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Abstract: 

To scale back the dimensionality while holding a lot of flexibility of a nonparametric model Wu, 

et al. (2010) proposed a single index conditional quantile regression model. In this paper, a new 

Bayesian lasso for single index quantile regression model is proposed based on a scale mixture 

uniform. In addition, we construct an efficient and sampling  Gibbs algorithm for posterior 

inference based on a uniform scale mixture representation for Laplace distribution. Simulation 

study have considered to evaluate our proposed method compare to the existing methods. The 

results of simulations indicate that the new Bayesian algorithm performs well. 
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1. Introduction 

In real applications, the exact response 

variable cannot be predicted from the 

prediction variables. Classical regression 

focuses on predicting a modal  response 

variable Y for a single or set of predictor 

variables X, prediction of the response 

variable is given by prediction variables 

E(Y|X),  called regression function (Gujarati 

2003; Weisberg 2005). Nevertheless, many 

researchers claim  that the fitting of the 

conditional mean is unable to give a 

complete picture of underlying 

interrelationships. For example, Mosteller 

and Tukey (1977)  indicate  “ . The 

regression curve gives a large summary of 

the averages  corresponding distributions to 

the set x‟s. We could go further and 

compute several different regression curves 

corresponding to the various percentage 

points of the distributions and thus get a 
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more complete picture of the set. Ordinarily, 

this is not done, and so regression often 

gives a rather incomplete picture. Just as the 

mean gives an incomplete picture of a single 

distribution, so the regression curve gives a 

correspondingly incomplete picture for a set 

of distributions”. Quantile regression (QR) 

suggested by Koenker and Basset (1978), 

allowing the person to thoroughly review the 

conditional distribution of Y over X in 

completely different locations, thus giving a 

complete view of the interrelationships 

between Y and X. Subsequently, quantile 

regression has become a unite statistical 

methodology for estimating models of 

conditional quantile functions Wu & Liu  

(2009). QR usually provides a more 

complete picture description of the 

distribution of the response over the mean, it 

offers a practically necessary alternative to 

classical mean regression. Quantile 

regression is additionally a valuable 

alternative to the usually utilized Cox 

proportional  risk model and the accelerated 

failure time model (AFT) utilized in survival 

analysis Koenker, R., & Geling, O. (2001). 

For instance, in a cancer study, it's known 

that treatment can cause different impacts 

among patients in lower or higher quantiles 

of the survival distribution  Wu, et al. (2010) 

. Nonparametric quantile regression was 

studied by Koenker (2005). Kernel primarily 

based methods and spline smoothing ways, 

have been used to accommodate nonlinear 

relationships; see for more details, Yu and 

Jones (1998), He and Shi (1994) and 

Koenker et al. (1994). There are problems in 

the non-parameter estimation of the 

existence of high dimensions that can be 

solved using the single index model and 

avert the “curse of dimensionality” (Bellman 

et al., 1966) in nonparametric problems by 

that the response is just associated with a 

single linear set of the covariates. In 

addition, the main problem of non-parameter 

quantile regression that the estimated 

function is often  hard to see and interpret 

with multivariable variables. To scale back 

the dimensionality while holding a lot of 

flexibility of a nonparametric model Wu, et 

al. (2010) proposed a single index 

conditional quantile regression model. They 

are the most common and necessary models 

in statistics as well as applied quantitative 

sciences such as econometrics and 

psychology due to their ability to reduce 

dimensions (Ichimura, 1993).  Whereas this 

model is conditional on the quantile 

regression so it becomes more immune to 

outliers and includes a heavier tail errors 

distribution than the mean regression. The 

mathematical type for the  𝜏𝑡ℎ quantile level 

SIQR model is shows by: 

𝑦 = 𝑚𝜏(𝑥𝑖
𝜏𝛽𝜏  ) + 𝜀𝜏              ( 1 ) 

where 𝜏 ∈ (0,1), 𝑦  is real response 

variable, 𝑥 is that the p-dimensional vector 

of explanatory variables  𝛽𝜏 , is that 

the index parameter vector for the 𝜏𝑡ℎ 
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quantile, and 𝑔𝜏(. )  is the unknown 

nonparametric link function for the 

𝜏𝑡ℎquantile, that is estimated for a 

single variable (𝑥𝑖
𝜏𝛽𝜏 ).  

 The  algorithm for estimating  single  index 

vector, based on linear quantile regression 

and with the unknown  nonparametric 

function estimated by the local linear 

method was constructed by Wu et al. (2010). 

Computational algorithm for estimating and 

variable selection was advanced by 

Alkenani, Yu (2013), Lv et al. (2014) and 

Kuruwita (2016). This model has been given 

a great deal of interact from many 

researchers on both the applied and 

theoretical side. Some of the drawbacks 

experienced the frequentist approach are 

mentioned by Benoit and Van den Poel 

(2012); the difficult optimization of the 

estimated parameters and the structure of the 

confidence interval. Hu et al. (2013) were 

developed new Bayesian hierarchical model 

to estimate nonparametric link function in 

the single index model (SIM) conditional to 

QR. The Bayesian analysis method has 

become vastly applied, outcome of its ability 

to interest from all ready information in the 

analysis. Many studies newly presented to 

develop and expand the single index 

quantile regression model, for instance; 

Completely Bayesian method was 

sophisticated by Hu et al. (2013). A similar 

Bayesian approach was utilized by Zhao and 

Lian (2013) for the censored data in the 

single index quantile regression model. 

Alshaybawee et al. (2017) proposed a 

Bayesian approach with   elastic net penalty 

to estimate and selected variables at the 

single index quantile regression model. In 

this paper, a new Bayesian lasso for single 

index quantile regression model is proposed 

based on a scale mixture uniform to the  

prior parameters. In addition, we construct 

an efficient and simple   Gibbs sampling 

algorithm for posterior inference based on a 

uniform scale mixture representation for 

Laplace distribution. 

The reset of this paper is orderly as follows: 

In Section 2, we briefly review the single 

index model and the prior distribution. The 

Bayesian hierarchical model and the 

posterior inference for updating the 

parameters is described in section 3. 

Simulation study include in section 4 and 

some conclusions are given in section 5.  

 

2. Single index quantile regression model 

and prior assumptions 

The model of single index quantile 

regression was given as:- 

 𝑦𝑖 = 𝑚𝜏( 𝑥𝑖
𝜏𝛽𝜏 ) + 𝜖𝑖𝜏    𝑖 = 1,2, … , 𝑛     (2) 

At 𝜏th   quantile, the quantile error term  𝜖𝑖𝜏  

distributed as an asymmetric Laplace 

distribution with the density:  

𝜋 ( 𝜖 |𝜎, 𝜏) =
𝜏(1−𝜏)

𝜎
 

𝑒𝑥𝑝 𝑒𝑥𝑝 {−
1

𝜎
 𝜌𝜏(𝜖)}                  (3) where 

σ is that the scale parameter,  𝜌 𝜏(·)  is the 

check loss function defined by  𝜌 𝜏(𝜖)  =

 𝜖(𝜏 −  𝐼{𝜖 <  0})  for quantile level 𝜏 ∈

 (0, 1). 

 The likelihood function for 
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  𝜖𝑖𝜏 = 𝑦𝑖 − 𝑚𝜏(𝑥𝑖
𝑇𝛽𝜏),    𝑖 = 1,2, … , 𝑛. 

where 𝑛  is a sample size,  shown as: 

𝜋(𝑦|𝑚, 𝛽, 𝜎)

=
𝜏𝑛(1 − 𝜏)𝑛

𝜎
𝑒𝑥𝑝 {−

1

𝜎
∑ 𝜌𝜏(𝑦𝑖

𝑛

𝑖=1

−    𝑚(𝑥𝑖
𝑇𝛽))}                           (4) 

Quantile regression is often based 

on minimizing of the check function. 

However, direct use of the likelihood 

function is not convenient for Bayesian 

inference. A location-scale mixture (Kozumi 

and Kobayashi 2011) have used to the ALD 

which is useful here. We can rewrite Eq. (2) 

based on location – scale representation as 

follows: 

𝑦𝑖 = 𝑚(𝑥𝑖
𝑇𝛽) + 𝛿𝑣𝑖 + √𝜃𝜎 𝑣𝑖   𝑢𝑖                  

where 𝑣𝑖 is a standard  exponential random 

variable, 𝑢𝑖 is a standard normal random, 

𝛿 =
1−2𝜏

𝜏(1−𝜏)
 and 𝜃 =

2

𝜏(1−𝜏)
 .Therefore, the 

likelihood function are rewritten as Kozumi, 

H., & Kobayashi, G. (2011). 

𝜋( 𝑦𝑖|𝛽, 𝑚𝜏 , 𝑣𝑖)

= ∏  

𝑛

𝑖=1

(2𝜋𝜎𝜃𝑣𝑖)−
1
2 . 𝑒𝑥𝑝{−

1

2𝜎𝜃𝑣𝑖
 (𝑦𝑖

− 𝑚𝜏(𝑥𝑖
𝑇𝛽𝜏) − 𝛿𝑣𝑖)2}                              (5) 

𝛼 { (𝑑𝑒𝑡 [𝐷−1])−
1

2 𝑒𝑥𝑝 {−
(𝑦−𝑚𝑛−𝛿𝑣𝑖)𝑇𝐷−1(𝑦−𝑚𝑛−𝛿𝑣𝑖

2
} 

Here    

𝑦𝑖 = (𝑦1 , 𝑦2 , … , 𝑦𝑛)𝑇, 𝑣𝑛 = (𝑣1, 𝑣2, … , 𝑣𝑛)𝑇  

 

, 𝐷−1 = 𝛿 𝜎 𝑑𝑖𝑎𝑔(𝑣1, 𝑣2, … , 𝑣𝑛) , and        

𝑚𝑛 = (𝑚1, 𝑚2, … , 𝑚𝑛)𝑇

= (𝑚(𝑥1
𝑇𝛽), 𝑚(𝑥2

𝑇𝛽), … , 𝑚(𝑥𝑛
𝑇𝛽))𝑇 

As in Choi et al. (2011) and Gramacy and 

Lian (2012), 

the Gaussian method distribution is put as a 

prior distribution for the 

unknown nonparametric link function 

𝑚𝜏(. ). More specially, the prior distribution 

of  𝑚𝜏(. )    is a Gaussian process, with the 

mean zero and the square covariance 

exponential function as follows: 

𝑚𝜏(. )~𝐺𝑃(0 , 𝐸(. , . )), 𝐸(𝑥𝑖, 𝑥𝑗)

= 𝜕  𝑒𝑥𝑝(− 
(𝑥𝑖 − 𝑥𝑗)2

ѡ
)  

Where  𝜕  and  ѡ  are hyperparametes. 

Therefore, The prior distribution for 

unknown function can be shown as follows: 

 𝜋( 𝑚𝜏|𝛽𝜏 , 𝜕)

= 𝑑𝑒𝑡 [ 𝐸𝑛 ]−
1
2   𝑒𝑥𝑝{−

𝑚𝑛
𝑇 𝐸𝑛

−1𝑚𝑛

2
}   

where 𝐸𝑛 is the covariance matrix with 

dimension (𝑛 × 𝑛 ) and it can be written as 

𝐸(𝑥𝑖
𝑇𝛽, 𝑥𝑗

𝑇𝛽) = 𝜕 𝑒𝑥𝑝 {−(𝑥𝑖

− 𝑥𝑗)
𝑇

𝛽 𝛽𝑇(𝑥𝑖 − 𝑥𝑗)}, 

 We have seen that the 

variance function  𝐸(𝑥𝑖, 𝑥𝑗) =

𝜕  𝑒𝑥𝑝(− 
(𝑥𝑖

𝑇𝛽− 𝑥𝑖
𝑇𝛽)2

ѡ
), follow Gramacy and 
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Lian (2012), when the Gaussian process 

is employed as the prior for the 

nonparametric function,  
𝛽

√ѡ
  

is identifiable without the necessity for the 

constraint ‖𝛽‖ = 1. Therefore, the 

parameter   𝛽 will be instead of 
𝛽

√ѡ
  .  

𝐸(𝑥𝑖, 𝑥𝑗) = 𝜕  𝑒𝑥𝑝 {−(𝑥𝑖
𝑇𝛽 −  𝑥𝑗

𝑇𝛽)2}    

The inverse gamma distribution is 

considered as a hyper prior for 𝜕, which 

implies that 𝜕 ~𝐼𝐺 (𝑎𝛾 , 𝑏𝛾 ) where 𝑎𝛾and 

𝑏𝛾 are the hyperparameters.  

Scale mixture of uniform distribution 

(SMUD) for regression models has been 

utilize in few of occasions in literature. 

Walker et al. (1997) utilized SMU 

distribution in natural regression models in 

non-Bayesian framework. Damien and Qin 

(2000), & Walker, S. G. (1997) provided 

Gibbs sampler by utilized SMU in variance 

regression models and additionally to derive 

Gibbs sampler for autocorrelated 

heteroscedastic regression models. 

Nevertheless, its use has been specified in 

penalized regression setting. Choy et al. 

(2009) consider it in random volatility 

model by employing a two-stage scale 

mixture representation of the t-student  

distribution . It is important to note that the 

potential density function of Laplace 

distribution can be expressed in different 

forms of mixture representation. This 

representation is much importance in 

research and studies, especially using the 

pyramidal method. This representation is 

important in facilitating the estimation 

process and increasing its efficiency. Some 

examples of this representation are 

important in this research. See for instance, 

Mallick and Yi (2014)  they were developed 

the former methods by utilizing  method 

called a new Bayesian Lasso, such 

suggested procedure for  variable 

selection(VS) , estimation of linear 

regression coefficient. Husseini (2017) 

proposed the Bayesian Lasso quantile 

regression method for (VS) to allocate an 

independent scale mixture of uniform 

distributions for regression coefficients. 

Alhamzawi & Ali  (2018) offered a 

complete Bayesian method for tobit QR to 

reach the 𝐿 1  based on the representation of 

a mixture of the deviant Laplace 

distribution. A simple and effective 

Bayesian MCMC algorithm was introduced. 

The results of Mallick in his research were 

ideal and proved their competence from the 

previous Bayesian processes utilized. 

Malik's results in his research were 

exemplary and proved efficient from 

previous Bayesian processes utilized. 

Hierarchical model and MCMC sampler 

 A Laplace distribution function can  

be written as a scale mixture of uniform 
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distribution and a specific gamma 

distribution Mallick, H., Yi, N., 2014, i.e.  

𝜋(𝛽𝑗𝜏|𝜆𝑗, 𝜎) =

   ∏  
𝑝
𝑗=1 (

𝜆𝑗 

2𝜎
) 𝑒𝑥𝑝{− (

𝜆𝑗 |𝛽𝑗 𝜏|

𝜎
)} , 𝜆 > 0  (6)  

(
𝛾

2
) 𝑒𝑥𝑝{−(𝛾|𝛽𝑗 𝜏|)}

= ∫  
 

𝑠>|𝛽|

1

2𝑠
 
𝛾2

Г2
 𝑠2−1 𝑒−𝛾𝑠 𝑑𝑠                       (7) 

Based on the formulas above (6) and (7) we 

can rewrite the hierarchical representation 

model as follows: 

𝑦|𝛽, 𝜎, 𝑚𝜏 , 𝑣 ~ 𝑁(𝑚𝜏(𝑥𝑖
𝑇𝛽) +  𝛿𝑣 , 𝜃𝜎 𝑢 )  

,𝑚𝜏|𝑥𝑖, 𝛽 , 𝜕 ~ 𝐺𝑃(0 , 𝐸) 

𝛽𝜏 |𝑠  ~ ∏ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑝
𝑗=1 (−√𝑠𝑗   , √𝑠𝑗   ),    (8) 

     𝑢𝑖 ~ 𝑁( 0 , 1 )    ,     𝑣𝑖  ~ 
1

𝜎
𝑒𝑥𝑝  (−

𝑣𝑖

𝜎
)          

, 𝑠𝑗|𝛾~ ∏  
𝑝
𝑗=1 𝐺𝑎𝑚𝑚𝑎( 2, 𝛾 )   

𝛾2 ~ 𝐺𝑎𝑚𝑚𝑎 ( 𝑎𝛾 , 𝑏𝛾  ),

𝜎 ~ 𝐼𝑛𝑣 . 𝐺𝑎𝑚𝑚𝑎 ( 𝑎𝜎 , 𝑏𝜎 ),

𝜕~ 𝐼𝑛𝑣 . 𝐺𝑎𝑚𝑚𝑎 ( 𝑎𝜕  , 𝑏𝜕  )  

For all parameters the posterior can be given 

as: 

𝑝(𝑚𝑛 , 𝛽, 𝑣, 𝑠, 𝛾, 𝜕, 𝜎 𝑦⁄ ) 

𝛼 { (det [𝐷−1])−
1

2 𝑒𝑥𝑝 {−
(𝑦−𝑚𝑛−𝛿𝑣𝑖)𝑇𝐷−1(𝑦−𝑚𝑛−𝛿𝑣𝑖

2
}  ×

det [ 𝐸𝑛 ]−
1

2   exp {−
𝑚𝑛

𝑇 𝐸𝑛
−1𝑚𝑛

2
} × 

∏
1

2𝑠
   

𝛾2

Г2
 𝑠2−1 𝑒−𝛾𝑠𝑝

𝑗=1 × ∏  𝑛
𝑖=1

1

𝜎

𝑒𝑥𝑝 (−
𝑣𝑖

𝜎
) × ∏  

𝑝
𝑗=1    

𝑏𝑎

Г𝑎
 𝑠𝑎−1 𝑒−𝑏𝑠    ×

    ∏  
𝑝
𝑗=1 (𝛾𝑗)𝑎𝛾−1  𝑒𝑥𝑝 (−𝑏𝛾𝛾𝑗)   ×

 (𝜕)−𝑎𝜕−1 𝑒𝑥𝑝 (−
𝑏𝜕

𝜕
 ) × (𝜎)−𝑎𝜎−1

𝑒𝑥𝑝 (−
𝑏𝜎

𝜎
)            (9) 

Where 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑  are hyperparameters, 

here   𝑦𝑖 = (𝑦1 , 𝑦2 , … , 𝑦𝑛)𝑇      𝑣𝑛 =

(𝑣1, 𝑣2, … , 𝑣𝑛)𝑇,  𝐷−1 =

𝛿 𝜎 𝑑𝑖𝑎𝑔(𝑣1, 𝑣2, … , 𝑣𝑛), and 𝑚𝑛 =

(𝑚1, 𝑚2, … , 𝑚𝑛)𝑇 =

 (𝑚(𝑥1
𝑇 𝛽), 𝑚(𝑥2

𝑇𝛽), … , 𝑚(𝑥𝑛
𝑇𝛽))𝑇, E is the 

covariance matrix with dimension (𝑛 × 𝑛 ) 

and elements 𝐸(. , . ) given in Equation 

𝐸(𝑥1
𝑇𝛽, 𝑥1

𝑇𝛽) = 𝜕 𝑒𝑥𝑝 𝑒𝑥𝑝 {−(𝑥𝑖 −

𝑥𝑗)
𝑇

𝛽 𝛽𝑇(𝑥𝑖 − 𝑥𝑗)} . For the parameters and 

potential variables, the conditional posterior 

distributions will simply be derived via a 

Gibbs sampler algorithm for the Bayesian 

single index quantile regression. In the 

simulation study the kernel matrix  𝐸 is 

almost be singular, in order that  𝑚𝜏 is 

integrated to  avert the singularity problem 

and therefore the inverse is calculated for  

(𝐸 + 𝐷 ) the matrix  (Hu et al. (2013) and 

Zhao and Lian (2015)).The conditional 

posterior densities of all the parameters and 

variables, excepting for 𝛽 and 𝜕 , are 
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common distributions. The conditional 

distributions utilized in the sampling are 

given below.  𝑚𝜏 is marginalized when look 

considering the posterior conditional 

distribution of  𝛽 and  𝜕. For the 𝜏 𝑡ℎ 

quantile  an easy and efficient Gibbs 

sampler can be shown,  works as follows: 

Sampling 𝛽 

           1 −    𝜋(𝛽|𝑚𝑛 , 𝑣𝑖, 𝛾, 𝜎, 𝑠, 𝜕, 𝑦) ∝

 𝜋(𝑦|𝑣𝑛 , 𝜎, 𝑚𝑛) × 𝜋(𝑚𝑛|𝛽, 𝜕 ) × 𝜋(𝛽|𝑠)   

Full conditional posterior distributions 

∝ 𝑒𝑥𝑝 {−
(𝑦−𝛿𝑣𝑖)𝑇(𝐷+𝐸𝑛)−1(𝑦−𝛿𝑣𝑖)

2
} ×

(𝑑𝑒𝑡 [𝐸𝑛 + 𝐷])−
1

2  × ∏  
𝑝
𝑗=1

1

2𝑠
   

Updating 𝛽 The full conditional distribution 

of 𝛽𝑗 is truncated normal With mean 𝛽𝑗̅  and 

variance  𝑆𝛽
2    where 

𝛽̅𝑗 = 𝑆𝛽
2 ∑

𝜎

2𝜃𝑣𝑖
(𝑦𝑖 − 𝑚𝜏(𝑥𝑖

𝑇𝛽𝜏) − 𝛿𝑣𝑖)

𝑛

𝑖=1

 

𝐼 {|𝛽𝑗| < −√𝑠}, 𝑎𝑛𝑑 𝑆𝛽
2 = (∑

𝜎

2𝜃𝑣𝑖

𝑛

𝑖=1

)

−1

 

Sampling  𝑚𝑛 

2 −  𝜋(𝑚𝑛|𝛽, 𝑣𝑖, 𝜎, 𝑠, 𝛾, 𝜕, 𝑦)𝛼 

 𝜋(𝑦 𝑣𝑖, 𝑚𝑛 , 𝜎, 𝛽) ×⁄  𝜋(𝑚𝑛|𝛽, 𝜕) 

Full conditional posterior distributions 

𝜋(𝑚𝑛|𝛽, 𝑣𝑖 , 𝜎, 𝜕, 𝑦)  ∼  𝑁(𝜇𝑛 , ∑𝑛)  

 

Sampling 𝜎 

3 − 𝜋(𝜎|𝛽, 𝑚𝑛, 𝑣𝑖 , 𝛾, 𝜕, 𝑦)𝛼  

𝜋(𝑦 𝑣𝑖 , 𝑚𝑛, 𝜎) × 𝜋(𝑣𝑖 𝜎⁄⁄ ) × 𝜋(𝜎) 

Full conditional posterior distributions 

𝛼𝜎  =  
−3𝑛  

2
− 𝑎𝜎   

𝜗𝜎 = {∑  𝑛
𝑖=1

(𝑦−𝑚𝑛−𝛿𝑣𝑖)𝑇(𝑦−𝑚𝑛−𝛿𝑣𝑖)

2𝜃𝑣𝑖
+ 𝑣𝑖 + 𝑏𝜎} 

 𝜋(𝜎|𝑚𝑛 , 𝛽𝑛 , 𝑣𝑖 , 𝛾, 𝑦)  ∼  𝐼𝐺(𝛼𝜎 , 𝜗𝜎 ),  

Sampling 𝛾 

4 − 𝜋(𝛾|𝜎, 𝑠, 𝑚𝑛 , 𝑣𝑖 , 𝜕, 𝑦)𝛼  

𝜋(𝛽 𝑠) × 𝜋(𝛾)⁄  

Full conditional posterior distributions 

𝜋(𝛾|𝑠, 𝛽)  ∼  𝐼𝐺(  𝑎𝛾  + 2 𝑝, 𝑏𝛾 + ∑  

𝑝

𝑗=1

𝑠𝑗  ) 

Sampling 𝑠   

5 − 𝜋(𝑠|𝑚𝜏 , 𝑣𝑖 , 𝛾, 𝜎, 𝛽, 𝜕, 𝑦)𝛼 𝜋(𝛽 𝑠) × 𝜋(𝑠)⁄  

Full conditional posterior distributions 

 

𝜋(𝑠|𝑚𝜏 , 𝛾, 𝛽, 𝑦)~𝐺𝑎𝑚𝑚𝑎( 𝑝 − 𝑝𝑎 , 

  ∑  
𝑝
𝑗=1

(𝛾 + 𝑏)  )  

Sampling 𝜕 

6 − 𝜋(𝜕 |𝛽, 𝑣𝑛 , 𝜎, 𝑦)𝛼 𝜋(𝑦|𝑣𝑛 , 𝜎, 𝑚𝑛)

× 𝜋(𝑚𝑛|𝛽, 𝜕) × 𝜋(𝜕 ) 

∝ {(det[𝐷−1])−
1

2 exp {−
(𝑦−𝑚𝑛−𝛿𝑣𝑖)𝑇𝐷−1(𝑦−𝑚𝑛−𝛿𝑣𝑖)

2
}  
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× det [ 𝐸𝑛 ]−
1

2   𝑒𝑥𝑝 {−
𝑚𝑛

𝑇 𝐸𝑛
−1𝑚𝑛

2
} ×

(𝜕)−𝑎𝜕−1 exp(−
𝑏𝜕

𝜕
)  

Full conditional posterior distributions 

We use the Metropolis algorithm for 

sampling 𝜕 . 

Sampling  𝑣𝑖  

The full conditional distribution for  𝑣𝑖  is a 

generalized inverse Gaussian distribution 

(GIG),     

                 7 − 𝜋(𝑣𝑖  |𝜎, 𝛽, 𝑚𝑛 , 𝛾, 𝜕, 𝑦)𝛼 

 𝜋(𝑦|𝜎, 𝑚𝑛 , 𝑣𝑖 ) × 𝜋(𝑣𝑖) 

Full conditional posterior distributions 

𝜋(𝑣𝑖 |𝜎, 𝛽, 𝑚𝑛 , 𝛾, 𝜕, 𝑦) =

𝜋(𝑣𝑖 |𝜎, 𝑚𝑛 , 𝑦)~𝐺𝐼𝐺 (
1

2
 , √

(𝑦−𝑚𝑛)2

𝜃𝜎
 , √

𝛿2

𝜃𝜎
+

√
2

𝜎
 )  

where the likelihood density function of  

𝐺𝐼𝐺(𝜌, 𝑤, 𝑧) is 

𝑓 (𝜌, 𝑤, 𝑧) =

 
(

𝑧

𝑤)𝑝

2𝐾𝜌(𝑤𝑧)
𝑥𝑝−1 𝑒𝑥𝑝 {−

1

2
(𝑤2 𝑥−1 + 𝑧2𝑥}  

𝑥 > 0, −∞ < 𝜌 < ∞ , 𝑤 ≥  0 , 𝑧 ≥  0, 

and 𝐾𝜌 is the changed Bessel function of the 

third kind (Barndorff-Nielsen and Shephard 

2001). 

3.   Simulation 

The simulation study considered in this 

section   to evaluate our suggested method 

Bayesian   single index quantile regression 

with a uniform scale mixture (BUSIQR) and 

compared it’s with other existing methods  

Bayesian quantile regression (BQR) and 

Bayesian single index quantile regression 

(BSIQR) and Bayesian lasso quantile 

regression (BLQR) . Here,   simulation 

example is considered in this study. This 

example was  utilized by Wu et al. (2010) 

and have been very popular often it 

employed  by most researchers whose study 

single index model conditional to quantile 

regression [See, (Hu et al. (2013), Alkenani 

and Yu (2013) , Lv et al. (2014), Zhao and 

Lian (2015), Kuruwita (2015) and 

Alshaybawee et al. (2016))], but with some 

differences. Methods performance is 

evaluated based on the median mean 

absolute deviations referred to as (MMAD), 

bias and standard deviation. These 

measurements are calculated based on 100 

replications. We have run the proposed 

Bayesian algorithm for 10000 iteration and 

the first 2000 iterations was burn in. 

Computations were done based on R 

package. 

Simulation Example  

In this example we have considered three 

samples with different size 50, 100 and 200 

these samples are generated based on the 

following model: 

http://qu.edu.iq/journalsc/index.php/JOPS
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𝑦 = 𝑚(𝑥𝑖
𝑇𝛽) +  √(𝑠𝑖𝑛   (𝑥𝑖

𝑇  𝛽) + 1) 𝜖     , 

where    𝑚(ℎ) = 10 𝑠𝑖𝑛 (0.75 ℎ), 

where 𝑥𝑖  , 𝑖 =  1, . . . , 6 are i.i.d normal 

distribution  with 𝑁~[0, (0,25)2], 𝛽 =

(𝛽
1

, … , 𝛽
6
)

𝑇
=

1

√2
 (0,1,0,0,1,0)𝑇, and the error 

term (ϵ) is standard normal distribution (SND), 

the models were supply with three various 

quantiles, T = {  0.25, 0.50, 0.75 }. 

 
Figure (1) shows the trace plots for the estimated 

parameters at quantile 0.25 for simulation 

Example with 100 sample size. 

 

We have display the trace plots in Figures 

(1) and (2), to check the rapprochement of 

the parameter estimates for the chain of the 

parameters β at two quantiles (0.25, 0.75). 

Based on the trace plots, we have seen clear 

that the chains of our suggested algorithm 

given a good performance. 

 
Figure (2) shows the trace plots for the estimated 

parameters at quantile 0.75 for simulation 

Example with 100 sample size. 

 

The standard deviation parameter estimates of 

this simulation example for the samples 50,100 

and 200 and based on 100 replications are 

summarized in Figures 1, 2 and 3 of the 

parameter estimates of each quantile.  

 

 

 

 

Figure (3) Shows the SD of the estimated 

parameters for the quantiles (0.25, 0.50, 0.75) in 

100 replications when the sample size is 50.   

From Figure (3), We can view that the proposed 

parameter estimates the BUSIQR method better 

than other methods, whereas this method have 

the smallest SD compare to the others. The 

small values of SD mean that the parameter 
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estimates are homogeneous. On the contrary, the 

BQR and BLQR methods are got the largest 

values of SD. Also we can see that the BSIQR 

method are got SD smaller than the BLQR and 

BQR  method.  

 

 

 

Figure (4) Shows the SD of the estimated 

parameters for the quantiles (0.25, 0.50, 0.75) in 

100 replications when the sample size is 100.   

 

 

 

Figure (5) Shows the SD of the estimated 

parameters for the quantiles (0.25, 0.50, 0.75) in 

100 replications when the sample size is 200.   

As same as Figure (3), Figures (4) and (5), 

shows that the proposed method   BUSIQR 

get the smallest SD for most parameter 

estimates at the different quantiles. In 

addition, the BQR method get the largest SD 

for all parameter estimates at all quantiles  

and in the different sample size 50,100 and 

200. Also we can see that when the sample 

size are increase the SD for the BLQR and 

BSIQR are converge.  

Table (1) shows the bias for the different 

quantiles when the sample size is 50 

τ Methods 𝛽̂1 𝛽̂2 𝛽̂3 𝛽̂4 𝛽̂5 𝛽̂6 

0.25 BQR 0.898 0.939 0.73 0.557 0.923 0.97 

BSIQR 0.096 0.033 0.255 0.184 0.377 0.213 

BLQR 0.161 0.877 0.623 0.459 0.888 0.743 

BUSIQR 0.021 0.01 0.054 0.072 0.105 0.09 

0.50 BQR 1.018 1.875 0.687 0.821 2.829 0.725 

BSIQR 0.829 1.047 0.277 0.552 0.097 0.261 
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BLQR 0.934 1.306 0.277 0.737 2.793 0.611 

BUSIQR 0.217 0.228 0.069 0.112 0.086 0.094 

0.75 BQR 0.145 1.815 0.428 0.571 1.901 0.866 

BSIQR 0.256 0.986 0.206 0.216 1.062 0.271 

BLQR 0.144 1.763 0.327 0.369 1.867 0.651 

BUSIQR 0.126 0.386 0.019 0.087 0.414 0.173 

Table (2) shows the bias for the different 

quantiles when the sample size is 100 
τ Methods 𝛽̂1 𝛽̂2 𝛽̂3 𝛽̂4 𝛽̂5 𝛽̂6 

0.25 BQR 0.252 1.081 0.727 1.327 0.881 1.065 

BSIQR 0.118 0.849 0.533 0.720 0.702 0.926 

BLQR 0.149 0.949 0.726 1.031 0.854 1.058 

BUSIQR 0.023 0.338 0.279 0.368 0.200 0.412 

0.50 BQR 0.350 0.914 1.044 1.077 0.890 1.136 

BSIQR 0.178 0.690 0.898 0.461 0.463 0.801 

BLQR 0.211 0.885 1.045 0.994 0.871 0.931 

BUSIQR 0.109 0.170 0.125 0.244 0.132 0.319 

0.75 BQR 0.523 1.334 0.954 1.329 0.855 1.006 

BSIQR 0.187 0.881 0.221 0.954 0.421 0.874 

BLQR 0.433 0.903 0.851 1.029 0.838 0.962 

BUSIQR 0.132 0.278 0.141 0.312 0.103 0.262 

Table (3) shows the bias for the different 

quantiles when the sample size is 200 
τ Methods 𝛽̂1 𝛽̂2 𝛽̂3 𝛽̂4 𝛽̂5 𝛽̂6 

0.25 BQR 1.404 0.827 1.033 0.915 0.865 1.026 

BSIQR 0.904 0.625 0.546 0.781 0.521 0.918 

BLQR 1.128 0.814 0.828 0.813 0.752 1.004 

BUSIQR 0.302 0.272 0.245 0.202 0.188 0.226 

0.50 BQR 1.255 0.856 1.214 1.037 0.886 1.019 

BSIQR 0.943 0.717 0.837 0.901 0.624 0.767 

BLQR 1.104 0.841 0.911 0.935 0.875 1.018 

BUSIQR 0.283 0.367 0.321 0.319 0.214 0.315 

0.75 BQR 1.012 0.917 1.014 0.855 0.967 0.927 

BSIQR 0.873 0.409 0.826 0.605 0.732 0.791 

BLQR 0.910 0.899 1.013 0.655 0.854 0.726 

BUSIQR 0.240 0.272 0.104 0.129 0.314 0.237 

 

Table (1), (2) and (3) shows the bias for the 

proposed BUSIQR method and the existing 

BQR, BLQR and BSIQR methods in the 

different quantiles and different samples of 

size. We can see clear that the performance 

of the proposed method was better than the 

other existing methods. Whereas the bias for 

the BUSIQR method were less than those 

for the others in all the different quantiles 

and the different samples of size. In 

addition, we can see that the bias for the 

BSIQR method is smaller than BQR and 

BLQR methods. So that, we can say that the 

performance of the BSIQR method is better 

than the BQR and BLQR.   

Table(4)  Comparison of MMAD for SQR,  

BSIQR,  BLQR and BUSIQR  methods based on 

100 replications    

n τ BQR BSIQR BLQR BUSIQR 

50 0.25 0.2262 0.0298 0.2233 0.0137 

 0.50 0.2243 0.0285 0.2192 0.0129 

 0.75 0.2273 0.0308 0.2218 0.0135 

100 0.25 0.2072 0.0299 0.2058 0.0095 

 0.50 0.2080 0.0270 0.2063 0.0132 

 0.75 0.2116 0.0278 0.2100 0.0128 

200 0.25 0.2086 0.0267 0.2080 0.0127 

 0.50 0.2110 0.0272 0.2101 0.0091 

 0.75 0.1851 0.0254 0.1839 0.0134 
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Figure(6)  shows the MMAD for  SQR,   BSIQR, 

BLQR and BNSIQR methods based on 100 

replications   

  Table (4) and Figure (6) show that the median 

of mean absolute deviations (MMAD) of the 

new proposed method BUSIQR method is got 

the smallest values of MMAD compare to the 

other three existing methods at all the quantiles 

and the different sample size. BQR method is 

got the largest MMAD values, which indicate 

not good performance. In addition, the MMAD 

of the BSIQR method is smaller than BLQR and 

its better. 

5. Conclusion 

In this paper, the Bayesian 

estimation and variable selection for single 

index conditional quantile regression model 

based on scale mixture uniform  is proposed. 

We have construct a Bayesian hierarchical 

model of the Lasso method and the MCMC 

algorithm is considered for posterior  

inference. 

 Simulation example was considered to 

compare our proposed method, BUSIQR, 

with three other existing methods, BQR, 

BSIQR and BLQR. Based on the results in 

the tables and figures of the simulation 

study, we have seen that the BUSIQR 

provides substantial improvement compare 

to the other methods. Therefore, we 

concluded that the perform of our proposed 

method is better than the onther existing 

methods. 
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