightforward.

(b)=(a) Let
VM(N1) 2 VM(N2) 2 - -2 VMNi) =2 - -
be a descending chain of closed sets VM(Ni)
of Prim (M ), where Ni is a submodule of M .
Hence PI(NI) €S PJ(N2) S - - € PJ(Ni) S
- - is an ascending chain of PJ-radical
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submodules of M. So by hypothesis, there
exists a k € N such that for all n > k, we have
PJ (Nk+n) = PJ (Nk ). Now by using Lemma
3.4, for all n >k,

VM (Nk+n) = VM (Nk ) and the proof'is
completed.

Corollary 3.7. Let M be a Noetherian R-
module. Then Prim (M ) is a Noetherian
topological space.

We recall that if I is an ideal of R, then the
PJ-components of I are the minimal members
of the family of PJ-radical primary ideals
containing I .

Definition 3.8. Let M be an R-module and L
a submodule of M . A submodule P of M is
a PJ-component of L, if (P : M) is a PJ-
component of (L : M ). Clearly, this
definition is the generalization of PJ-
component of an ideal in rings.

Definition 3.9. A module M is said to have
property (PJFC) if every closed subset of
Prim (M ) has a finite number of irreducible
components.

Example 3.10. Let M be an R-module. Then
M has property (PJFC) in each of the
following cases:

(a) Prim (M ) is a Noetherian topological
space (see parts (b) and (c) of Remark 2.2);
(b) R is PID (see Proposition 3.2 and part
(@);

(c) M is Noetherian (see Corollary 3.7 and
part (a);

(d) M is semi local (see Remark 2.2 (e) and
part (a).

When M is the R-module R, then R has
property (PJFC) if and only if every ideal of
R has a finite number of PJ-components .
Theorem 3.13(d) extends the this property
for modules.

The proof of the following lemma is easy
and is omitted.

Lemma 3.11. Let M be a Primary-surjective

R-module. Then the following hold.

(a) If N is a submodule of M , then
PI(N:M)=@IN):M).

(b) If q is a PJ-radical ideal of R containing
AnnR (M), then there exists a submodule Q
of M such that (Q: M )=q.

Remark 3.12. If S is a commutative ring
with non zero identity, then there exists a
one-to-one correspondence between the PJ-
radical primary ideals of ring S and
irreducible closed subsets of Prim (S ) .

Theorem 3.13. Let M be a Primary-
surjective R-module. Then the following
hold.

(@) If Y € Prim (M), then Y is an irreducible
closed subset of Prim (M ) if and only if Y =
VM(N ) for some submodule N of M such
that (N : M) is a PJ-radical primary ideal of
R.

(b) If W € Prim (M ) and L is submodule of
M, then W is an irreducible component of
VM(L) if and only if W = VM(N" ) for some
PJ-component N" of L.

(c) If Z S Prim (M ), then Z is an irreducible
component of Prim (M) if and only if Z
=VM(pM) for some PJ-component ideal p of
AnnR (M).

(d) M has property (PJFC) if and only if
every submodule of M has a finite number of
PJ-components.

Proof. (a) (=) Let Y be an irreducible closed
subset of Prim (M ). Since Y is closed,
Y = VM(N ) for some submodule N of M . It
turns out that (VM(N )) =VR ((N': M))
is an irreducible closed subset of Prim (R)
by Lemma 3.1 and Remark 2.2 (a).
Now by Remark 3.12, (N : M ) is a PJ-
radical primary ideal of R so that (N : M ) is
a PJ-radical primary ideal of R. Conversely,
let VM(K ) be a closed subset of Prim (M),
where K is a submodule of M such that (K :
M) is a PJ-radical primary ideal of R. We
show that VM(K ) is irreducible. To see this,
let E and E' be submodules of M with
VM(K )< VM(E ) U VM(E")
Hence as in the proof of Lemma 3.1 (b), we
have
VR((K: M))S VR((E: M))UVR

(CE" = M)).
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Since (K : M) is a PJ-radical primary ideal
of R, it is easy to check that (K: M) is a PJ-
radical primary ideal of R. Therefore VR
((K: M)) is an irreducible closed subset of
Prim (R) by Remark 3.12. Hence by
Definition 2.1 (d),

VR((K: M))SVR((E: M))or VR

(K= M) S VR(E: M)).

Suppose that VR (K: M)) S VR ((E: M)).
This implies that VM(K ) € VM(E ).

By similar arguments, VM(K ) € VM(E' )
when VR (K: M)) S VR (E" : M)).

(a) (=) Let W be an irreducible
component of VM(L). By Definition 2.1 (e)
and Remark 2.2 (g),

W is an irreducible closed subset of Prim (M
). So by part (a), W = VM(N1') for some
submodule N1’ of M such that (N1’ : M ) is a
PJ-radical primary ideal of R. We claim that
N1 is a PJ-component of L or equivalently,
(N1": M) is a PJ-component of (L : M).
Clearly (N1' : M) 2 (L : M) by using
Lemma 3.11 (a). So by the above arguments,
it is enough to show that (N1': M) is a
minimal member of the family of PJ-radical
primary ideals containing (L : M ). To see
this, let q be a PJ-radical primary ideal of R
with(L:M)S q<c (N1 :M).

Since M is Primary-surjective, there exists a
submodule Q of M such that q=(Q : M) by
Lemma 3.11 (b). Hence

VM(L) 2 VM(Q) 2 VM(N1').

Also VM(Q) is an irreducible closed subset
of VM(L) by part (a), and Remark 2.2 (g).
Since W = VM(N1') is an irreducible
component of VM(L), by the above
arguments, we have VM(Q) = VM(N1").
Now by using Lemma 3.11 (a), g= (N1' : M
) as desired.

(<) Let N2'' be a PJ-component of L. Then
VM(N2") is an irreducible closed subset of
VM(L) by part (a) and Remark 2.2 (g). Let L
be a submodule of M such that

(L' : M) is a PJ-radical primary ideal of R
and

VM(N2"") € VM(L' ) € VM(L).

Since N2 be a PJ-component of L, by using

Lemma 3.11 (a), we have VM(N2"")
=VM(L' )

as required.

(c) This follows from part (b) and Lemma
3.11 (b) and the fact that if N is a submodule
of M , then

VM((N: M )M )=VM(N).

(d) Follows from part (b).

Let X be a topological space. We consider
strictly decreasing chain Zy, Z,,...,Z; of
length r of irreducible closed subsets Z; of X
. The supremum of the lengths, taken over all
such chains, is called the combinatorial
dimension of X and denoted by dim(X). For
the empty set, @, the combinatorial
dimension of @ is defined to be —1.

Theorem 3.14. Let M be a Primary-
surjective R-module. Then the following
hold.

(a) Prim (M ) is a Noetherian topological
space if and only if Prim (R) is a Noetherian
topological space.

(b) Prim (M ) is a connected topological
space if and only if Prim (R) is a connected
topological space.

(c) Prim (M) is an irreducible topological
space if and only if Prim (R) is an irreducible
topological space.

(d) Prim (M) is a quasi-compact topological
space if and only if Prim (R) is a quasi-
compact topological space.

(e) dim(Prim (M )) = dim(Prim (R)).

Proof. Let ¢ : Prim (M ) — Prim (R) be the
natural map of Prim (M ).

(@) (=)Let VRI) 2 VR(I,) 2 ... 2 VR (I)
2 ... be a descending chain of closed sets in
Prim (R), where each I; is an ideal of R. Since
¢ is continuous by Lemma 3.1 (a),

o' (VRI)) 20" (VRM) 2.. 2 ¢ (VR
) 2.

is a descending chain of closed sets in Prim
(M). By hypothesis, there exists a t € N such
that foralln>t, @ (VR (I; 1)) = ¢ (VR
(I)). Hence for all n > t, we have VR (I; +n) =
VR (1)) because ¢ is surjective. Therefore,
Prim (R) is a Noetherian topological space.
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To show the converse, by Theorem 3.6, it is
enough to show that the ascending chain
condition for PJ-radical submodules of M
holds. To see this, let
ngNzg"'gNig"'

be an ascending chain of PJ-radical
submodules of M . Then by Lemma 3.11 (a),
one can see that
(N:M)S(Nx:M)S---S(N:M)C -

is an ascending chain of PJ-radical ideals of
R. So by Theorem 3.6, there exists a k € N
such that for all n > k,( Ngjn: M) =( Ng: M).
Hence for all n > k,

VM(Ni:n) = VM((Niin : M )M) = VM((Ny :
M)M) = VM(Ny ).

So for all n >k, we have

Niin = PJ (Nim) = PJ (Ni ) =Ny, as desired.
(b) First assume that Prim (M) is a connected

topological space. Then Prim (R)= ¢(Prim
(M)) is connected by Lemma 3.1 and
Remark 2.2 (a). To see the
implication, we assume that Prim (R) is a
connected topological space. If Prim (M ) is
a disconnected topological space, then there
exist submodules N and K of M such that
Prim M )= VM(N ) U VM(K ) and

VM(N )N VMK )= 9,

where VM(N ) = @, and VM(K ) = @. Hence
as in the proof of Lemma 3.1 (b), we have
Prim (R)=VR((N: M))U VR((K: M )).
It is casy to check that

VR((N: M ))NVR(K: M))=0@, VR
(N: M))#0,and VR((K: M )) # @.
Therefore Prim (R) is a disconnected
topological space, a contradiction. Hence
Prim (M ) is

a connected topological space.

(c) We have similar argument as in part (b).
(d) (=) This follows from Lemma 3.1 (a) and
Remark 2.2 (a). To show the converse, let
{VM(N,) : o € A} be a family of closed
subset of Prim (M ) such that N,eaAVM(N,) =
@, where Na is a submodule of M for every a
€ A. Then {p(VM(N,)) : a € A} is a family
of closed subset of Prim (R) because ¢ is
closed by Lemma 3.1 (b). Since ¢ is

reverse

surjective, it is easy to see that
Nuer@(VM(Ny)) =0.

As Prim (R) is quasi compact, there exists a
finite subset I' of A such that
Naer@(VM(N,))=@. This implies that

Neer VM(N,) = @ and hence Prim (M )is
quasi compact.

(e)LetZy 2 Z, D ... D Z, be a descending
chain of irreducible closed subset of Prim (M
). Then by Theorem 3.13 (a), fori (1 <i<n),
there exists submodule Li of M such that (L; :
M) is a PJ-radical primary ideal of R and Z;
= VM(L)). It follows that
VR ((Ly: M )) 2 VR ((L;: M))... > VR
((Ln: M)
is a descending chain of irreducible closed
subset of Prim (R) by Remark 3.12.

Hence dim(Prim (M)) < dim(Prim (R)). Now
let

AyDA D..DA
be a descending chain of irreducible closed
subset of Prim (R). By Remark 3.12, for each
i (1 <i<t), there exists a PJ-radical primary
ideal p; of R such that
Ai= VR ().
This yields that py C p; C ... Cp;
is an ascending chain of PJ-radical primary
ideal of R. Since M is Primary-surjective, by
Lemma 3.11 (b), for every pi (1 <i<t), there
exists a submodule Qi of M such that pi = (Q;
M)
Hence by Theorem 3.13 (a),
VM(Qo) 2 VM(Q)) 2 ... 2 VM(QY)
is a descending chain of irreducible closed
subset of Prim (M ). It follows that
dim(Prim (M )) > dim(Prim (R)) and the
proof is completed.

Corollary 3.15. Let M be a Primary-
surjective R-module. Then the following
hold.

(a) If R is Noetherian, then Prim (M ) is a
Noetherian topological space.

(b) If ¥ is the family of all PJ-radical
primary ideal of R, then we have

dim(Prim (M )) = sup{n|po € p; € ... Cpnis
an ascending chain of ¥ }.
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Proof. (a) Follows from Theorem 3.14 (a).
(b) Apply the technique of Theorem
3.14 (e).

Remark 3.16. We recall that an R-module M
is a Hilbert module if every primary
submodule in M is the intersection of all the
Prim submodules containing it. For example,
every finitely generated divisible module
over an integral domain is a Hilbert module
(see [8, p. 2]). Let M be a Hilbert R-module.
If Prim (M ) is connected (resp. irreducible)
topological space, then Specg (M ) is
connected (resp.irreducible) topological
space. Since if M is Hilbert, by [2,
Proposition 5.1] it is easy to see that
Cl(Specg (M )) = Prim (M ). Now the result
follows from the Remark 2.2 (f).

Definition 3.17.We say that a topological
space W is a Primary-spectral space if W is
homeomorphic with the Primary ideal space
of' some ring S.

Remark 3.18. Primary-spectral spaces have
been characterized by Hochster [4,
p-57,Proposition 11] as the topological
spaces W which satisfy the following
conditions:

(a) Wisa Tl space;

(b) W is quasi-compact.

Proposition 3.19. Let M be an R-module.
Then the following are equivalent.

(a) M is Primary-injective.

(b) Prim (M) is a T, space.

(c) Prim (M ) is a T space.

(d) Prim (M) is a T, space.

Proof. Straightforward.

Corollary 3.20. Let M be an R-module.
(a) If Prim (M ) is a Primary-spectral
topological space, then M is Primary-
injective.

(b) If M is primaryful and Prim (M ) is a
Primary-spectral topological space, then
Specg (M ) = Prim (M ).

Proof. This follows from Remark 3.18,
Proposition 3.19, and [9, Theorem 4.3].

Let M be an R-module such that Prim (M ) is
a Primary-spectral topological space. For

a submodule N of M , it is natural to ask the
following question: Is Prim (M/N ) a
Primary-spectral topological space?

In Proposition 3.21 (c), we give a positive
answer to this question under some
additional conditions.

Proposition 3.21. Let M be an R module and
let N be a submodule of M . Then the
following hold.

(a) If Prim (M ) is a T1 topological space,
then so is Prim (M/N).

(b) If Prim (M ) is a Noetherian topological
space, then so is Prim (M/N ).

(c) Let Prim (M ) be a Primary-spectral
space. Then Prim (M/N ) is a Primary-
spectral space in the following cases:

(1) The subspace H := {Q € Prim (M )|Q 2 N
} of Prim (M ) is closed;

(i1) R is a ring such that the intersection of
every infinite collection of Primary ideals is
of R zero (for example, when R is PID or
one dimensional Noectherian domain).

Proof. (a) Follows from Proposition 3.19 and
the fact that if N is a submodule of M , then
Prim (M/N)={Q/N|Q €Prim(M ), Q 2N
}.

(b) We define the map f: Prim (M/N ) — H,
where H := {Q € Prim (M )|Q 2N } and
f(Q/N) =Q for every Q/N € Prim (M/N ).
Clearly f'is a bijection map.

Now let VM(E ) N H be a closed set of H,
where E is a submodule of M . Then
fOVME)NH)=Ff " (VME ) Nf'(H)
=f'(VM(E )) N Prim (M/N)

— £7(VM(E )) = VM(K/N ),

where K =(E : M)M + N. So f: Prim (M/N)
— H is a continuous map. It is easy to check
that

f(VM(L/N))=VM(L) N H

for every submodule L of M containing N .
Hence f: Prim (M/N ) — H is a closed map
so that

Prim (M/N ) is homeomorphic with H . Now
since Prim (M ) is Noetherian, H is
Noetherian by Remak 2.2 (b). Hence Prim
(M/N ) is a Noetherian space as desired.
(c)(i) As in the proof part (b), we see that M
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axR (M/N ) is homeomorphic with

H . Now the result follows by part (a),
Remark 3.18, and Remark 2.2 (d).

(c)(ii) This follows from Proposition 3.2,
Remark 3.18, Remark 2.2 (b), and part(a).

The next theorem is an important result about
an R-module M for which Prim (M ) is
Primary-spectral. This result is obtained by
combining Lemma 3.1, Proposition 3.2,
Theorem 3.6, Proposition 3.19, Remark 2.2
(e), and Remark 3.18.

Theorem 3.22. Let M be a Primary-injective
R-module. Then Prim (M ) is a Primary-
spectral topological space in each of the
following cases:

(a) M is Primary-surjective;

(b) Im(e) is quasi compact, where ¢ : Prim
(M) — Prim (R ) is the natural map of Prim
M);

(c) AnnR (M) is a Primary ideal of R;

(d) Prim (M) is a finite set;

(e) Prim (R) is a finite set;

(f) Prim (R) is Noetherian, in particular when
R is Noetherian;

(g) The intersection of every infinite of
Primary ideals of R is zero, in particular
when R is PID or one dimensional
Noetherian domain;

(h) The ascending chain condition for PJ-
radical submodules of M holds.

An R-module M is multiplication if for every
submodule N of M , there exits an ideal I of
R such that N = IM (see [10]).

Corollary 3.23. Let M be an R-module.
Then Prim (M ) is a Primary-spectral
topological space in each of the following
cases:

(a) M is finitely generated and multiplication;
(b) M is primaryful and top; (We refer the
reader to [10] and [11] for the concept and
properties of top modules.

(c) M is primaryful and X -injective;

(d) M is X -injective and R is PID.

Proof. This follows from parts (a) and (g) of
Theorem 3.22 and taking into account the
following facts from [10, Theorem 3.5], [9,

Proposition 3.3], [12, Theorem 2.2 ,3.3], and
[13, Proposition 3.3 (c)],

Fact 1. Let denote the class of multiplication,
top, X -injective, and Primary-injective
modules respectively by ', T, I'3, and Ty,
then

cecr,cr;cry.

Fact 2. If we denote the class of finitely
generated, primaryful, and Primary-
surjective modules respectively by Q;, Q,,
and Qs, then Q,€ Q,SQ;.
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