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ABSTRACT. In this paper, using the direct and fixed point methods, we have established the generalized Hyers-

Ulam stability of the following additive-quadratic
functional equation

fQx+y)+fQx—y)=2[f(x +y) + f(x =]+ 2[f(0) + f(=2)]
-+ =0k

in non-Archimedean and intuitionistic random normed spaces.
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1. INTRODUCTION

In classical analysis, norm of a vector is determined
by a non-negative real number.

However in reality, associating an exact value to the
norm is not possible. In such

cases, random norms are useful substitutes. The
concept of random normed space

extended by Alsina, Schweizer and Sklar in [1].
Ulam [23] in 1940 proposed a stability problem
between a group and a metric

group. In fact Ulam’s stability problem, in the
theory of functional equation, states

that: if a mapf: G; - G, where G, is a group and G,
is a metric group, satisfies

a functional equation approximately, when is it
close to an exact solution of that

functional equation?

A partial answer to this question was given by
Hyers [10] for Banach spaces.

Since then, many mathematicions generalized
Hyers’s theorem for different kinds

of functional equations in several spaces and also by
using fixed point method (see,

e.g., [2-4, 24)).

The generalized Hyers-Ulam stability of different
mixed type functional equations

in random normed spaces, intuitionistic random
normed spaces and non-Archimedean
random normed spaces has been studied by many
authors. (see, e.g., [3,11,13-15,17,
22]). In this paper we present the generalized Hyers-
Ulam stability of the following
mixed type additive and quadratic functional
equation
fQx+y)+f(2x—y)
=2[f(x+y) +flx—y)]
+2[f() + (=] =

[fFO) + f(=p)] (11)
under arbitrary t-norms by direct method in non-
Archimedean random normed spaces
and intuitionistic random normed spaces and under
min t-norm by fixed point method
in intuitionistic random normed spaces and provide
an examples. Our research is a
generalized of the Ravi and Suresh work [17] to
various spaces

2. Preliminaries
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In this section we recall some definitions and results
which will be used later inthe paper.
Definition 2.1. [5, 21]Acontinuous triangular norm
(briefly a t-norm)is amapping T:[0,1] x [0,1] —
[0,1],such that, T satisfies the following
conditions:
(1) T is commutative and associative;
(2)T is continuous;

(3)T(a,1)=a Va€e[0,1];
(4)T(a,b) < T(c,d) whenewera < candb < d.
Examplel ( [5, 7]). The following are the four basic
t-norms:
(1) Minimumt-norm Ty, given by Ty, (a, b) =
min(a, b);
(2) product t-normT,given byT,(a, b) = ab;
(3) Lukasiewicz t-normT,given byT, (a, b) =
max(a+ b —1,0);
(4) Weakest t-norm (drastic product) Tpgiven by

_ mm(x y) ifmax(x,y) = 1

Tp(x,y) := { o.w
If T isat-norm, then x(”)ls defined for every x €
[0,1]andn € N U {O}byl ifn=0and T(x}1,x)
ifn > 1. At-normT is said to be of Had zi c-type
(denoted by
T € H)if the famlly{x(")}ne,\,is equicontinuous
atx = 1thatis, for anye € (0,1), there exists § €
(0,1)such that

x>1-6=xf>1—-¢ Vn=1

Thet-norm T, is a trivial example ofHad zi "c-type
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(x1,%2, .-, X5,) € [0,1]™ the value
T(xq,%3, ..., x,,) defined by
TL,x =1, Ttix = T( =1 xuxn)
= T(xl,xz, ey Xp)

T can also be extended to a countable
operation taking for any sequence
{%}nen in [0,1]. Moreover

TZ % = llm TR x;
The limit on the right-hand side of (2.1) exists
since the sequence { T/X; X;}nen
is nonincreasing and bounded from below.

PRPOPSITION 1([7,8]).
"(L)for T = T, the following implication hold:

lim T;2, xp4; = I@Z(I—xn)< o

n—oo
(2) if T is of Had"zi c-type, then hm o Xt =

1for every sequence {x;, }nen |n[0 1] such that
lim x,, = 1.

n-oo

(3) ifT € {T{"}1e(0,00) Y {Téf }1e(0,00) then
lim T2, %y =1 Z(l —x)* < o0
n-oo

@) IFT € (TS }reo1.00, then_

n—-oo

lim T2, x4 =1 @Z(l Xp) < 00,

but T, is not ofHad™zi "c-typey §se€t5dEhote the spaces of aII d|str|but|on

Other important triangular norms are (see[8]):
(1) The Sugeno-Weber family
{T5" }rej-1,000, defined by TS} =
Ty, TSW =T,
and T5W (x,y) = max(0,2221222) 7 ¢ (—1,00).
(2) The Domby family {T} (o o), defined
by Tp,if A=0, Ty,if A =0 and

and TAD (x,y) =
711 ’ A€ (0,0).
1+[(5H fazy SO

(3) The Aczel-Alsina family
{T1**}1¢10,001,defined by TD, if 1=

A = oo andT{4

It is obwouyfh’gt AT Pais
e—(llogx| +I100gy A de (0 00).

At-norm T can be extended (by

associativity) in a unique way to an n-

array operation taking for

functions, that is, the spaces of all mappings

fiR U {—00,+00} - [0,1]such that f

monotone, nondecreasing, left continuous,

f(x) =0 and f(+o) = 1.D* is asubset of

A™ consisting of all functions f € A* for

which L™ f(4+o) = 1, where L~ f(x) denotes

the left limitof the function f at the

point x, thatis, L™ f(x) = tlll;l_f(t).

The space A* is partially ordered by the usual point
wise ordering of functions ,i,e., F < G ifand only if
F(t) < G(t) for all t € R. The maximal element for
A* inthis order is the distribution function H, given
by

_(0ift<0
Ho(t) '_{1 ift>0"

3. non-Archimedean random normed spaces
"By a non-Archimedean field we mean a field
K equipped with a function

(valuation)|. |fromK in to [0, o0) such that
1ir| =0 ifandonlyifr = 0;
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2. |rs|=|rlls|;

ly|1]= |-1]=1and [n] <1V n =1

By the trivial valuation, we mean the
mapping|. | Taking everything but O into 1
and|0| = 0.
The most important examples of non-
Archimedean spaces are P-adic numbers. In
1897, Hensel [9] discovered the P-adic numbers as a
number theoretical analogue ofpower series in
complex analysis. Fix a prime number p. For any
nonzero rational number X, there exists a unique
integern, € Zsuch that x = 2p~"~where a and b are
integers not divisible by P. Then |x|,:=
p~™* defines anon-Archimedean norm on . The
completion of QQ with respect to the metric
d(x,y) = |x—yl, is denoted by @, , which is
called the p-adic number field. Let X be a vector
spaces over a field K with a non-Archimedean
nontrivial valuation |.|, that is, there exists a, €
Ksuch that |a,| is not in {0,1}.
A function ||. [|: X = [0, o)is called non-
Archimedean if it satisfies the following
conditions:

1. x|l = 0 ifandonlyif x = 0;
2. Foranyr € K x €X,|lrx|l = |rllIxl;

3. Thestrong triangle
inequality(ultrametric) namely; [[x +
vl < max{|lx|l, Iy} v x,y € X.
Then (X, ||.]1) Is called anon-
Archimedean normed space. Due to the
fact that
[, — xmll < max{”ijr1 — xj”:m <j
<n-1}
for all n,m =1 with n>m, a sequence {x,}
is a cauchy sequence in X if and only if
{Xp+1 — x5} CcONverges to zero in a non-
Archimedean normed space. By a complete
non-Archimedean normed space, we mean one
in  which every Cauchy sequence
isconvergent."”
Definition 2( [5, 22]). "A non-Archimedean random
normed space (briefly, non-
Archimedean RN-space) is a triple (X, u, T), where
X'is a Linear space over a non-
Archimedean field K, T is a continuous t-norm, and
uis a mapping from Xinto D*
such that the following conditions hold:
(D, ) =Hy(O)VE >0 iff x =0;

t
e () = 1y (m)\?’x eEX,t>0anda # 0;
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(3)try (Max{t, s1) = T (e (0,1 (5)) ¥ 2,9,z
€EXandt,s = 0.
It is easy to see that, if (3) holds, then so is
"Dty (+9) 2 T (1 (0,11, (5)):
Example2.
The triple (X, u, Ty), where(X, ||.]|) is a non-
Archimedean normed linear and
_(0if t < ||x]l;
m@={15 S
is a non-Archimedean RN-space.
Example 3.Let. Define
(X,u,Ty) is a non-Archimedean RN-space
where(X, . |])is a non-Archimedean normed linear
space and p,(t) = m Vx € X, t>0.
Definition 3( [5, 22]). "Let(X,u,Ty)be a non-
Archimedean RN-space. Let {x,, }be
a sequence in X.

(1) The sequence {x,}is said to be convergent if
there exists x € Xsuch that
lim e, (6) =1,
n—oo
for t > 0. In this case, the point xis called the
limit of the sequence {x,,}.

(2) The sequence {x,,}in X is called a Cauchy
sequence if, for any ¢ > 0 and

t > 0, there exists ny = 1 such that, for all n > n,
andp >0
lenﬂ,—xn(t) >1—c

(3) If each Cauchy sequence in X is convergent,
then the random space is said to

be complete and the non-Archimedean RN-space
(X,u,Ty) is called a non-

Archimedean random Banach space."

Remark 1( [5]). Let (X, u,Ty) be a non-
Archimedean RN-space. Then we have
Mxn+p—xn(t) 2 min{ﬂxn+j+1—xn+j ®©):j
=012,..,p—1}.
Thus, the sequence {x,,}is a Cauchy sequence in Xif,
for any e > Oand t > 0, there

exists ny = 1 such that, for all n > n,
K1 —xp ®O>1-e

4. HYERS-ULAM STABILITY OF THE
MIXED TYPE FUNCTIONAL
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EQUATION (1.1) IN NON-ARCHIMEDEAN
RANDOM NORMED
SPACES.

The functional equation (1.1) is called the additive-
quadratic functional equation
since the function f(x) = ax? + bxis a solution for
this equation where a and b are
constants. One can easily show that an even
mapping f: X — Y satisfies equation
(1.1) ifand only if the even mapping f: X —
Y is a quadratic mapping, that is,
fQx+y)+f(2x—y)
=2[f(x+y)+ flx =]
+4f(x) =2f ().
Also, one can easily show that an odd mapping
f:X - Y satisfies equation (1.1) if
and only if the odd mapping f: X — Y is an additive
mapping, that is,
f@x+y)+f@2x—y)
=2[f(x+y) +f(x -yl

In this section we investigate the stability of the
additive-quadratic functional equation (1.1), where
f:X =Y ,f(0) = 0. since f isasum of an

even function and an odd function, therefore f
satisfies the above functional equation

& it is additive-quadratic. Next we define a random
approximately

additive-quadratic mapping. Let vy be a distribution
function on X X X x [0, o)such

that ¥ (x, y,.) is nondecreasing and

Ylex, ey, t) =Y (xyl—zl) Vx€X,c#0
Definition 4. A mapping f: X - Y is said to be ¢ -
approximately additive-quadratic if

B feay @) =W (x,y,t), Vx,y€X,t>0
(4.1)

Where Dsf(x,y) = fQx+y)+ f2x —y) —
2[f(x+y)+ flx—y)]— 2[f() +
1+ Q) + F(=2)],

Vx,y € X,t > 0.

THEOREM 1. Let f: X — Ybe an even andy-
approximately additive-quadratic
function. If, for some a € R,a > 0 and for some
positiveintegerkwith
|2¥| < a
P(27% 275y, 6) 2 Y(x y, at),
(4.2)

And 7{1_{1;10 T2, M(x, %{‘}.):1,
(4.3)
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for all x € X and t > 0, then there exists a unique
quadratic mapping®: X — Ysuch

that:
oo i+1
HrGo-oeo (8) = T2 M(x, %) VX €X,t>0
(4.4)
Where
M(x,t)

= T[P(x,0,t),(2x,0,¢),..., (25 1x,0,t)]Vx
eEX, t>0.

Proof. First we show, by induction on j, that, for all
xeXt>0andj>1

M (2ix)- aipo(t) 2
M; (x, ©)=T[$(x,0,),$2x,0,t),..p (N x,0,t)] (4.5)
Putting y = 0 in (4.1) we have
P2fax)-sr () = ¥(x,0,1)
then
Ura)-4rc0 () = ¥(x,0,2t) = P(x,0,t)Vx € X, t
> 0.
This prove (4.5) for j=1. Assume that (4.5) hold for
some j >1. Replacing y by 0 and x by 2/x in (4.1)
we get
e (2itin)-apin(®) 2 P(27%,0,t)Vx € X,t > 0.
(4.6)
Since |4| < 1, it follows that
Hp(2i+1x)-a*1f(x) ®)
2 T(Us(i1x)-ar(2ix) (O Hag(2ix)-ait1 70 ()

=T (Up(aivix)-ar(2ix) (O Py (2ix)-aif ) (ﬁ))
> T(Hf(2j+1x)_4f(2fx) (t)rﬂf(zfx)—4ff(x)(t))
> T(P(27x,0,t), M;(x,t))

=Mj,1(x, ), Vx e X,t >0.

So
Hy(2ix)-4Jf(x) ) = M(x,t)

Holds for all j = 1, in particular, we have

Mf(zkx)_4kf(x)(t) >M(x,t) VxeX, t>0.
(47)
Replacing x by 2~-¢"+x in (4.7) and using the

inequality (4.2), we have

X
Mf(zkin)—‘t"f(zkfkn)(t) =M (2k+k_n' t)
> M(x, a™1t),

Vx € X,t > 0and m = 0. Then we have
a1t
x > -
M(25k)"f(2kin)—4k(4k)"f(m) =M (x' |4k|”)

a1t
> ()
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vx €X,t>0and m=0. So
1
> et
#(4k)nf(z ) 4k(n+1)f( n+1))( ) =M (X, |2k|" )'
Vx € X t>0.
#(4_k)nf( ) 4k(n+1)f(zk(n+1))()
)(t))

> Tn+(p 1)( #(4k)1f( ) 4k(1+1)f(

k(j+1)
n+(p-1) altie
> 150G

Vx € X, t > 0. Since lim T2, M(x, ﬂ?) =1,VxE€
nooo J=N ]

X, t > 0, it follows that {(4*)"f ((zk)n)}ls a cauchy

sequence in the non-Archimedean random
Banach space (Y, 1, T). Hence, we can define a
mapplng @: X - Y such that

m 1,vxe X, t>0.
g 4k)nf((z )") () =

Smcef:X — Yis even, ®is an even mapping. It
follows that for all x € Xand t > 0.

Mf(X) (4")"/‘( >(t)
)"

=u ®
TR f( )(4")‘*%( m)
@' @)

2ot (Mgt ()0 2O

I.+1t
> Tii?)l M(X,W> ,

and so
By -o(x) ()
=T o) O et o™
eR" E0"
- ai+1t
= T(TZ, (M <xw>> #(4k)nf(( - > @(x)(t))

taking n — oo we have

al+1t
Hio-ow (O 2 TiZ M (x W)

Which prove (4.4). Since T is continuous, from a
well-known result in probabilistic

metric space (see e.g., [21, Chapter 12]) it follows
that

lim pp
n-—-oo

—0

= #Dd)(2x+y)+d)(2x—y)—2[CD(x+y)+<D(x—y)]—2[<D(x)+¢-(—x)]+[¢'(y)+¢'(—y)](t)'

Vx,y € X,t > 0, where

Doy = 4"f (552) + 475 (52)
- zfams (5) + 47 ()
- 2[as (55) + 477 (55|

w4 (1 (G)+ 7 G2}
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On the other hand, replacing x, y by 27¥x2~*"yin
(4.1) and using (4.2) we get

Mg (8 Z (270,270 )
> w(z-k”x,z-kny,|2£|n)
= (Y.
Vx,y € X, t > O.Sincerlli_{rgo tp(x,y,%) =1, we

show that @ is quadratic mapping. Finally if

&: X - Y is another quadratic mapping such that
Bo—fp () = M(x,y)Vx,y €X,t > 0,

then, forallm € N, x € X,t > 0,

Hox)-d(x) ®=
T(u 2 RO
Fotw-wrs(iza) Frr( ) o

Therefore, we conclude that & = & this completes
the proof.

I2k "

In theorem (1) if f is an odd mapping, then the
following theorem can be proved

similarly.

THEOREM 2. Let f: X = Y be an odd and ¢ -
approximately additive-quadratic

function. If, for somea € R,a > 0 and for some
positive integer k with

|2¥| < a
YR %27y, ) 2 P(xy, at),
and llm T2, M(x, |‘21|]l:]

vx € X and t > 0, then there exists a unique
additive mapping®: X — Ysuch
that:

i+1t
HrGo-o (8) = T2 M(x, TzT) Vx€EX,t>0

Where

M(x,t) ==
T[p(x,0,t),¥(2x,0,t),..., (2% 1x,0,t)]Vx €
X, t>0.

COROLLARY 1."Let K be a non-Archimedean
field, X be a vector space over K
and (X, u, T)be non-Archimedean random Banach
space over K under the t-norm
TEH. Letf:X > Y beanevenandy -
approximately additive-quadratic mapping.
If, for somea € R,a >0 and for some positive
integer k with

|2¥| < @
Y27 Fx,27%y,t) = Y(x,y, at), for allx € X and
t > 0.Then there exists a uniquequadratic
mapping Q: X — Y such that

Hr0-qeo (B) = T2 M(x, %) VX € X,t >0,
2
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whereM(x, t) =
T[(x,0,t),(2x,0,t),...,p(25¥1x,0,t)|Vx €
X, t>0."

Proof.Since
lim M(x, —l) 1,

jooo

vx € Xandt > 0 and Tis of Hadzi’c type, it
follows that

lim 7,2 M(x

n—-oo |
vx € Xandt > 0. Now, if we can apply theorem 1,
then we can get the conclusion.
|
Example 4. Let (X, u, Tjy) be a non-Archimedean
random normed space in Which
Hy (8) = H"x"

vx € Xandt > 0 and (X, i, Ty,) be a complete non-
Archimedean random normed space. Define

Yy, t) =—
It is easy to see that (4.2) holds for « = 1. Also,
since M(x,t) = .

1+t
We have
11m T]M o M(x, B I’”) Jim (lim 73 M),
= lim lim
n—-oo L—>oo(t +]2 Ik") !

for all x € Xandt > 0.

Let f: X — Ybe an even and i -approximately
additive-quadratic mapping. Thus

all the conditions of theorem (1) hold and so there
exists a unique quadratic mapping

Q: X — Ysuch that

Hreo-qeo () 2 i

4. Intuitionistic random normed spaces

In this section we recall some definitions and results
which will be used later in
the paper.
Definition 5( [7, 21]). If T is a t-norm, then its dual
t-conorm S: [0,1] x [0,1] = [0,1]
is given by

S,y)=1-T(1—x,1—-y).
it is obvious that a t-conorm is a commutative,
associative, and monotone operation
on [0,1] with unit element 0.
Definition 6( [5, 7]). A measure distribution
function is a function u: R — [0,1]
which is monotone, nondecreasing, left continuous,
infyeru(x) = 0and supyegu(x) = 1.
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We denote by D the collection of all measure
distribution functions, and by Hya
special element of D defined by
_(0ift<0
Ho(1) := {1 ift>0"
If Xis a nonempty set, then u: X — Dis called a

probabilistic measure on X and
u(x)is denoted by p,.

Definition 7 ( [5,16,20]). "A non-measure
distribution  function is a function v:R -
[0,1] which is non-increasing, right
continuous,inf,cgrv(x) = 1 and sup,erv(x) = 0.
We denote by Bthe collection of all non-measure
distribution functions, and by G a
special element of B defined by
1ift<0,

G® '_{o ift>0"
If Xis a nonempty set, then v:X — Bis called a
probabilistic non-measure on
Xand v(x)is denoted by v,."
LEMMA 1. ( [5]). Consider the set L* and the
operation <;-defined by

L' = {(x1, %2): (1, %2) € [0,1]%, % +x, < 1}
(x1,%2) S (1, Y2) © %1 S y1,x;
= y,,V (x1,%2), (y1,¥,) EL
Then (L*, <,-) is a complete lattice ( [18, 19]). We
denote the units by 0, = (0,1)and 1;- = (1,0).
Definition 8( [20]). "A triangular norm (t-norm) on
L* is a mapping t: (L*)? - L*satisfying the
following conditions:
1. vxeL, t(x,1;) = x(boundary
condition);
2. Vxy) € (L)% t(xy) =1(y,%)
(commutativity);
3. VY(x,yz2)E€E (L*)3,T(x,r(y,z)) =
t(z(y, x), z)(associativity);
4 V(xiyy)e (L) xS % y < y=
t(x,y) <;- (%, y)(monotoncity).
If (L*, <.~ 7)is an Abelian topological monoid with
unit 1;- then 7 is said
to be a continuous t-norm."
Definition 9( [20]). A continuous t-norm zon L*is
said to be continuous t-representable
if there exists a continuous t-norm * and a
continuous t-conorm ¢ on [0,1]such that
forallx = (x;,x3), ¥ = (y1,¥2) €L
T(x,y) = (X1 * Y1, %2 © ¥2).
For example,
7(a, b) = (a, by, min{a, + b,,1})
and
M(a, b) = (min{a,, b, }, max{a,, b,})

for all
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a = (aq,a,),b = (by,b,) € L are continuous t-
representable. Now, we define
a sequence t" recursively by ! = tas

M (x®, ..., x (D

= (e (xW, ., x™), x D) yn > 2,x € L.
Definition 10"( [16, 20]). A negator on L*is any
decreasing mapping X: L* — L*satisfying 8(0,+) =
1,.and R(1;-) = 0,-.If R(R(x)) = xforall x €
L*then
Nis called an involutive negator. A negator on
[0,1]is a decreasing mapping X::[0,1] -
[0,1]satisfying X(0) = 1and &(1) = 0.8 denotes
the standard negator on[0,1]defined by X, (x) = 1 —
xx € [0,1]"

Definition 11 ( [5]).If x and v be measure and non-
measure distribution functions
U, v: X X (0,+00) — [0,1]where p, (t) + v, (t) <
1vx € X,t > 0.The triple(X, p,,,, 7) is said to be an
intuitionistic random normed spaces (briefly IRN-
spaces) if X is a vector spaces, T is a continuous t-
representable, and p,, ,,: X X (0, +00) — Lrsatisfying
the following conditions: Vx,y € X,t,s > 0,

1 puy(x,0) =0

2. puy(xt)=1ox=0;

3. puy(ax,t) = pw(x, ‘T‘”)Va * 0;

4. p,(x+yt+

S) ZL* T (p/,t,v (X, t)'p/,t,v (y' S))

In this case,p,, ,, is called an IR-norm.

Here p,, (%, £) = (1 (£), v ().
Example 5 ( [5]). Let (X, ].]]) be a normed space.
But 7(a,b) = (a;by, min(a, +b,, 1))V a= (
a,,a,),b = (by,b;) € L* and
pp.,v(x! t) = (#x(t)!vx(t)) =(
R.Then (X, p,, v, T)
is an IRN-space.

t t
tHllxll " tllxl

YVte

Definition 12 ( [20]). But(X, p,,,,T)be an IRN-
space.

1. A sequence {x, }in Xis said to be convergent to a
point x € Xdenoted by

() 2) if, iy (= 2),8) = 1y 257 —

oo Vt > 0.

2. A sequence {x,,}in Xis called a Cauchy sequence
if ve > 0. and
t > 0, there exists a positive integer n, € N such
that
Puyv (Xn — Xy t) >+ (Ng(e),€)
V n,m = nowhere N is a standard negator.
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Liadlalaallis],
3. An IRN-space (X, p,,,,) is said to be
complete < every Cauchy
sequence in X is convergent to a point in X.

6. HYERS-ULAM STABILITY OF THE
MIXED TYPE
ADDITIVE-QUADRATIC FUNCTIONAL
EQUATION(L.1) IN
IRN-SPACES BY DIRECT METHOD

Here, by the direct method, we prove the
generalized stability of the AQ- FE(1.1) in CIRN-
spaces. Also, we present an illustrative example.

For a given mapping f: X — Y, we define
Dsf(x,y) = fQ2x+y)+ f(2x—y)
=2[fx+y) + f(x —y)]
= 2[f() + f(—x)]
+If )+ (=]
Vx,y€X,t>0.

THEOREM 3. LetX be a real linear space
and(Y, p,,,, T)be a complete IRN-space
and f: X — Y be an even mapping with f(0) =0
for which 3 a map &: X? - D*and a map { from X?
to the space of non-measure distribution functions.
§(x,y) is denoted by ¢, , ¢ (x,y) is denoted by
Cxy and (&, (t), 4y, (t)) denoted
byQ ¢ (x, y, t)with the property
Puy (Dsf(xr Y), t) ZL* Q f,{(xr Y, t)r(Gl)
If
lim 722, (Qgg(2171%,0,2%410) = 1,
(6.2)
and
lim Q¢ (2™x, 2™y, 2°™t) = 1,
m-—oo
(6.3)

Vx,y € X, t > 0, then 3! quadratic mapping S: X —
Y
Puv(f(xX) — S(x),t) = T{‘Zl(zi—lx' 0, 2i+1t),
(6.4)
vx € Xandt > 0.

Proof. Buty =0 in (6.1) we get
Puy(2f(2x) =8f (X)), t) 21+ Q¢¢(x,0,1),(6.5)
Vx € X. Then we get
Puyv (f(:_X) - f(x)' t) ZL* Q f,{(x' 0'8t)'(66)
Therefore,
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k+1 k
pu'v(f(z ) _ f(ZZZkX)’ t) > Q“(ka, 0, 22k+3t),

22k+2
(6.7)
That is
k+1
Puyv % -
k
f(ZZZkX)' Zkt+1) ZL" Q E,{(zka 0! 2k+2t)'(6'8)

Vk €N,t > 0. As
1 1 1 1
_ 1_>5+§+§+---+§ _
by the triangle inequality for x € X, t > 0, it
follows:

f(2™x) F(2"x)
Puy ( oo 0, t) 2 pu,v( S

n-1
—1G0, ). k+t>

k=0

n-1 F(2F+1x) _fekxn 1
ZL* Tk=0 (pu,v ( 22k+2 T2k’ 2k+1t

>, Th2g (Q g2 (2Kx, 0,25421))
=1, (Qes(2771%,0,21%1t))  (6.9)

x € X, t > 0.In order to prove the convergence of
[@Ix
the sequence {%}
we replace xwith 2/ xand multiplying the left hand
2j
of (6.9) by Z;, o
f(2ntix
Puy (Zzn—+2] -
Jx i -
f(zzzj )‘ t) >, TLTL:1 (Q ff(ZH—] 1x,0, 22]+L+1t))_
(6.10)

Since the right hand side of the inequality (6.10) —»1
asi,j - oo,

the sequence {%’j")}is a Cauchy sequence.
Therefore, we may define

— lim f@»
S = "

Vx € X.Since f: X - Y iseven, S: X — Y isan even
mapping.

Replacing x, ywith 2™xand 2™y, respectiveiy, in
(6.1) then multiplying the right

2m
hand side by;—m,it follows that:it follows that:

Puv (Zzimpsf(zmx,zmy), t) >, Qg c(2Mx, 2™y, 22™1),
Vx,y € X.Taking the limit as m — oo we find that S
satisfies (1.1), that is, Sis a

quadratic map. To prove (6.4) take the limit as n —
o in (6.9).

Finally, to prove the uniqueness of the quadratic
function S, let us assume that there
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exists a quadratic function r which satisfies (6.4)
and equation (1.1). Therefor

Puyv (T(X) - S(X), t)

27
= Puy r(x) - f(zsz)
+ f(;zfjx) —s(x), t)
2T <p;4,v (T(X)
_f(@x) t> f(2'x)
22 'z PRV 92j
- 5(.5)

Taking the limit as j — oo, we find p,,, (r(x) —
S(x),t) =1.Thereforer=s. m

In Theorem (3) if fis an odd mapping, then the
following theorem can be proved

Similarly.

THEOREM 4. Let X be a real linear space

and(Y, p,,,, T)be a complete IRN-space

andf: X — Ybe an odd mapping with f (0) = 0 for

which there is a mapé: X2 - D™*:

and a map{fromX? to the space of non-measure

distribution functions.¢ (x, y) is denoted by &, ,

¢ (x,y) is denoted by ¢, , and

(&x,y(0), 4y y(t))denoted byQ ¢ - (x, y, t)with the

property

PuvDsf (1, ¥),1) 21 Q¢ (x,y,1),(6.11)
If
lim 72, (Q ¢ (2/7%,0,2410) = 1,

(6.12)

and

lim Q..(2™x,2™y,2™t) = 1,1,
m—oo

(6.13)

Vx,y €X,t > 0, then there exists a unique

quadratic mapping S: X - Y

Puy(F() = S(),0) 2, 72, (2%, 0,2¢),

(6.14)

VxeX,t>0.

COROLLARY 2. Let (X, p;,4,7)be an IRN- space
and(Y, p,,.,, T)be a complete
IRN-space. If f: X — Ybe an even mapping
satisfying

Puv(Dsf (6, Y),6) 21+ fys(x +y,1),(6.15)
Vx,y € X ,t > 0in which

Jli_)rg 132, (Puo(x,0,20%2¢)) = 1+, (6.16)
vVx,y €X,t>0.
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Then 3! quadratic mappingS: X — Ysuch that
Puy () = S(0),0) 2y 7324 (Bp0(x, 0,48),

vx € X,t > 0.
Proof. It is enough to put,

Qé"((x,y, t) = .é[l,f/(x-i-y' t)

vV x,y € X, t > 0, the corollary immediate from
Theorem (3). m

COROLLARY 3.Let (X, 3,4, 7)be an IRN- space
and(Y, p,,.,,7) be a complete
IRN-space. If f:X — Y be an odd mapping
satisfying
Puv(Dsf (%, ), ) 21 Ppy(x +¥,1),(6.17)

Vx,y € X,t > 0in which

]11—>IEJ T§1(P’ﬂ,v(x' 0,227t)) =1,

(6.18)

Vx,yeEX, t>0.
Then 3!additive mappingS: X — Ysuch that

Py (FOO) = S0, 6) = 1124 (B3 (x,0,22718),

vVxeX,t>0.
Proof. It is enough to put,
Qeg(x,y, ) =puy(x+y,t)
vV x,y € X,t > 0, the corollary immediate from
Theorem (4). m

Example 6. Let (X, ||. ||) be a Banach algebra space
and( X, oy 4, M)
be an IRN-space in which

t 4(llx]1+1) )’

Puoy (6, 6) = (t+4—(||x||+1)' t+a(x+D
Vx,y €X,t> 0and let (Y,p,,,7)be acomplete
IRN-space in which

) = (o L)

c+lixll” e+ lxl
V x,y € X, t > 0.Define the mapping f: X — Yby
f(x) = x% + x,for all
x € Xwhere x,is a unit vector in X. A
straightforward computation shows that
Puyv (Dsf(xl y)l t) 2 p’[t,f/ (x +y, t):
Vx,y € X, t > 0. Also we have

lim M2, (6y,5(x,0,27+2¢))
]—)00
= lim lim M2, (p(x,0,2/%%))

J]—00 m—oo

= lim lim (p4(x,0,2/*2t)

Jj—200om—oo .
= limﬁﬂ,v(X,O,Z”Z t) = 1L*
Jj—ooo
Vx € X,t > 0. Therefore, 3!quadratic mapping
S: X — Y suchthat
Puv(f(X) —S(x),t) 21 Pp(x,0,41),
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vVxe X, t>0.

7. HYERS-ULAM STABILITY OF THE
ADDITIVE-QUADRATIC
FUNCTIONAL EQUATION (1.1) IN IRN-
SPACES BY FIXED POINT
METHOD
By the fixed point method, we prove the generalized

stability of the mixed type F-E (1.1) in complete
IRN-spaces. Before giving the main result, we
present a definition and a theorem will be used later.

Definition 13 ( [6]).Let X be a set. A
function d: X x X — [0, oo]is called ageneralized
metric on X if d satisfies
(1) d(x,y) =0ifandonlyifx =y;
(2)d(x,y) =d(y,x)forallx,y € X;
(3) d(x,z) <d(x,y) +d(y,z)forallx,y,z € X.
We recall a fundamental result in fixed point theory.
THEOREM 5( [6]).Let(X, d)be a complet
generalized metric spaces and let
be a strictly contractive mapping withJ : X - X
Lipschitz constant « < 1. Then foreach given
elementx € X either

d(]-nx'jn+1 x) = o0
for all nonnegative integers n or there exists a
positive integer n, such that

DA™ x,J™ 1 x) < o0,Vn = ny;

(2) the sequence{/™x}converges to a fixed pointy* of J;

(3)y*is the unique fixed ponit of ] in the set Y
={y e X\ d("™x,y) <o}

1
@ dly,y) < md(y,]y)for ally evy.
Now we present the main result in this section

THEOREM 6.LetX be a real linear space
and(Y, p,,,, T)be a complete IRN-space
and f: X — Y be an even mapping with f(0) =0
for which there is a map &: X2 —» D*and a map
¢ from X2 to the space of non-measure distribution
functions.
¢(x,y) is denoted by ¢, , ¢ (x,y) is denotedby
Cey ANd (&ry (0), Gy () denoted
byQ ¢ (x, y, t)with the property

Q:c(2x,2y,at) 21 Qeo(x,y,1),0<a <4
and

Puy (Dsf(x' y)' t) 2 Q f,((x' Y, t)(71)

Vx,y € X, t > 0.Then there exists a unique
quadratic mapping g: X - Y
such that
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Puy(f(x) = g(x),t) = Q¢(x,0,2(4 — a)t)
(7.2)
Vx € X, t > 0. Moreover, we have

L 2™x
900 = lim (4_>
Proof. Lety =0 in (7.1); we get
Puv(2f(2x) = 8f (x), 1) 21 Q¢ (x,0,1)

(7.3)

V x € X, andt > 0 and hence

P (2= F(),8) 210 Q0(x,0,80)

(7.4)

Consider the set

E:={g:X - Y:g(0) =0},
and the mapping ddefined onE X E by
dg(g,h) =infle > 0: p,,(g(x) — h(x),et) =
Qe7(x,080)}
Vx € X,andt > 0. Then (E, d;;)is a complete
generalized metric space (see the
proof of [12, lemma 2.1]). Now, let us consider the
linear mapping/ : E X E defined

by
Jge =222,
Now, we show that Jis a strictly contractive self-
mapping of Ewith the Lipschitz
constant k = 2. Indeed, let g, h € Ebe the mappings
such that d; (g, h) < &. Then we have
Puyv (g(x) — h(x), €t) 2 Q &q (x,0,8t)

cat
puv (1900 = ThGO, )
_ g(2x) h(2x) eat
“Puv\Ty T g 'T)
= Puyv (9(2x) — h(2x), eat)
2 Qg¢(2x,0,a8t)

Q:c(2x,2y,at) 21 Q¢ (x,y,1),0<a <4

we have
sat

o (1900 = Jh00,50) 210 Q422,080

that is,
ds(g,h) <e=d;(Jg,Jh) < %s.
This means that
dg(Jg.Jh) < 3dg(g, ),

Vg, h € E. Next, from

2
pu,v f(4x) - f(x)l t> ZL* Q I¥¢ (x, 0,8t)

follows that d; (f,/f) < 1. Using the Theorem (5),
there exists a fixed point of J,
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that is, there is a mapping g: X — Y such
thatg(2x) = 4g(x) Vx € X.
Since, forallx e Xandt > 0,d;(w,v) < e =

Puy () = V(X)) 21 Qg (Zx, 0,%)_

It follows from d (7" f, 9) - 0 that lim £ (22) =
m-—oo

g(x) forallx € X.

Since f: X - Yiseven, g: X —» Y isaneven
mapping. Also from

1
de(f,9) = 772 Jf),
Vg,h € EThend;(f,g) < ﬁ It immediately
follows that '

4
Puv (g(x) i, t) > Qgr(x,0,80)
Vx € X and t > 0.This means that

Puv(G() = f(x),8) 21 Qg g(x,0,2(4 — a)t)
Vx € X and t > 0.Finally, the uniqueness of
gfollows from the fact that gis the
unique fixed point of J such that there exists such
thatC € (0, ) such that

Puv(g(x) = f(x),Ct) =1+ Qg(x,0,8t)
Vx € X and t > 0. This completes the proof.m

In Theorem (6) if f is an odd mapping, then the
following theorem can be proved
similarly.
THEOREM 7..LetX be a real linear space
and(Y, p,,,, T)be a complete IRN-space
and f: X — Y be an odd mapping with f(0) = 0 for
which there is a map &: X2 — D*and a map ¢ from
X2 to the space of non-measure distribution
functions.
&(x,y) is denoted by ¢, , ¢ (x,y) is denotedby
Gy and (&, (t),4,,(t)) denoted
byQ ¢ (x, y, t)with the property
Q:¢(2x,2y,at) 2> Q¢ e(x,y,1),0<a <2
and
Puyv Dsf (6, ¥),t) =1+ Q &¢

Vx,y € X, t > 0.Then there exists a unique
quadratic mapping g: X - Y
such that

Puyv (f(x) - g(x)r t) ZL" Q f,{(x' 0'2(2 - a)t)
Vx € X,t > 0. Moreover, we have
f@2"x)

2n

g(x) = lim
n—-oo

COROLLARY4.Let (X, 3,4, 7)be an IRN- space
and(Y, p,,.,, T)be a complete

IRN-space. If f: X — Ybe an even mapping
satisfying
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Py Dsf (1,30, ) =, (
Vx,yeEXit>0
Then there existsa uniquequadratic mappingsS: X —
Y satisfying(1.1) and
_ 2(4-a)t llxl
Puv ) = 5@, 1) 2p (2(4—a)t+||x||‘2(4—a)t+||x||)'
Vx € X, t > 0.Moreover, we have

S(x) == lim f(Z"x).

nooo 471

t [lx |l )
t+llx+yll t+llx+yll/)’

Proof. It is enough to put,

t [lc]|
Q 5'((){‘ y.t) = (t+||x+y||'t+||x+yll)‘
Vx € X, andt > 0 in theorem 6. Then we can
choose 2 < a < 4and so we get the desired
result.m
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