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Abstract:

To scale back the dimensionality while holding a lot of flexibility of a nonparametric model Wu,
et al. (2010) proposed a single index conditional quantile regression model. In this paper, a new
Bayesian lasso for single index quantile regression model is proposed based on a scale mixture
uniform. In addition, we construct an efficient and sampling Gibbs algorithm for posterior
inference based on a uniform scale mixture representation for Laplace distribution. Simulation
study have considered to evaluate our proposed method compare to the existing methods. The
results of simulations indicate that the new Bayesian algorithm performs well.

Keywords: Bayesian inference, single index, quantile regression, prior distribution, uniform scale

mixture.

1. Introduction

In real applications, the exact response
variable cannot be predicted from the
prediction variables. Classical regression
focuses on predicting a modal response
variable Y for a single or set of predictor
variables X, prediction of the response
variable is given by prediction variables
E(Y|X), called regression function (Gujarati
2003; Weisberg 2005). Nevertheless, many

researchers claim that the fitting of the
conditional mean is unable to give a
complete picture of underlying
interrelationships. For example, Mosteller
and Tukey (1977) indicate “ . The
regression curve gives a large summary of
the averages corresponding distributions to
the set x“s. We could go further and
compute several different regression curves
corresponding to the various percentage
points of the distributions and thus get a
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more complete picture of the set. Ordinarily,
this is not done, and so regression often
gives a rather incomplete picture. Just as the
mean gives an incomplete picture of a single
distribution, so the regression curve gives a
correspondingly incomplete picture for a set
of distributions”. Quantile regression (QR)
suggested by Koenker and Basset (1978),
allowing the person to thoroughly review the
conditional distribution of Y over X in
completely different locations, thus giving a
complete view of the interrelationships
between Y and X. Subsequently, quantile
regression has become a unite statistical
methodology for estimating models of
conditional quantile functions Wu & Liu
(2009). QR usually provides a more
complete picture description of the
distribution of the response over the mean, it
offers a practically necessary alternative to
classical mean  regression.  Quantile
regression is additionally a valuable
alternative to the wusually utilized Cox
proportional risk model and the accelerated
failure time model (AFT) utilized in survival
analysis Koenker, R., & Geling, O. (2001).
For instance, in a cancer study, it's known
that treatment can cause different impacts
among patients in lower or higher quantiles
of the survival distribution Wu, et al. (2010)

Nonparametric quantile regression was
studied by Koenker (2005). Kernel primarily
based methods and spline smoothing ways,
have been used to accommodate nonlinear
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relationships; see for more details, Yu and
Jones (1998), He and Shi (1994) and
Koenker et al. (1994). There are problems in
the non-parameter estimation of the
existence of high dimensions that can be
solved using the single index model and
avert the “curse of dimensionality” (Bellman
et al., 1966) in nonparametric problems by
that the response is just associated with a
single linear set of the covariates. In
addition, the main problem of non-parameter
quantile regression that the estimated
function is often hard to see and interpret
with multivariable variables. To scale back
the dimensionality while holding a lot of
flexibility of a nonparametric model Wu, et
al. (2010) proposed a single index
conditional quantile regression model. They
are the most common and necessary models
in statistics as well as applied quantitative
sciences such as econometrics and
psychology due to their ability to reduce
dimensions (Ichimura, 1993). Whereas this
model is conditional on the quantile
regression so it becomes more immune to
outliers and includes a heavier tail errors
distribution than the mean regression. The
mathematical type for the tth quantile level
SIQR model is shows by:
y=m(x{B:) + & (1)

where 7€ (0,1), y isreal response
variable, x is that the p-dimensional vector
of explanatory variables B, ,is that
the index parameter vector for the 1"
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the unknown
the

quantile, and g,(.) is
nonparametric link function for
tthquantile, that is estimated for a
single variable (x7S; ).

The algorithm for estimating single index
vector, based on linear quantile regression
and with the unknown  nonparametric
function estimated by the local linear
method was constructed by Wu et al. (2010).
Computational algorithm for estimating and
variable selection was advanced by
Alkenani, Yu (2013), Lv et al. (2014) and
Kuruwita (2016). This model has been given
a great deal of interact from many
researchers on both the applied and
theoretical side. Some of the drawbacks
experienced the frequentist approach are
mentioned by Benoit and Van den Poel
(2012); the difficult optimization of the
estimated parameters and the structure of the
confidence interval. Hu et al. (2013) were
developed new Bayesian hierarchical model
to estimate nonparametric link function in
the single index model (SIM) conditional to
QR. The Bayesian analysis method has
become vastly applied, outcome of its ability
to interest from all ready information in the
analysis. Many studies newly presented to
develop and expand the single index
quantile regression model, for instance;
Completely  Bayesian  method  was
sophisticated by Hu et al. (2013). A similar
Bayesian approach was utilized by Zhao and
Lian (2013) for the censored data in the
single index quantile regression model.
Alshaybawee et al. (2017) proposed a
Bayesian approach with elastic net penalty
to estimate and selected variables at the
single index quantile regression model. In
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this paper, a new Bayesian lasso for single
index quantile regression model is proposed
based on a scale mixture uniform to the
prior parameters. In addition, we construct
an efficient and simple  Gibbs sampling
algorithm for posterior inference based on a
uniform scale mixture representation for
Laplace distribution.

The reset of this paper is orderly as follows:
In Section 2, we briefly review the single
index model and the prior distribution. The

Bayesian hierarchical model and the
posterior inference for updating the
parameters is described in section 3.

Simulation study include in section 4 and
some conclusions are given in section 5.

2. Single index quantile regression model
and prior assumptions

The model of single
regression was given as:-

index quantile

yi=m(xfB;) +€, i=12,...,n (2)
At tth quantile, the quantile error term ¢;,
distributed as an asymmetric Laplace
distribution with the density:

T(1-71)

n(elo,T) =

exp exp {—i p-(€)} (3) where

o is that the scale parameter, p .(-) isthe

check loss function defined by p .(€) =

e(t — I{e < 0}) for quantile level T €
(0,1).

The likelihood function for
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€ir = ¥ — my(x] ), i=12,..,n
where n is a sample size, shown as:

n(y|lm, B, o)
™A -7)" 1%
= Texp {_Ez Pz (Vi
i=1
— m(x{B))} (4)
Quantile regression is often based

on minimizing of  the  check function.
However, direct use of the likelihood
function is not convenient for Bayesian
inference. A location-scale mixture (Kozumi
and Kobayashi 2011) have used to the ALD
which is useful here. We can rewrite Eg. (2)
based on location — scale representation as
follows:

y; =m(x!B) + 6v; + /00 v; w;
where v; isa standard exponential random
variable, u; is a standard normal random,

§=-"2" and § = —>— .Therefore, the
7(1-1) 7(1-1)
likelihood function are rewritten as Kozumi,

H., & Kobayashi, G. (2011).

T[( yilﬁ) mrivi)

n 1

= l_[ (27'[06171-)_% .exp{— 290D, i
i=1 L

- m.(x{ B;) — 6v;)%} (5)

L e =85 D= L (v — S
a { (det[D™1]) 7z exp {_ —mn=8v) D~ (y—mp—6v;

2
Here

Vi=01,Y2, V) 00 = (U, Vg, o, )T

, D71 =68 odiag(vy,v,, ..., v,) , and
m, = (m11m21 ...,mn)T

= (m&IB), m(Ip),..,m&IpNT
As in Choi et al. (2011) and Gramacy and

Lian (2012),
the Gaussian method distribution is put as a
prior distribution for the

unknown nonparametric link function
m.(.). More specially, the prior distribution
of m.(.) is a Gaussian process, with the
mean zero and the square covariance
exponential function as follows:

m.()~GP(0,EC,.)), E(x;x;)

(x; — xj)z

=0 exp(— " )

Where 0 and w are hyperparametes.
Therefore, The prior distribution for
unknown function can be shown as follows:

( me|By, 9)
1 mrE-1m
=det[E,] 2 exp{— %}

where E, is the covariance matrix with
dimension (n x n) and it can be written as

E(x[B,x]B) =0 exp {—(xi
—x;) B B7(x; - xj)}'
We have seen that the
variance function E(x;,xj) =

To_ 4 Tpy2
9 exp(— M), follow Gramacy and
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Lian (2012), when the Gaussian process

isemployedas the prior for the

i i B
nonparametric function, N
is identifiable without the necessity for the
constraint |||l =1. Therefore, the

i i B
parameter S will be instead of Nk

E(x,x;) = 0 exp {(—(xI B — x] B)?}

The inverse gamma  distribution is
considered as a hyper prior for 4, which
implies that 0 ~IG (a, ,b, ) where a,and
b, are the hyperparameters.

Scale mixture of wuniform distribution
(SMUD) for regression models has been
utilize in few of occasions in literature.
Walker et al. (1997) utilized SMU
distribution in natural regression models in
non-Bayesian framework. Damien and Qin
(2000), & Walker, S. G. (1997) provided
Gibbs sampler by utilized SMU in variance
regression models and additionally to derive
Gibbs sampler for autocorrelated
heteroscedastic regression models.
Nevertheless, its use has been specified in
penalized regression setting. Choy et al.
(2009) consider it in random volatility
model by employing a two-stage scale
mixture representation of the t-student
distribution . It is important to note that the
potential density function of Laplace
distribution can be expressed in different
forms of mixture representation. This
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representation is much importance in
research and studies, especially using the
pyramidal method. This representation is
important in facilitating the estimation
process and increasing its efficiency. Some
examples of this representation are
important in this research. See for instance,
Mallick and Yi (2014) they were developed
the former methods by utilizing method
called a new Bayesian Lasso, such
suggested  procedure  for variable
selection(VS) , estimation of linear
regression coefficient. Husseini (2017)
proposed the Bayesian Lasso quantile
regression method for (VS) to allocate an
independent scale mixture of uniform
distributions for regression coefficients.
Alhamzawi & Ali (2018) offered a
complete Bayesian method for tobit QR to
reach the L, based on the representation of
a mixture of the deviant Laplace
distribution. A simple and effective
Bayesian MCMC algorithm was introduced.
The results of Mallick in his research were
ideal and proved their competence from the
previous Bayesian processes utilized.

Malik's results in his research were
exemplary and proved efficient from
previous Bayesian processes utilized.

Hierarchical model and MCMC sampler

A Laplace distribution function can
be written as a scale mixture of uniform
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distribution and a  specific gamma
distribution Mallick, H., Yi, N., 2014, i.e.

m(Bje14y, 0) =
., G exp{—(2)3,2 >0 (6)

) exp{—(v16;:)}
1 y?

= — —s*le (s (7)

Based on the formulas above (6) and (7) we
can rewrite the hierarchical representation
model as follows:

y|B,o,m; ,v~N(@m, (xIB) + 6v,00u)
mT|xl,B 0 ~GP(0,E)
Be|s ~ unlform( \/_,\/_) (8)
~N(O 1) , v-~—exp( 1;‘)
,sily~IT-, Gamma(2,y)

y? ~ Gamma ( a, , by, ),
o~Inv.Gamma (a,,b,),
0~ Inv.Gamma (ay ,by )

For all parameters the posterior can be given
as:

p(m,,B,v,s,v,0,0/y)

., ™" exp (=byy;) X
(8)7907 exp (—22) X ()79

exp (-%) (9

g

Where a,b,c and d are hyperparameters,

here  yi= 1, ¥z, ¥n)" Up =
(vl,vz,...,vn)T, D_1 =
6 odiag(vy, vy, ..., Vy), and my, =

(my,my,...,m,)" =

(m@x] B),m(xIp), ... m(x5p)T, E is the
covariance matrix with dimension (n xn)
and elements E(.,.) given in Equation
EGTB.xTB) =9 exp exp {—(x; —

xj)T,B BT (x; — x;)} . For the parameters and
potential variables, the conditional posterior
distributions will simply be derived via a
Gibbs sampler algorithm for the Bayesian
single index quantile regression. In the
simulation study the kernel matrix E is
almost be singular, in order that m, is

integrated to avert the singularity problem

(y—mn—é‘v-)TD'l(y—mn—é‘vi} a)rgd therefore the inverse is calculated for

1
a {(det[D71]) 2z exp {— —
1 T o—
det[ E, | 2 exp{— @} X

2
p 1 v e~Vs n 1
—_— —_— S X Al -_—
] 1 2s Fz Hl_l g

_u 14 f a-1 ,-bs
exp( a)anl o stTe X

(E + D) the matrix (Hu et al. (2013) and
Zhao and Lian (2015)).The conditional
posterior densities of all the parameters and

variables, excepting for g and 4 , are
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common distributions. The conditional

distributions utilized in the sampling are Sampling o

given below. m, is marginalized when look 3 —n(o|B, my,v;,y,0,y)a

considering  the  posterior  conditional n(y/vi, My, 0) X w(vi/0) X 7(0)

distribution of B and 9. For the tth Full conditional posterior distributions

quantile  an easy and efficient Gibbs Ao = %_ Ao

sample-r can be shown, works as follows: 9, = { n (y_mn_auiz);g_mn_gui) + o+ ba}

Sampling B n(o|my, Bn, Vi, v, ¥) ~ 1G(ay,Yy),
1—- n(Blmy,vi,y,0,50,y) « Sampling y

(y|vy, 0,my) X m(my,|B,0) X w(Bls) 4 —n(ylo,s,m,,v;,0,y)a

n(B/s) xm(y)

Full conditional posterior distributions

Full conditional posterior distributions

x exp {_ (y—Svi)T(D+2En)‘1(y—6vi)} % »
-2 p 1 n(yls,B) ~ 1G( a, +2p,by+z Sj)
(det[En + D) 2 X1y 5 =1
Updating B The full conditional distribution sampling s

of B; is truncated normal With mean 3, and
variance S where
n

_ o
B; =Sk Z m(}’i —me(x] B;) — 6v;)
i=1 t

n -1 n(slmr:)/!ﬁ!y)~6amma(p —-pa,
1{|gl <—Vs},  and S = (Z L)
i< sl =\ L 2w, S0, (b))

Sampling m,,

5 —n(slmy,v,v,0,8,0,y)an(B/s) X n(s)
Full conditional posterior distributions

Sampling 0

2 — ﬂ(mnlﬁ. v;,0,S,Y, a.)’)“ 6 —m(d |'g’ v, O',y)a T[(ylvn, o, mn)

n(y/vi,my,0,) X T(my|pB,d) X m(m,|B,d) x w(d)
Full conditional posterior distributions
n(my|B,vi,0,0,y) ~ N(in, Xn)

L e =53 D= (=1 —Ss
o {(det[D™]) " zexp {_ G-—mn-8vy) D2 (y-mp Svl)}
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1

X det[E,] 2 exp {—

m} Eﬁlmn} %
2

(0)~%~* exp(—~2)

Full conditional posterior distributions

We wuse the Metropolis algorithm for

sampling 0 .

Sampling v;

The full conditional distribution for v; isa

generalized inverse Gaussian distribution

(GIG),
7 —n(v; |o, B,my,y,0,y)a
n(ylo, mp, v; ) X w(v;)

Full conditional posterior distributions
n(v;|o, B, my,y,0,y) =

1 - n)z 52
n(v; lo,my, y)~GIG (E , ’% , /§+
2
g

where the likelihood density function of
GIG(p,w,2) is
f(p,w,z) =

xP~1 exp {— % (w?x 1+ sz}

zZ
P

2Kp(wz)

x >0, —o<p <o0,w=0,z =0,
and Kp is the changed Bessel function of the
third kind (Barndorff-Nielsen and Shephard
2001).

3. Simulation

16

The simulation study considered in this
section to evaluate our suggested method
Bayesian single index quantile regression
with a uniform scale mixture (BUSIQR) and
compared it’s with other existing methods
Bayesian quantile regression (BQR) and
Bayesian single index quantile regression
(BSIQR) and Bayesian lasso quantile
regression (BLQR) . Here, simulation
example is considered in this study. This
example was utilized by Wu et al. (2010)
and have been very popular often it
employed by most researchers whose study
single index model conditional to quantile
regression [See, (Hu et al. (2013), Alkenani
and Yu (2013) , Lv et al. (2014), Zhao and
Lian (2015), Kuruwita (2015) and
Alshaybawee et al. (2016))], but with some
differences. Methods performance s
evaluated based on the median mean
absolute deviations referred to as (MMAD),
bias and standard deviation. These
measurements are calculated based on 100
replications. We have run the proposed
Bayesian algorithm for 10000 iteration and
the first 2000 iterations was burn in.
Computations were done based on R
package.

Simulation Example

In this example we have considered three
samples with different size 50, 100 and 200
these samples are generated based on the

following model:
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y =m(x]p) + /(sin x[ B +1e ,

where m(h) = 10 sin (0.75 h),

where x; ,i = 1,...,6 are iid normal
distribution with  N~[0,(0,25)?], B =
(ﬂl,...,ﬁé)T=%(0,1,0,0,1,0)T, and the error

term (€) is standard normal distribution (SND),
the models were supply with three various
quantiles, T = { 0.25, 0.50, 0.75 }.

= 4

Figure (1) shows the trace plots for the estimated
parameters at quantile 0.25 for simulation
Example with 100 sample size.

We have display the trace plots in Figures
(1) and (2), to check the rapprochement of
the parameter estimates for the chain of the
parameters B at two quantiles (0.25, 0.75).
Based on the trace plots, we have seen clear
that the chains of our suggested algorithm
given a good performance.

]
0w

8 05 15

45 000

00w

Figure (2) shows the trace plots for the estimated
parameters at quantile 0.75 for simulation
Example with 100 sample size.

17

The standard deviation parameter estimates of
this simulation example for the samples 50,100
and 200 and based on 100 replications are
summarized in Figures 1, 2 and 3 of the
parameter estimates of each quantile.

0.5 P—
0 -
1 2 3 4 5 6
e (.25 BQR e (.25 BSIQR
0.25 BLQR ~ e===== (.25 BUSIQR
0.5
e —
0
1 2 3 4 5 6
e (.50 BQR e (.50 BSIQR
0.50 BLQR  e===== (.50 BUSIQR
0.5 —
0 —_— |
1 2 3 4 5 6
e (.75 BQR e (.75 BSIQR
0.75 BLQR  e===== (.75 BUSIQR

Figure (3) Shows the SD of the estimated
parameters for the quantiles (0.25, 0.50, 0.75) in
100 replications when the sample size is 50.

From Figure (3), We can view that the proposed
parameter estimates the BUSIQR method better
than other methods, whereas this method have
the smallest SD compare to the others. The
small values of SD mean that the parameter
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estimates are homogeneous. On the contrary, the 0.2

BQR and BLQR methods are got the largest ——
values of SD. Also we can see that the BSIQR 0 . "2 ; . "5 ;
method are got SD smaller than the BLQR and
BQR method. em==(.50 BQR ~ =====(.50 BSIQR
05 0.50 BLQR  e=====(.50 BUSIQR
1 2 3 4 5 6
em==(.25BQR  e====(.25 BSIQR 0.5
0.25BLQR  e====(.25 BUSIQR 0 —_— _—
1 2 3 4 5 6
o.g e — @mm=().75 BQR ~ emmm=(.75 BSIQR
1 2 3 4 5 6 0.75 BLQR === ().75 BUSIQR
e===(.50 BQR  e====(.50 BSIQR
0.50 BLOR 0.50 BUSIOR Figure (5) Shows the SD of the estimated
parameters for the quantiles (0.25, 0.50, 0.75) in
100 replications when the sample size is 200.
0.5 . .
0 —_———— As same as Figure (3), Figures (4) and (5),

shows that the proposed method BUSIQR
get the smallest SD for most parameter
estimates at the different quantiles. In
addition, the BQR method get the largest SD

e (.75 BQR e (.75 BSIQR

0.75BLQR  em===(.75 BUSIQR

Figure (4) Shows the SD of the estimated
parameters for the quantiles (0.25, 0.50, 0.75) in
100 replications when the sample size is 100.

0.2

01 e —
0 S

for all parameter estimates at all quantiles
and in the different sample size 50,100 and
200. Also we can see that when the sample
size are increase the SD for the BLQR and
BSIQR are converge.

Table (1) shows the bias for the different
quantiles when the sample size is 50

! 2 3 4 > 6 « Methods B, B, Bs Ba Bs Bs
amm=()25 BQR (.25 BSIOR 025 BQR 0.898 0939 073 0557 0923 0.97
0.25BLOR  emmmme0.25 BUSIOR BSIQR 0.096 0.033 0.255 0.184 0.377 0.213
BLQR 0.161 0.877 0.623 0.459 0.888 0.743
BUSIQR 0.021 0.01 0.054 0.072 0.105 0.09
0.50 BQR 1.018 1.875 0.687 0.821 2.829 0.725
BSIQR 0.829 1.047 0.277 0.552 0.097 0.261
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BLQR 0934 1306 0277 0737 2793 0611 BOR, BLQR and BSIQR methods in the
RN 0217 0228 0069 0112 0086 0094 different quantiles and different samples of
075 BQR ]
0145 1815 0428 0571 1301 0866 size. We can see clear that the performance
BSIQR 0.256 0.986 0.206 0.216 1.062 0.271
BLOR 0144 1763 0327 0369 1867 0.651 of the proposed method was better than the
BUSIQR 0126 038 0019 0087 0414 0.173 other existing methods. Whereas the bias for
Table (2) shows the bias for the different the BUSIQR method were less than those
quantiles when the sample size is 100 for the others in all the different quantiles
v Metho®s B Bk B B B B and the different samples of size. In
025 BAR 0252 1081 0727 1327 0881 1065  aqdition, we can see that the bias for the
BSIQR .
a 0118 0849 0533 0720 0702 0926  BSIOR method is smaller than BQR and
BLQR
0149 0949 0726 1031 084 1058 B OR methods. So that, we can say that the
BUSIQR 0.023 0338 0279 0368 0200 0412

performance of the BSIQR method is better
than the BQR and BLQR.

Table(4)  Comparison of MMAD for SOR,
BLOR 0211 0885 1045 0994 0871 0931  BGIQR, BLQR and BUSIQR methods based on
BUSIQR 0109 0170 0125 0244 0132 0319 100 replications

050  BQR 0350 0914 1.044 1077 0890 1.136
BSIQR 0.178 0.690 0.898 0.461 0463 0.801

0.75  BQR 0.523 1334 0954 1329 0.855 1.006
BSIQR 0.187 0.881 0221 0954 0421 0.874 ! ! i e BLOR BUSIGR
BLQR 0433 0903 0851 1029 0838 0962 50 0.25 0.2262 0.0298 0.2233 0.0137
BUSIOR 0137 0278 0141 0312 0103 026 0.50 0.2243 0.0285 0.2192 0.0129
Table (3) shows the bias for the different . 027 0.0508 0.2218 001
quantiles when the sample size is 200 100 025 0.2072 0.0299 0.2058 0.0095
. Vethods 7., 7 2 7 A 0.50 0.2080 0.0270 0.2063 0.0132
025 BOR 1.404 0827 1033 0915 0865 1.026 0.75 0.2116 0.0278 0.2100 0.0128
BSIQR 0.904 0.625 0546 0.781 0.521 0918 200 025 0.2086 0.0267 0.2080 0.0127
BLQR 1.128 0.814 0.828 0.813 0.752  1.004 0.50 0.2110 0.0272 0.2101 0.0091
BUSIQR 0302 0272 0245 0202 0.188 0226 5 0.1851 0.0254 0.1839 0.0134
050 BQR 1.255 0.856 1214 1.037 0.88 1.019
BSIQR 0.943 0717 0837 0901 0624 0.767
BLQR 1.104 0841 0911 0935 0875 1.018
BUSIQR 0.283 0367 0321 0319 0214 0315 N=50
0.75 BQR 1.012 0917 1014 0855 0967 0.927
BSIQR 0.873 0409 0.826 0.605 0732 0.791 8:(2)888 i a.a f.a
BLQR 0910 0.899 1.013 0.655 0.854 0.726 0.25 05 0.75

BUSIQR 0.240 0.272 0.104 0.129 0.314 0.237

EBQR HBSIQR WBLQR ®BUSIOR

Table (1), (2) and (3) shows the bias for the
proposed BUSIQR method and the existing
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00000 Tefl LA m.m.

0.25 0.5 0.75

EBQR EBSIQR BLQR EBUSIQR

Figure(6) shows the MMAD for SQR, BSIQR,
BLQR and BNSIQR methods based on 100
replications

Table (4) and Figure (6) show that the median
of mean absolute deviations (MMAD) of the
new proposed method BUSIQR method is got
the smallest values of MMAD compare to the
other three existing methods at all the quantiles
and the different sample size. BQR method is
got the largest MMAD values, which indicate
not good performance. In addition, the MMAD
of the BSIQR method is smaller than BLQR and
its better.

5. Conclusion

In this paper, the Bayesian
estimation and variable selection for single
index conditional guantile regression model
based on scale mixture uniform is proposed.
We have construct a Bayesian hierarchical

20

model of the Lasso method and the MCMC
algorithm is considered for posterior
inference.

Simulation example was considered to
compare our proposed method, BUSIQR,
with three other existing methods, BQOR,
BSIQR and BLQR. Based on the results in
the tables and figures of the simulation
study, we have seen that the BUSIQR
provides substantial improvement compare
to the other methods. Therefore, we
concluded that the perform of our proposed
method is better than the onther existing
methods.
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