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ABSTRACT. In this paper, using the direct and fixed point methods, we have established the generalized Hyers-
Ulam stability of the following additive-quadratic 
functional equation 

𝑓(2𝑥 + 𝑦) + 𝑓(2𝑥 − 𝑦) = 2[𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦)] + 2[𝑓(𝑥) + 𝑓(−𝑥)] 
−[𝑓(𝑦) + 𝑓(−𝑦)]; 

in non-Archimedean and intuitionistic random normed spaces. 
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1. INTRODUCTION 
In classical analysis, norm of a vector is determined 
by a non-negative real number. 
However in reality, associating an exact value to the 
norm is not possible. In such 
cases, random norms are useful substitutes. The 

concept of random normed space 
extended by Alsina, Schweizer and Sklar in [1].  
Ulam [23] in 1940 proposed a stability problem 
between a group and a metric 
group. In fact Ulam’s stability problem, in the 
theory of functional equation, states 

that: if a map𝑓: 𝐺1 → 𝐺2 where 𝐺1 is a group and 𝐺2 
is a metric group, satisfies 
a functional equation approximately, when is it 
close to an exact solution of that 

functional equation? 
A partial answer to this question was given by 
Hyers [10] for Banach spaces. 
Since then, many mathematicions generalized 
Hyers’s theorem for different kinds 
of functional equations in several spaces and also by 
using fixed point method (see, 
e.g., [2–4, 24]). 

The generalized Hyers-Ulam stability of different 
mixed type functional equations 

in random normed spaces, intuitionistic random 
normed spaces and non-Archimedean 
random normed spaces has been studied by many 
authors. (see, e.g., [3,11,13–15,17, 
22]). In this paper we present the generalized Hyers-
Ulam stability of the following 
mixed type additive and quadratic functional 

equation 

𝑓(2𝑥 + 𝑦) + 𝑓(2𝑥 − 𝑦)
= 2[𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦)]
+ 2[𝑓(𝑥) + 𝑓(−𝑥)] − 

[𝑓(𝑦) + 𝑓(−𝑦)]                                                 (1.1) 
under arbitrary t-norms by direct method in non-
Archimedean random normed spaces 
and intuitionistic random normed spaces and under 
min t-norm by fixed point method 
in intuitionistic random normed spaces and provide 
an examples. Our research is a 
generalized of the Ravi and Suresh work [17] to 
various spaces 
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In this section we recall some definitions and results 
which will be used later inthe paper. 

Definition 2.1. [5,  21]Acontinuous triangular  norm 

 (briefly  a  t-norm)is amapping  𝑇: [0,1] × [0,1] →

satisfies  the  following    T,such that[0,1],
conditions: 

(1) 𝑇 is commutative and associative; 
(2)𝑇 is continuous; 

(3)𝑇(a, 1) = a  ∀ a ∈ [0,1]; 
(4)𝑇(a, b) ≤ T(c, d) whenewer a ≤ c and b ≤ d. 
Example1 ( [5, 7]). The following are the four basic  
t-norms: 

(1) Minimumt-norm 𝑇𝑀given by  𝑇𝑀(𝑎, 𝑏) =
min(𝑎, 𝑏); 
(2)  product  t-norm𝑇𝑝given by𝑇𝑝(𝑎, 𝑏) = 𝑎𝑏; 

(3) Lukasiewicz  t-norm𝑇𝐿given by𝑇𝐿(𝑎, 𝑏) =
max(𝑎 + 𝑏 − 1, 0); 
(4) Weakest  t-norm (drastic product) 𝑇𝐷given by 

 

𝑇𝐷(𝑥, 𝑦) ∶= {min(𝑥, 𝑦) if max(𝑥, 𝑦) = 1
0                     o. w

 . 

If T  is a t-norm, then 𝑥𝑇
(𝑛)

is defined for every 𝑥 ∈

[0,1] and 𝑛 ∈ 𝑁 ∪ {0}by 1; if 𝑛 = 0 and  𝑇(𝑥𝑇
𝑛−1, 𝑥) 

if 𝑛 ≥ 1.  A t-normT  is said to be of  Had˘zi´c-type 
(denoted by 

T ∈ 𝐻)if  the family{𝑥𝑇
(𝑛)

}𝑛∈𝑁is equicontinuous  

at𝑥 = 1,that is, for  any𝜀 ∈ (0,1), there exists 𝛿 ∈
(0,1)such that 

𝑥 > 1 − 𝛿 ⟹ 𝑥𝑇
𝑛 > 1 − 𝜀   ∀ 𝑛 ≥ 1 

 

Thet-norm 𝑇𝑀 is a trivial example ofHad˘zi´c-type  

but 𝑇𝑝 is not ofHad˘zi´c-type  (see[5,7]). 

Other important triangular norms are (see[8]): 

(1) The Sugeno-Weber  family 

{𝑇𝜆
𝑆𝑊}𝜆𝜖[−1,∞], 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑇−1

𝑆𝑊 =

𝑇𝐷 , 𝑇∞
𝑆𝑊 = 𝑇𝑃 

and 𝑇𝜆
𝑆𝑊(𝑥, 𝑦) = max(0, 𝑥+𝑦−1+𝜆𝑥𝑦

1+𝜆
) , 𝜆 𝜖 (−1, ∞). 

(2) The Domby family {𝑇𝜆
𝐷}𝜆𝜖[0,∞], defined 

by 𝑇𝐷 , 𝑖𝑓 𝜆 = 0,  𝑇𝑀 , 𝑖𝑓 𝜆 = ∞ 𝑎𝑛𝑑 
 

      and 𝑇𝜆
𝐷(𝑥, 𝑦) =

1

1+[(
1−𝑥

𝑥
)
𝜆

+(
1−𝑦

𝑦
)
𝜆

]
1
𝜆

 ,        𝜆 𝜖 (0, ∞). 

(3) The Aczel-Alsina family 

{𝑇𝜆
𝐴𝐴}𝜆𝜖[0,∞],defined by 𝑇𝐷 , 𝑖𝑓 𝜆 =

0,  𝑇𝑀, 𝑖𝑓 𝜆 = ∞ 𝑎𝑛𝑑𝑇𝜆
𝐴𝐴(𝑥, 𝑦) =

𝑒−(|log 𝑥|𝜆+|log 𝑦|𝜆)
1
𝜆 , 𝜆 𝜖 (0, ∞). 

A t-norm T can be extended (by 
associativity) in a unique way to an n-

array operation taking for 

(𝑥1 , 𝑥2 , … , 𝑥𝑛) ∈ [0,1]𝑛 the value 

𝑇(𝑥1 , 𝑥2, … , 𝑥𝑛) defined by 

𝑇𝑖=1
0 𝑥𝑖 = 1, 𝑇𝑖=1

𝑛 𝑥𝑖 = 𝑇(𝑇𝑖=1
𝑛−1𝑥𝑖 , 𝑥𝑛)

= 𝑇(𝑥1 , 𝑥2, … , 𝑥𝑛) 
T can also be extended to a countable 
operation taking for any sequence 

{𝑥𝑛}𝑛∈𝑁 in [0,1]. Moreover 

        𝑇𝑖=1
∞ 𝑥𝑖 = lim

𝑛→∞
𝑇𝑖=1

𝑛 𝑥𝑖 

  

The limit on the right-hand side of (2.1) exists 

since the sequence { 𝑇𝑖=1
𝑛 𝑥𝑖}𝑛∈𝑁 

is nonincreasing and bounded from below. 
 
PRPOPSITION 1([7,8]). 

  

"(1)for 𝑇 ≥ 𝑇𝐿  the following implication hold: 

lim
𝑛→∞

𝑇𝑖=1
∞ 𝑥𝑛+𝑖 = 1 ⟺ ∑(1 − 𝑥𝑛

∞

𝑛=1

) < ∞ 

(2) if 𝑇 is of Had˘zi´c-type, then lim
𝑛→∞

𝑇𝑖=1
∞ 𝑥𝑛+𝑖 =

1for every sequence {𝑥𝑛}𝑛∈𝑁 in[0,1] such that 

lim
𝑛→∞

𝑥𝑛 = 1. 

 

(3) if 𝑇 ∈ {𝑇𝜆
𝐴𝐴}𝜆𝜖(0,∞) ∪ {𝑇𝜆

𝐷}𝜆𝜖(0,∞), then 

lim
𝑛→∞

𝑇𝑖=1
∞ 𝑥𝑛+𝑖 = 1 ⟺ ∑(1 − 𝑥𝑛)𝜆

∞

𝑛=1

< ∞ 

(4) if 𝑇 ∈ {𝑇𝜆
𝑆𝑊}𝜆𝜖[−1,∞),then  

lim
𝑛→∞

𝑇𝑖=1
∞ 𝑥𝑛+𝑖 = 1 ⟺ ∑(1 − 𝑥𝑛

∞

𝑛=1

) < ∞. 

Let ∆+ denote the spaces of all distribution 
functions, that is, the spaces of all mappings 

𝑓: ℝ ∪ {−∞, +∞} → [0,1]such that 𝑓 

monotone, nondecreasing, left continuous, 

𝑓(𝑥) = 0  and 𝑓(+∞) = 1. 𝐷+  is a subset of 

∆+ consisting of all functions 𝑓 ∈ ∆+  for 

which ℒ−𝑓(+∞) = 1,  where ℒ−𝑓(𝑥) denotes 
the left limitof  the function  f  at the 

point 𝑥, that is,  ℒ−𝑓(𝑥) = lim
𝑡→𝑥−

𝑓(𝑡). 

The space ∆+ is partially ordered by the usual point 

wise ordering of functions ,i,e., 𝐹 ≤ 𝐺 if and only if 

𝐹(𝑡) ≤ 𝐺(𝑡) for all 𝑡 ∈ ℝ. The maximal element for 

∆+ in this order is the distribution function 𝐻0 given 
by 

𝐻0(𝑡) ∶= {
0 if  𝑡 ≤ 0
1  if  𝑡 > 0

 . 

      It is obvious that 𝐻0 ≥ 𝑓 for all 𝑓 ∈ 𝐷+." 

3. non-Archimedean random normed spaces 
"By a non-Archimedean field we mean a field 

Κ equipped with a function 

(valuation)|. |fromΚ in  to [0, ∞) such that 

1.|𝑟| = 0   if and only if 𝑟 = 0; 
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2. |𝑟𝑠|=|𝑟||𝑠| ; 

  3. |𝑟 + 𝑠| ≤ max{|𝑟|, |𝑠|} ∀ 𝑟, 𝑠 ∈  Κ. 

 Clearly |1| =  |−1| = 1 and |𝑛| ≤ 1 ∀ 𝑛 ≥1.  
By the trivial valuation, we mean the 

mapping|. |Taking everything but 0 in to 1 

and|0| = 0. 
The most important examples of non-

Archimedean spaces are P-adic numbers. In  
1897, Hensel [9] discovered the P-adic numbers as a 
number theoretical analogue ofpower series in 
complex analysis. Fix a prime number p. For any 
nonzero rational number x, there exists a unique 

integer𝑛𝑥 ∈ ℤsuch that  𝑥 = 𝑎

𝑏
𝑝−𝑛𝑥where a and b are 

integers not divisible by P. Then |𝑥|𝑝: =

𝑝−𝑛𝑥 defines anon-Archimedean norm on . The 

completion of ℚℚ with respect to the metric 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝  is denoted by ℚ𝑝 , which is 

called the p-adic number field. Let 𝑋  be a vector 

spaces over a field Κ  with a non-Archimedean 

nontrivial valuation |. | , that is, there exists 𝑎0 ∈
Κsuch that |𝑎0| is not in {0,1}. 

A function ‖. ‖: 𝑋 → [0, ∞)is called non-
Archimedean if it satisfies the following 
conditions: 

1. ‖𝑥‖ = 0 if and only if 𝑥 = 0; 

2. For any 𝑟 ∈ Κ, 𝑥 ∈ 𝑋, ‖𝑟𝑥‖ = |𝑟|‖𝑥‖; 

3. The strong triangle 

inequality(ultrametric) namely;‖𝑥 +
𝑦‖ ≤ max{‖𝑥‖, ‖𝑦‖} ∀ 𝑥, 𝑦 ∈ 𝑋. 

Then (𝑋, ‖. ‖) Is called  anon- 
Archimedean normed space. Due to the 
fact that 

‖𝑥𝑛 − 𝑥𝑚‖ ≤ max {‖𝑥𝑗+1 − 𝑥𝑗‖: 𝑚 ≤ 𝑗

≤ 𝑛 − 1} 

for all  𝑛, 𝑚 ≥ 1 with  n> 𝑚, a sequence {𝑥𝑛} 

is a cauchy sequence in 𝑋 if and only if 

{𝑥𝑛+1 − 𝑥𝑛} converges to zero in a non-
Archimedean normed space. By a complete 
non-Archimedean normed space, we mean one 
in which every Cauchy sequence 
isconvergent." 

Definition 2( [5, 22]). "A non-Archimedean random 
normed space (briefly, non- 

Archimedean RN-space) is a triple (𝑋, 𝜇 , 𝑇), where 
X is a Linear space over a non- 
Archimedean field K , T is a continuous t-norm, and 

𝜇is a mapping from 𝑋into 𝐷+ 

such that the following conditions hold: 
(1)𝜇𝑥(𝑡) = 𝐻0(𝑡)∀ 𝑡 > 0  iff  𝑥 = 0; 

(2)𝜇𝛼𝑥(𝑡) = 𝜇𝑥 (
𝑡

|𝛼|
) ∀ 𝑥 ∈ 𝑋, 𝑡 > 0 𝑎𝑛𝑑 𝛼 ≠ 0; 

(3)𝜇𝑥+𝑦(max{𝑡, 𝑠}) ≥ 𝑇 (𝜇𝑥(𝑡), 𝜇𝑦(𝑠)) ∀ 𝑥, 𝑦, 𝑧

∈ 𝑋 𝑎𝑛𝑑 𝑡, 𝑠 ≥ 0. 
It is easy to see that, if (3) holds, then so is 

(4)𝜇𝑥+𝑦(t + s) ≥ 𝑇 (𝜇𝑥(𝑡), 𝜇𝑦(𝑠))." 

Example2. 
 The triple (𝑋, 𝜇 , 𝑇𝑀), where(𝑋, ‖. ‖) is a non-
Archimedean normed linear and 

𝜇𝑥(𝑡) ∶= {
0 if  𝑡 ≤ ‖𝑥‖;
1  if  𝑡 > ‖𝑥‖,

 

is  a non-Archimedean RN-space.  

Example 3.Let. Define 
(𝑋, 𝜇 , 𝑇𝑀) is a non-Archimedean RN-space 

where(𝑋, ‖. ‖)is a non-Archimedean normed linear 
space and  𝜇𝑥(𝑡) = 𝑡

𝑡+‖𝑥‖
  ∀𝑥 ∈ 𝑋, 𝑡 > 0 . 

 

Definition 3( [5, 22]). "Let (𝑋, 𝜇 , 𝑇𝑀) be a non-

Archimedean RN-space. Let {𝑥𝑛}be 

a sequence in X.  
 

(1) The sequence {𝑥𝑛}is said to be convergent if 

there exists 𝑥 ∈ 𝑋such that 

 lim
𝑛→∞

𝜇𝑥𝑛−𝑥(𝑡) = 1, 

     for 𝑡 > 0. In this case, the point 𝑥is called the 

limit of the sequence {𝑥𝑛}. 
 

(2) The sequence {𝑥𝑛}in X is called a Cauchy 

sequence if, for any 𝜀 > 0 and 
 

𝑡 > 0, there exists 𝑛0 ≥ 1 such that, for all 𝑛 ≥ 𝑛0 

and 𝑝 > 0 

𝜇𝑥𝑛+𝑝−𝑥𝑛
(𝑡) > 1 − 𝜀. 

(3) If each Cauchy sequence in 𝑋 is convergent, 
then the random space is said to 

     be complete and the non-Archimedean RN-space 
(𝑋, 𝜇 , 𝑇𝑀)  is called a non- 
    Archimedean random Banach space." 
 

Remark 1( [5]). Let (𝑋, 𝜇 , 𝑇𝑀) be a non-
Archimedean RN-space. Then we have 

𝜇𝑥𝑛+𝑝−𝑥𝑛
(𝑡) ≥ min {𝜇𝑥𝑛+𝑗+1−𝑥𝑛+𝑗

(𝑡): 𝑗

= 0,1,2, … , 𝑝 − 1}. 
Thus, the sequence {𝑥𝑛}is a Cauchy sequence in 𝑋if, 

for any 𝜀 > 0and 𝑡 > 0, there 
 

exists 𝑛0 ≥ 1 such that, for all 𝑛 ≥ 𝑛0, 

𝜇𝑥𝑛+1−𝑥𝑛
(𝑡) > 1 − 𝜀. 

 

 
 

4. HYERS–ULAM STABILITY OF THE 

MIXED TYPE FUNCTIONAL 

http://qu.edu.iq/journalsc/index.php/JOPS


 
 

 

 

Available online at http://qu.edu.iq/journalsc/index.php/JOPS 

Al-Qadisiyah Journal Of Pure 

Science (QJPS) 
Vol. 24, No. 3, pp. 1 –11, Year2019 

 
ISSN 2411-3514 

ONLINE 
-ISSN 1997

2490PRINTED 

 
 

 
  

 
 

4 
 

EQUATION (1.1) IN NON-ARCHIMEDEAN 

RANDOM NORMED 

SPACES. 

 
The functional equation (1.1) is called the additive-
quadratic functional equation 

since the function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥is a solution for 
this equation where a and b are 
constants. One can easily show that an even 

mapping 𝑓: 𝑋 → 𝑌  satisfies equation 

(1.1) if and only if the even mapping 𝑓: 𝑋 →
𝑌  is a quadratic mapping, that is, 

𝑓(2𝑥 + 𝑦) + 𝑓(2𝑥 − 𝑦)
= 2[𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦)]
+ 4𝑓(𝑥) − 2𝑓(𝑦). 

Also, one can easily show that an odd mapping 

𝑓: 𝑋 → 𝑌  satisfies equation (1.1) if 

and only if the odd mapping 𝑓: 𝑋 → 𝑌  is an additive 
mapping, that is,  

𝑓(2𝑥 + 𝑦) + 𝑓(2𝑥 − 𝑦)
= 2[𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦)]. 

 
In this section we investigate the stability of the 
additive-quadratic functional equation (1.1), where 

𝑓:X →Y ,𝑓(0) = 0. since 𝑓 is a sum of an 

even function and an odd function, therefore 𝑓 
satisfies the above functional equation 

⟺it is additive-quadratic. Next we define a random 
approximately 

additive-quadratic mapping. Let 𝜓 be a distribution 

function on 𝑋 × 𝑋 × [0, ∞)such 

that 𝜓(𝑥, 𝑦, . ) is nondecreasing and 

𝜓(𝑐𝑥, 𝑐𝑦, 𝑡) ≥ 𝜓 (𝑥, 𝑦,
𝑡

|𝑐|
)      ∀𝑥 ∈ 𝑋, 𝑐 ≠ 0  

Definition 4. A mapping 𝑓: 𝑋 → 𝑌  is said to be 𝜓 -
approximately additive-quadratic if 

𝜇𝐷𝑠𝑓(𝑥,𝑦)(𝑡) ≥ 𝜓(𝑥, 𝑦, 𝑡),      ∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0                                  

(4.1) 
 

Where 𝐷𝑠𝑓(𝑥, 𝑦) ≔ 𝑓(2𝑥 + 𝑦) + 𝑓(2𝑥 − 𝑦) −
2[𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦)] −           2[𝑓(𝑥) +

𝑓(−𝑥)] + [𝑓(𝑦) + 𝑓(−𝑦)], 
  ∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0. 

 

THEOREM 1. Let 𝑓: 𝑋 → 𝑌be an even and𝜓-
approximately additive-quadratic 

function. If, for some α ∈ ℝ, α > 0  and for some 
positiveintegerkwith  

|2𝑘| < 𝛼 

𝜓(2−𝑘𝑥, 2−𝑘𝑦, 𝑡) ≥ 𝜓(𝑥, 𝑦, 𝛼𝑡),                                                      
(4.2) 

And           lim
𝑛→∞

𝑇𝑗=𝑛
∞ 𝑀(𝑥, 𝛼𝑗𝑡

|2|𝑘𝑗
)=1,                                                           

(4.3) 

for all x ∈ X and 𝑡 > 0, then there exists a unique 

quadratic mappingΦ: 𝑋 → 𝑌such 
that:  

𝜇𝑓(𝑥)−Φ(x)(𝑡) ≥ 𝑇𝑖=1
∞ 𝑀(𝑥, 𝛼𝑖+1𝑡

|2|𝑘𝑖 ),,      ∀𝑥 ∈ 𝑋, 𝑡 > 0   

(4.4) 
 

Where   

𝑀(𝑥, 𝑡)
≔ 𝑇[𝜓(𝑥, 0, 𝑡), 𝜓(2𝑥, 0, 𝑡), … , 𝜓(2𝑘−1𝑥, 0, 𝑡)]∀𝑥
∈ 𝑋, 𝑡 > 0. 

 
Proof. First we show, by induction on j, that, for all 

x ∈ X, 𝑡 > 0 and 𝑗 ≥ 1  
 

𝜇𝑓(2𝑗𝑥)− 4𝑗𝑓(x)(𝑡) ≥

𝑀𝑗(𝑥, 𝑡)=𝑇[𝜓(𝑥,0,𝑡),𝜓(2𝑥,0,𝑡),…,𝜓(𝑛𝑗−1𝑥,0,𝑡)]             (4.5) 

Putting 𝑦 = 0 in (4.1) we have 

𝜇2𝑓(2𝑥)− 8𝑓(x)(𝑡) ≥ 𝜓(𝑥, 0, 𝑡) 

then 

𝜇𝑓(2𝑥)−4𝑓(x)(𝑡) ≥ 𝜓(𝑥, 0,2𝑡) ≥ 𝜓(𝑥, 0, 𝑡)∀𝑥 ∈ 𝑋, 𝑡

> 0. 
This prove (4.5) for  j=1. Assume that (4.5) hold for 

some 𝑗 >1 . Replacing y by 0 and 𝑥 by 2𝑗𝑥 in (4.1) 
we get  

𝜇𝑓(2𝑗+1𝑥)−4𝑓(2𝑗x)(𝑡) ≥ 𝜓(2𝑗𝑥, 0, 𝑡)∀𝑥 ∈ 𝑋, 𝑡 > 0.       

(4.6) 

Since |4| ≤ 1, it follows that 

𝜇𝑓(2𝑗+1𝑥)−4𝑗+1𝑓(x)(𝑡) 

≥ 𝑇(𝜇𝑓(2𝑗+1𝑥)−4𝑓(2𝑗x)(𝑡), 𝜇4𝑓(2𝑗𝑥)−4𝑗+1𝑓(x)(𝑡)) 

                                

= 𝑇(𝜇𝑓(2𝑗+1𝑥)−4𝑓(2𝑗x)(𝑡), 𝜇𝑓(2𝑗𝑥)−4𝑗𝑓(x)( 𝑡

|4|
)) 

≥ 𝑇(𝜇𝑓(2𝑗+1𝑥)−4𝑓(2𝑗x)(𝑡), 𝜇𝑓(2𝑗𝑥)−4𝑗𝑓(x)(𝑡)) 

≥ 𝑇(𝜓(2𝑗𝑥, 0, 𝑡), 𝑀𝑗(𝑥, 𝑡)) 

                                                  

=𝑀𝑗+1(𝑥, 𝑡),        ∀𝑥 ∈ 𝑋, 𝑡 > 0. 
So  

        𝜇𝑓(2𝑗𝑥)−4𝑗𝑓(x)(𝑡) ≥ 𝑀(𝑥, 𝑡) 

Holds for all 𝑗 ≥ 1, in particular, we have 

        𝜇𝑓(2𝑘𝑥)−4𝑘𝑓(x)(𝑡) ≥ 𝑀(𝑥, 𝑡)     ∀𝑥 ∈ 𝑋, 𝑡 > 0.                        

(4.7) 

Replacing 𝑥 by 2−(𝑘𝑛+𝑘)𝑥 in (4.7) and using the 
inequality (4.2), we have 

        𝜇
𝑓( 𝑥

2𝑘𝑛
)−4𝑘𝑓(

𝑥

2𝑘+𝑘𝑛)
(𝑡) ≥ 𝑀 (

𝑥

2𝑘+𝑘𝑛
, 𝑡)

≥ 𝑀(𝑥, 𝛼𝑛+1𝑡), 
∀𝑥 ∈ 𝑋, 𝑡 > 0 and  𝑚 ≥ 0. Then we have 

        𝜇
(26𝑘)𝑛𝑓( 𝑥

2𝑘𝑛
)−4𝑘(4𝑘)𝑛𝑓(

𝑥

2𝑘+𝑘𝑛)
(𝑡) ≥ 𝑀 (𝑥,

𝛼𝑛+1𝑡

|4𝑘|
𝑛 )

≥ 𝑀 (𝑥,
𝛼𝑛+1𝑡

|2𝑘|𝑛
), 
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∀𝑥 ∈ 𝑋, 𝑡 > 0 and  𝑚 ≥ 0.  𝑆𝑜 

        𝜇
(4𝑘)𝑛𝑓( 𝑥

2𝑘𝑛
)−4𝑘(𝑛+1)𝑓(

𝑥

2𝑘(𝑛+1))
(𝑡) ≥ 𝑀 (𝑥,

𝛼𝑛+1𝑡

|2𝑘|
𝑛 ), 

∀𝑥 ∈ 𝑋, 𝑡 > 0. 
        𝜇

(4𝑘)𝑛𝑓( 𝑥

2𝑘𝑛
)−4𝑘(𝑛+1)𝑓(

𝑥

2𝑘(𝑛+1))
(𝑡)

≥ 𝑇𝑗=𝑛
𝑛+(𝑝−1)

(  𝜇
(4𝑘)𝑗𝑓( 𝑥

2𝑘𝑗
)−4𝑘(𝑗+1)𝑓(

𝑥

2𝑘(𝑗+1))
(𝑡)) 

≥ 𝑇𝑗=𝑛
𝑛+(𝑝−1)

𝑀(𝑥,
𝛼𝑗+1𝑡

|2𝑘|
𝑗

) 

∀𝑥 ∈ 𝑋, 𝑡 > 0. Since lim
𝑛→∞

𝑇𝑗=𝑛
∞ 𝑀(𝑥, 𝛼𝑗+1𝑡

|2𝑘|
𝑗 ) = 1, ∀𝑥 ∈

𝑋, 𝑡 > 0, it follows that {(4𝑘)𝑛𝑓 ( 𝑥

(2𝑘)𝑛)}is a cauchy 

sequence in the non-Archimedean random 

Banach space (𝑌, 𝜇 , 𝑇). Hence, we can define a 

mapping Φ: 𝑋 → 𝑌 such that 

lim
𝑛→∞

 𝜇
(4𝑘)𝑛𝑓( 𝑥

(2𝑘)𝑛
)−Φ(x)

(𝑡) = 1, ∀𝑥 ∈ 𝑋, 𝑡 > 0. 

Since𝑓: 𝑋 → 𝑌is even, Φis an even mapping. It 

follows that for all 𝑥 ∈ 𝑋and 𝑡 > 0. 
 𝜇

𝑓(𝑥)−(4𝑘)𝑛𝑓( 𝑥

(2𝑘)
𝑛)

(𝑡)

=  𝜇
∑ (4𝑘)𝑖𝑓( 𝑥

(2𝑘)
𝑖
)−(4𝑘)𝑖+1𝑓( 𝑥

(2𝑘)
𝑖+1

)𝑛−𝑖
𝑖=0

(𝑡) 

≥ 𝑇𝑗=0
𝑛−1( 𝜇

(4𝑘)𝑖𝑓( 𝑥

2𝑘𝑖
)−4𝑘(𝑖+1)𝑓(

𝑥

2𝑘(𝑖+1))
)(𝑡) 

   ≥ 𝑇𝑖=0
𝑛−1 (𝑀 (𝑥,

𝛼𝑖+1𝑡

|2𝑘|𝑖
)), 

and so  

 𝜇𝑓(𝑥)−Φ(x)(𝑡)

≥ 𝑇[ 𝜇
𝑓(𝑥)−(4𝑘)𝑛𝑓( 𝑥

(2𝑘)
𝑛)

(𝑡),  𝜇
(4𝑘)𝑛𝑓( 𝑥

(2𝑘)
𝑛)−Φ(x)

(𝑡)] 

≥ 𝑇(𝑇𝑖=0
𝑛−1 (𝑀 (𝑥,

𝛼𝑖+1𝑡

|2𝑘|𝑖
)) ,  𝜇

(4𝑘)𝑛𝑓( 𝑥

(2𝑘)
𝑛)−Φ(x)

(𝑡)) 

taking  𝑛 → ∞ we have 

 𝜇𝑓(𝑥)−Φ(x)(𝑡) ≥ 𝑇𝑖=1
∞ 𝑀 (𝑥,

𝛼𝑖+1𝑡

|2𝑘|𝑖
), 

Which prove (4.4). Since T is continuous, from a 

well-known result in probabilistic 
metric space (see e.g., [21, Chapter 12]) it follows 
that 

lim
𝑛→∞

 𝜇𝐷Φ𝑓(𝑥,𝑦)
(𝑡)

=  𝜇𝐷Φ(2𝑥+𝑦)+Φ(2x−y)−2[Φ(x+y)+Φ(x−y)]−2[Φ(x)+Φ(−x)]+[Φ(y)+Φ(−y)]
(𝑡), 

 

∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, where 

𝐷Φ𝑓(𝑥,𝑦) = 4𝑛𝑘𝑓 (
2𝑥+𝑦

2𝑘𝑛
) + 4𝑛𝑘𝑓 (

2𝑥−𝑦

2𝑘𝑛
)

− 2 [4𝑛𝑘𝑓 (
𝑥+𝑦

2𝑘𝑛
) + 4𝑛𝑘𝑓 (

𝑥−𝑦

2𝑘𝑛
)]

− 2 [4𝑛𝑘𝑓 (
𝑥

2𝑘𝑛
) + 4𝑛𝑘𝑓 (

−𝑥

2𝑘𝑛
)]

+ 4𝑛𝑘 (𝑓 (
𝑦

2𝑘𝑛
) + 𝑓 (

−𝑦

2𝑘𝑛
)]. 

On the other hand, replacing 𝑥, 𝑦 by 2−𝑘𝑛𝑥2−𝑘𝑛𝑦in 
(4.1) and using (4.2) we get 

 𝜇𝐷Φ𝑓(𝑥,𝑦)
(𝑡) ≥ 𝜓(2−𝑘𝑛𝑥, 2−𝑘𝑛y,

𝑡

|4𝑘|
𝑛) 

≥ 𝜓(2−𝑘𝑛𝑥, 2−𝑘𝑛y,
𝑡

|2𝑘|
𝑛) 

≥ 𝜓(𝑥,y,
𝛼𝑛𝑡

|2𝑘|
𝑛), 

∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0.Since lim
𝑛→∞

𝜓(𝑥, y,
𝛼𝑛𝑡

|2𝑘|
𝑛) = 1, we 

show that Φ is quadratic mapping. Finally if  

Φ́: 𝑋 → 𝑌 is another quadratic mapping such that 

 𝜇Φ́−𝑓(x)(𝑡) ≥ 𝑀(𝑥, 𝑦)∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, 

then, for all 𝑚 ∈ 𝑁, 𝑥 ∈ 𝑋, 𝑡 > 0, 
 𝜇Φ(x)−Φ́(𝑥)(𝑡) ≥

𝑇( 𝜇
Φ(𝑥)−(4𝑘)𝑛𝑓( 𝑥

|2𝑘|
𝑛)

,  𝜇
(4𝑘)𝑛𝑓( 𝑥

|2𝑘|
𝑛)−Φ́(𝑥)

(𝑡)), 

Therefore, we conclude that Φ = Φ ́ this completes 

the proof.  ∎ 
 

In theorem (1) if f  is an odd mapping, then the 
following theorem can be proved 
similarly. 

THEOREM 2. Let 𝑓: 𝑋 → 𝑌 be an odd and 𝜓 -
approximately additive-quadratic 

function. If, for some α ∈ ℝ, α > 0  and for some 
positive integer k with  

|2𝑘| < 𝛼 

𝜓(2−𝑘𝑥, 2−𝑘𝑦, 𝑡) ≥ 𝜓(𝑥, 𝑦, 𝛼𝑡),     

and           lim
𝑛→∞

𝑇𝑗=𝑛
∞ 𝑀(𝑥, 𝛼𝑗𝑡

|2|𝑘𝑗
)=1, 

∀x ∈ X and 𝑡 > 0, then there exists a unique 

additive mappingΦ: 𝑋 → 𝑌such 
that:  

𝜇𝑓(𝑥)−Φ(x)(𝑡) ≥ 𝑇𝑖=1
∞ 𝑀(𝑥,

𝛼𝑖+1𝑡

|2|𝑘𝑖
),,      ∀𝑥 ∈ 𝑋, 𝑡 > 0 

Where   

       𝑀(𝑥, 𝑡) ≔
𝑇[𝜓(𝑥, 0, 𝑡), 𝜓(2𝑥, 0, 𝑡), … , 𝜓(2𝑘−1𝑥, 0, 𝑡)]∀𝑥 ∈
𝑋, 𝑡 > 0.. 
 
COROLLARY 1."Let K be a non-Archimedean 
field, X be a vector space over K 

and (𝑋, 𝜇 , 𝑇)be non-Archimedean random Banach 
space over K under the t-norm 

T ∈ 𝐻. Let 𝑓: 𝑋 → 𝑌 be an even and 𝜓 -
approximately additive-quadratic mapping. 

If, for some α ∈ ℝ, α > 0  and for some positive 
integer k with  

|2𝑘| < 𝛼 

𝜓(2−𝑘𝑥, 2−𝑘𝑦, 𝑡) ≥ 𝜓(𝑥, 𝑦, 𝛼𝑡), for all x ∈ X and 

𝑡 > 0.Then there exists a uniquequadratic 

mapping 𝑄: 𝑋 → 𝑌 such that 

𝜇𝑓(𝑥)−Q(x)(𝑡) ≥ 𝑇𝑖=1
∞ 𝑀(𝑥, 𝛼𝑖+1𝑡

|2𝑘|
𝑖 ),,      ∀𝑥 ∈ 𝑋, 𝑡 > 0, 
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where𝑀(𝑥, 𝑡) ≔
𝑇[𝜓(𝑥, 0, 𝑡), 𝜓(2𝑥, 0, 𝑡), … , 𝜓(2𝑘−1𝑥, 0, 𝑡)]∀𝑥 ∈
𝑋, 𝑡 > 0.." 
 

Proof.Since 

lim
𝑗→∞

𝑀(𝑥,
𝛼𝑗𝑡

|2𝑘|
𝑗
)=1, 

∀x ∈ Xand𝑡 > 0 and  𝑇is of  Had˘zi´c type, it 
follows that 

lim
𝑛→∞

𝑇𝑗=𝑛
∞ 𝑀(𝑥,

𝛼𝑗𝑡

|2𝑘|
𝑗
)=1, 

∀x ∈ Xand𝑡 > 0. Now, if we can apply theorem 1, 
then we can get the conclusion.                                                                                

                        ∎ 
Example 4. Let (𝑋, 𝜇 , 𝑇𝑀) be a non-Archimedean 
random normed space in which 

𝜇𝑥(𝑡) =
𝑡

𝑡+‖𝑥‖
 

∀x ∈ Xand𝑡 > 0 and (𝑋, 𝜇 , 𝑇𝑀) be a complete non-
Archimedean random normed space. Define 

𝜓(𝑥, 𝑦, 𝑡) =
𝑡

1 + 𝑡
 

It is easy to see that (4.2) holds for 𝛼 = 1. Also, 

since 𝑀(𝑥, 𝑡) =
𝑡

1+𝑡
, 

We have 

lim
𝑛→∞

𝑇𝑗,𝑀=𝑛
∞ 𝑀(𝑥,

𝛼𝑗𝑡

|2|𝑘𝑗
)= lim

𝑛→∞
( lim

𝑖→∞
𝑇𝑀,𝑗=𝑛

𝑖 𝑀(𝑥,
𝑡

|2|𝑘𝑗
)) , 

 

                                               = lim
𝑛→∞

lim
𝑖→∞

( 𝑡

𝑡+|2|𝑘𝑛
)=1 

for all x ∈ Xand𝑡 > 0. 

Let 𝑓: 𝑋 → 𝑌be an even and 𝜓 -approximately 
additive-quadratic mapping. Thus 
all the conditions of theorem (1) hold and so there 
exists a unique quadratic mapping 

𝑄: 𝑋 → 𝑌such that 

𝜇𝑓(𝑥)−Q(x)(𝑡) ≥ 𝑡

𝑡+|2𝑘|
. 

 

4. Intuitionistic random normed spaces 

 
In this section we recall some definitions and results 

which will be used later in 
the paper. 
Definition 5( [7, 21]). If T is a t-norm, then its dual 

t-conorm 𝑆: [0,1] × [0,1] → [0,1] 
is given by 

𝑆(𝑥, 𝑦) = 1 − 𝑇(1 − 𝑥, 1 − 𝑦). 
it is obvious that a t-conorm is a commutative, 
associative, and monotone operation 
on [0,1] with unit element 0. 
Definition 6( [5, 7]). A measure distribution 

function is a function 𝜇: ℝ → [0,1] 
which is monotone, nondecreasing, left continuous, 

inf𝑥∈ℝ𝜇(𝑥) = 0and 𝑠𝑢𝑝𝑥∈ℝ𝜇(𝑥) = 1. 

We denote by D the collection of all measure 

distribution functions, and by 𝐻0a 
special element of D defined by 

𝐻0(𝑡) ∶= {
0 if  𝑡 ≤ 0
1  if  𝑡 > 0

 . 

If 𝑋is a nonempty set, then 𝜇: 𝑋 → 𝐷is called a 
probabilistic measure on X and 

𝜇(𝑥)is denoted by 𝜇𝑥 . 
 
Definition 7 ( [5,16,20]). "A non-measure 

distribution function is a function 𝜈: ℝ →
[0,1] which is non-increasing, right 

continuous,inf𝑥∈ℝ𝜈(𝑥) = 1 and 𝑠𝑢𝑝𝑥∈ℝ𝜈(𝑥) = 0. 
We denote by Bthe collection of all non-measure 
distribution functions, and by G a 
special element of B defined by 

𝐺(𝑡) ∶= {
1 if  𝑡 ≤ 0,
0  if  𝑡 > 0

 . 

If 𝑋 is a nonempty set, then 𝜈: 𝑋 → 𝑩 is called a 
probabilistic non-measure on 

𝑋and  𝜈(𝑥)is denoted by  𝜈𝑥 ."  

LEMMA 1. ( [5]). Consider the set 𝐿∗  and the 
operation ≤𝐿∗defined by 
  

𝐿∗ = {(𝑥1, 𝑥2): (𝑥1 , 𝑥2) ∈ [0,1]2, 𝑥1 + 𝑥2 ≤ 1} 

(𝑥1, 𝑥2) ≤𝐿∗ (𝑦1 , 𝑦2) ⟺ 𝑥1 ≤ 𝑦1 , 𝑥2

≥ 𝑦2 , ∀ (𝑥1 , 𝑥2), (𝑦1 , 𝑦2) ∈ 𝐿∗ 
Then (𝐿∗, ≤𝐿∗) is a complete lattice ( [18, 19]). We 

denote the units by 0𝐿∗ = (0,1)and 1𝐿∗ = (1,0).  
Definition 8( [20]). "A triangular norm (t-norm) on 

𝐿∗ is a mapping 𝜏: (𝐿∗)2 → 𝐿∗satisfying the 
following conditions: 

1. ∀ 𝑥 ∈ 𝐿∗, 𝜏(𝑥, 1𝐿∗) = 𝑥(boundary 
condition); 

2. ∀ (𝑥, 𝑦) ∈  (𝐿∗)2, 𝜏(𝑥, 𝑦) = 𝜏(𝑦, 𝑥) 
(commutativity); 

3. ∀(𝑥, 𝑦, 𝑧) ∈  (𝐿∗)3, 𝜏(𝑥, 𝜏(𝑦, 𝑧)) =
𝜏(𝜏(𝑦, 𝑥), 𝑧)(associativity); 

4. ∀(𝑥, 𝑥́,y,𝑦́) ∈ (𝐿∗)4 , 𝑥 ≤𝐿∗ 𝑥́, 𝑦 ≤𝐿∗ 𝑦́ ⟹
 𝜏(𝑥, 𝑦) ≤𝐿∗ 𝜏(𝑥́, 𝑦́)(monotoncity). 

If (𝐿∗, ≤𝐿∗, 𝜏)is an Abelian topological monoid with 

unit 1𝐿∗ then 𝜏 is said 
to be a continuous t-norm." 

Definition 9( [20]). A continuous t-norm 𝜏on 𝐿∗is 
said to be continuous t-representable 

if there exists a continuous t-norm ∗ and a 

continuous 𝑡-conorm ⋄ on [0,1]such that 

for all𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1 , 𝑦2) ∈ 𝐿∗ 

𝜏(𝑥, 𝑦) = (𝑥1 ∗ 𝑦1 , 𝑥2 ⋄ 𝑦2). 
For example, 

𝜏(𝑎, 𝑏) = (𝑎1𝑏1, min{𝑎2 + 𝑏2 , 1}) 

𝑎𝑛𝑑 
𝑀(𝑎, 𝑏) = (min {𝑎1, 𝑏1}, max {𝑎2, 𝑏2}) 

 
for all 
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a = (𝑎1 , 𝑎2), 𝑏 = (𝑏1 , 𝑏2) ∈ 𝐿∗are continuous t-
representable. Now, we define 

a sequence 𝜏𝑛 recursively by 𝜏1 = 𝜏as 

𝜏𝑛(𝑥(1), … , 𝑥(𝑛+1))

= 𝜏(𝜏𝑛−1(𝑥(1), … , 𝑥(𝑛)), 𝑥(𝑛+1)), ∀𝑛 ≥ 2, 𝑥𝑖 ∈ 𝐿∗. 
Definition 10"( [16, 20]). A negator on 𝐿∗is any 

decreasing mapping ℵ: 𝐿∗ → 𝐿∗satisfying ℵ(0𝐿∗) =
1𝐿∗and ℵ(1𝐿∗) = 0𝐿∗ .If  ℵ(ℵ(𝑥)) = 𝑥for all 𝑥 ∈
𝐿∗ then 

ℵis called an involutive negator. A negator on 
[0,1]is a decreasing mapping ℵ::[0,1] →
[0,1]satisfying ℵ(0) = 1and ℵ(1) = 0.ℵ𝑠denotes 

the standard negator on[0,1]defined by ℵ𝑠(𝑥) = 1 −
𝑥 𝑥 ∈ [0,1]." 
 

Definition 11 ( [5]).If 𝜇 and 𝜈 be measure and non-
measure distribution functions 

𝜇, 𝜈: 𝑋 × (0, +∞)  ⟶  [0,1]where 𝜇𝑥(𝑡) + 𝜈𝑥(𝑡) ≤
1∀𝑥 ∈ 𝑋,𝑡 > 0.The triple(𝑋, 𝜌𝜇,𝜈 , 𝜏) is said to be an 

intuitionistic random normed spaces (briefly IRN-

spaces) if X is a vector spaces, 𝜏 is a continuous t-

representable, and 𝜌𝜇,𝜈 : 𝑋 × (0, +∞) → 𝐿∗satisfying 

the following conditions: ∀𝑥, 𝑦 ∈ 𝑋,𝑡, 𝑠 > 0, 
1. 𝜌𝜇,𝜈(𝑥, 0) = 0𝐿∗; 

2. 𝜌𝜇,𝜈(𝑥, 𝑡) = 1𝐿∗ ⟺ 𝑥 = 0; 

3. 𝜌𝜇,𝜈(𝛼𝑥, 𝑡) = 𝜌𝜇,𝜈(𝑥, 𝑡

|𝛼|
)∀𝛼 ≠ 0; 

4. 𝜌𝜇,𝜈(𝑥 + 𝑦, 𝑡 +

𝑠) ≥𝐿∗  𝜏 (𝜌𝜇,𝜈(𝑥, 𝑡), 𝜌𝜇,𝜈(𝑦, 𝑠)). 

In this case,𝜌𝜇,𝜈 is called an IR-norm. 

Here 𝜌𝜇,𝜈(𝑥, 𝑡) = (𝜇𝑥(𝑡), 𝜈𝑥(𝑡)). 

Example 5 ( [5]). Let ( 𝑋, ‖. ‖) be a normed space. 

But 𝜏(𝑎, 𝑏) = (𝑎1𝑏1, min(𝑎2 + 𝑏2 , 1))∀  a= ( 

𝑎1 , 𝑎2), 𝑏 = (𝑏1 , 𝑏2) ∈ 𝐿∗ and 

𝜌𝜇,𝜈(𝑥, 𝑡) = (𝜇𝑥(𝑡), 𝜈𝑥(𝑡)) = (
𝑡

𝑡+‖𝑥‖
,

𝑡

𝑡+‖𝑥‖
) ∀ 𝑡 ∈

ℝ. Then (𝑋, 𝜌𝜇,𝜈 , 𝜏) 

is an IRN-space. 
  

Definition 12 ( [20]). But(𝑋, 𝜌𝜇,𝜈 , 𝜏)be an IRN-

space. 

1. A sequence {𝑥𝑛}in 𝑋is said to be convergent to a 

point 𝑥 ∈ 𝑋denoted by 

({𝑥𝑛}  𝑥) ⟶

𝜌𝜇,𝜈
if, 𝜌𝜇,𝜈(𝑥𝑛 − 𝑥), 𝑡) ⟶ 1𝐿∗ as 𝑛 ⟶

∞ ∀𝑡 > 0. 
 

2. A sequence {𝑥𝑛}in 𝑋is called a Cauchy sequence 

if,∀𝜀 > 0. and 

𝑡 > 0, there exists a positive integer 𝑛0 ∈ ℕ such 
that  

𝜌𝜇,𝜈(𝑥𝑛 − 𝑥𝑚, 𝑡) >𝐿∗ (𝑁𝑠(𝜀), 𝜀 ) 

∀ 𝑛, 𝑚 ≥ 𝑛0𝑤ℎ𝑒𝑟𝑒 𝑁𝑠  𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑒𝑔𝑎𝑡𝑜𝑟. 

 .اكتبالمعادلةهنا

3. An IRN-space (𝑋, 𝜌𝜇,𝜈 , 𝜏) is said to be 

complete ⟺ every Cauchy 

sequence in X is convergent to a point in 𝑋. 
 

 
 

6. HYERS-ULAM STABILITY OF THE 

MIXED TYPE 

ADDITIVE-QUADRATIC FUNCTIONAL 

EQUATION(1.1) IN 

IRN-SPACES BY DIRECT METHOD 

 

Here, by the direct method, we prove the 
generalized stability of the AQ- FE(1.1) in CIRN-
spaces. Also, we present an illustrative example. 
 

For a given mapping 𝑓: 𝑋 → 𝑌, we define 

𝐷𝑠𝑓(𝑥, 𝑦) ≔ 𝑓(2𝑥 + 𝑦) + 𝑓(2𝑥 − 𝑦)
− 2[𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦)]
−   2[𝑓(𝑥) + 𝑓(−𝑥)]
+ [𝑓(𝑦) + 𝑓(−𝑦)] 

∀𝑥, 𝑦 ∈ 𝑋 , 𝑡 > 0. 
 

THEOREM 3. Let𝑋 be a real linear space 

and(𝑌, 𝜌𝜇,𝜈 , 𝜏)be a complete IRN-space  

and 𝑓: 𝑋 → 𝑌 be an even mapping with 𝑓(0) = 0 

for which ∃ a map 𝜉: 𝑋2 → 𝐷+and a map ζ from 𝑋2 
to the space of non-measure distribution functions. 

𝜉(𝑥, 𝑦) is denoted by   𝜉𝑥,𝑦 , 𝜁 (𝑥, 𝑦) is denoted by  

𝜁𝑥,𝑦 and  ( 𝜉𝑥,𝑦(𝑡), 𝜁𝑥,𝑦(𝑡))    denoted 

by𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡)with the property 

𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡),(6.1) 

If 

lim
𝑗→∞

𝜏𝑖=1
∞ ( 𝑄 𝜉,𝜁(2𝑖+𝑗−1𝑥, 0, 22𝑗+𝑖+1𝑡) = 1𝐿∗ ,                 

(6.2) 
and 

lim
𝑚→∞

𝑄 𝜉,𝜁(2𝑚𝑥, 2𝑚𝑦, 22𝑚𝑡) = 1𝐿∗ ,                               

(6.3) 
 

∀𝑥, 𝑦 ∈ 𝑋 , 𝑡 > 0, then ∃! quadratic mapping 𝑆: 𝑋 →
𝑌 

𝜌𝜇,𝜈(𝑓(𝑥) − 𝑆(𝑥), 𝑡) ≥𝐿∗ 𝜏𝑖=1
∞ (2𝑖−1𝑥, 0, 2𝑖+1𝑡),                

(6.4) 

∀𝑥 ∈ 𝑋 and 𝑡 > 0. 
 
Proof.  Buty = 0 in (6.1) we get 

𝜌𝜇,𝜈(2𝑓(2𝑥) − 8𝑓(𝑥)), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0, 𝑡),(6.5) 

∀𝑥 ∈ 𝑋. Then we get 

𝜌𝜇,𝜈(𝑓(2𝑥)

4
− 𝑓(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,8𝑡),(6.6) 

Therefore, 
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𝜌𝜇,𝜈(𝑓(2𝑘+1𝑥)

22𝑘+2 − 𝑓(2𝑘𝑥)

22𝑘 , 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(2𝑘𝑥, 0, 22𝑘+3𝑡),  

(6.7) 
That is 

 

𝜌𝜇,𝜈(𝑓(2𝑘+1𝑥)

22𝑘+2 −
𝑓(2𝑘𝑥)

22𝑘 , 𝑡

2𝑘+1) ≥𝐿∗ 𝑄 𝜉,𝜁(2𝑘𝑥, 0, 2𝑘+2𝑡),(6.8) 

∀𝑘 ∈ 𝑁, 𝑡 > 0.  As 

1 >
1

2
+

1

22
+

1

23
+ ⋯ +

1

2𝑘
 

by the triangle inequality for 𝑥 ∈ 𝑋, 𝑡 > 0, it 
follows: 

𝜌𝜇,𝜈 (
𝑓(2𝑛𝑥)

22𝑛
− 𝑓(𝑥), 𝑡) ≥𝐿∗ 𝜌𝜇,𝜈 (

𝑓(2𝑛𝑥)

22𝑛

− 𝑓(𝑥), ∑
1

2𝑘+1
𝑡

𝑛−1

𝑘=0

) 

 

 ≥𝐿∗ 𝜏𝑘=0
𝑛−1(𝜌𝜇,𝜈 (

𝑓(2𝑘+1𝑥)

22𝑘+2
− 𝑓(2𝑘𝑥)

22𝑘
,

1

2𝑘+1
𝑡) 

 

 ≥𝐿∗ 𝜏𝑘=0
𝑛−1(𝑄 𝜉,𝜁(2𝑘𝑥, 0, 2𝑘+2𝑡)) 

 

= 𝜏𝑖=1
𝑛 (𝑄 𝜉,𝜁(2𝑖−1𝑥, 0, 2𝑖+1𝑡))    (6.9) 

 

𝑥 ∈ 𝑋, 𝑡 > 0.In order to prove the convergence of 

the sequence {𝑓(2𝑗𝑥)

22𝑗
}, 

we replace 𝑥with 2𝑗𝑥and multiplying the left hand 

of (6.9) by  22𝑗

22𝑗
, 

𝜌𝜇,𝜈 (
𝑓(2𝑛+𝑗𝑥)

22𝑛+2𝑗
−

𝑓(2𝑗𝑥)

22𝑗
, 𝑡) ≥𝐿∗ 𝜏𝑖=1

𝑛 (𝑄 𝜉,𝜁(2𝑖+𝑗−1𝑥, 0, 22𝑗+𝑖+1𝑡)).             

(6.10) 
 

Since the right hand side of the inequality (6.10) →1 

as i,j → ∞, 

the sequence {𝑓(2𝑗𝑥)

22𝑗
}is a Cauchy sequence. 

Therefore, we may define 

𝑆(𝑥) = lim
𝑗→∞

𝑓(2𝑗𝑥)

22𝑗
 

∀𝑥 ∈ 𝑋. Since 𝑓: 𝑋 → 𝑌 is even, 𝑆: 𝑋 → 𝑌 is an even 
mapping.  

Replacing 𝑥, 𝑦with 2𝑚𝑥and 2𝑚𝑦, respectiveiy, in 
(6.1) then multiplying the right 

hand side by
22𝑚

22𝑚
,it follows that:it follows that: 

𝜌𝜇,𝜈 (
1

22𝑚
𝐷𝑠𝑓(2𝑚𝑥,2𝑚𝑦), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(2𝑚𝑥, 2𝑚𝑦, 22𝑚𝑡), 

∀𝑥, 𝑦 ∈ 𝑋.Taking the limit as 𝑚 → ∞ we find that S 
satisfies (1.1), that is, S is a 

quadratic map. To prove (6.4) take the limit as 𝑛 →
∞ in (6.9). 
Finally, to prove the uniqueness of the quadratic 
function S, let us assume that there 

exists a quadratic function r which satisfies (6.4) 
and equation (1.1). Therefor 
 

𝜌𝜇,𝜈(𝑟(𝑥) − 𝑆(𝑥), 𝑡)

= 𝜌𝜇,𝜈 (𝑟(𝑥) −
𝑓(2𝑗𝑥)

22𝑗

+
𝑓(2𝑗𝑥)

22𝑗
− 𝑠(𝑥), 𝑡)

≥𝐿∗ 𝜏 (𝜌𝜇,𝜈(𝑟(𝑥)

−
𝑓(2𝑗𝑥)

22𝑗
,

𝑡

2
) , 𝜌𝜇,𝜈(

𝑓(2𝑗𝑥)

22𝑗

− 𝑆(𝑥),
𝑡

2
)). 

Taking the limit as 𝑗 → ∞, we find 𝜌𝜇,𝜈(𝑟(𝑥) −

𝑆(𝑥), 𝑡) = 1 . Therefore r = s. ∎ 
In Theorem (3) if fis an odd mapping, then the 
following theorem can be proved 
Similarly. 

 
THEOREM 4. Let X be a real linear space 

and(𝑌, 𝜌𝜇,𝜈 , 𝜏)be a complete IRN-space 

and𝑓: 𝑋 → 𝑌be an odd mapping with f (0) = 0 for 

which there is a map𝜉: 𝑋2 → 𝐷+: 

and a map𝜁fromX2 to the space of non-measure 

distribution functions.𝜉(𝑥, 𝑦) is denoted by   𝜉𝑥,𝑦 , 

𝜁 (𝑥, 𝑦) is denoted by  𝜁𝑥,𝑦 and 

 ( 𝜉𝑥,𝑦(𝑡), 𝜁𝑥,𝑦(𝑡))denoted by𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡)with the 

property 

𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡),(6.11) 

If 

lim
𝑗→∞

𝜏𝑖=1
∞ ( 𝑄 𝜉,𝜁(2𝑖+𝑗−1𝑥, 0, 2𝑖+1𝑡) = 1𝐿∗ ,                                                

(6.12) 
and 

lim
𝑚→∞

𝑄 𝜉,𝜁(2𝑚𝑥, 2𝑚𝑦, 2𝑚𝑡) = 1𝐿∗ ,                                                           

(6.13) 

∀𝑥, 𝑦 ∈ 𝑋 , 𝑡 > 0, then there exists a unique 

quadratic mapping 𝑆: 𝑋 → 𝑌 

𝜌𝜇,𝜈(𝑓(𝑥) − 𝑆(𝑥), 𝑡) ≥𝐿∗ 𝜏𝑖=1
∞ (2𝑖−1𝑥, 0,2𝑡),                                                 

(6.14) 

∀𝑥 ∈ 𝑋 , 𝑡 > 0. 
 

COROLLARY 2. Let (𝑋, 𝜌́𝜇́,𝜈́ , 𝜏)be an IRN- space 

and(𝑌, 𝜌𝜇,𝜈 , 𝜏)be a complete 

IRN-space.  If 𝑓: 𝑋 → 𝑌be an even mapping 
satisfying 

𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ 𝜌́𝜇́,𝜈́(𝑥 + 𝑦, 𝑡),(6.15) 

∀𝑥, 𝑦 ∈ 𝑋 ,𝑡 > 0in which  

lim
𝑗→∞

𝜏𝑖=1
∞ ( 𝜌́𝜇́,𝜈́(𝑥, 0, 2𝑗+2𝑡)) = 1𝐿∗ , (6.16) 

∀𝑥, 𝑦 ∈ 𝑋 ,𝑡 > 0. 
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Then ∃! quadratic mapping𝑆: 𝑋 → 𝑌such that 

𝜌𝜇,𝜈(𝑓(𝑥) − 𝑆(𝑥), 𝑡) ≥𝐿∗ 𝜏𝑖=1
∞ (𝜌́𝜇́,𝜈́(𝑥, 0,4𝑡), 

  

∀𝑥 ∈ 𝑋,𝑡 > 0. 
Proof. It is enough to put, 

𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡) = 𝜌́𝜇́,𝜈́(𝑥 + 𝑦, 𝑡) 

 

∀ 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, the corollary immediate from 

Theorem (3). ∎ 
 

COROLLARY 3.Let (𝑋, 𝜌́𝜇́,𝜈́ , 𝜏)be an IRN- space 

and(𝑌, 𝜌𝜇,𝜈 , 𝜏) be a complete 

IRN-space.  If 𝑓: 𝑋 → 𝑌 be an odd mapping 
satisfying 

𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ 𝜌́𝜇́,𝜈́(𝑥 + 𝑦, 𝑡),(6.17) 

∀𝑥, 𝑦 ∈ 𝑋,𝑡 > 0in which 

lim
𝑗→∞

𝜏𝑖=1
∞ ( 𝜌́𝜇́,𝜈́(𝑥, 0, 22−𝑗𝑡)) = 1𝐿∗ ,                                                

(6.18) 

∀ 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0. 
Then ∃!additive mapping𝑆: 𝑋 → 𝑌such that 

𝜌𝜇,𝜈(𝑓(𝑥) − 𝑆(𝑥), 𝑡) ≥𝐿∗ 𝜏𝑖=1
∞ (𝜌́𝜇́,𝜈́(𝑥, 0, 22−𝑖𝑡), 

  

∀𝑥 ∈ 𝑋, 𝑡 > 0. 
Proof. It is enough to put, 

𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡) = 𝜌́𝜇́,𝜈́(𝑥 + 𝑦, 𝑡) 

∀ 𝑥, 𝑦 ∈ 𝑋,𝑡 > 0, the corollary immediate from 

Theorem (4). ∎ 
 

Example 6. Let (𝑋, ‖. ‖) be a Banach algebra space 

and( 𝑋, 𝜌́𝜇́,𝜈́, 𝑀) 

 be an IRN-space in which 

𝜌́𝜇́,𝜈́(𝑥, 𝑡) = (
𝑡

𝑡+4(‖𝑥‖+1)
,

4(‖𝑥‖+1)

𝑡+4(‖𝑥‖+1)
), 

∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0 and let (𝑌, 𝜌𝜇,𝜈 , 𝜏)be a complete 

IRN-space in which 

 

𝜌𝜇,𝜈(𝑥, 𝑡) = (
𝑡

𝑡+‖𝑥‖
,

‖𝑥‖

𝑡+‖𝑥‖
), 

∀ 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0.Define the mapping 𝑓: 𝑋 → 𝑌by 

𝑓(𝑥) = 𝑥2 + 𝑥0for all 

𝑥 ∈ 𝑋where 𝑥0is a unit vector in 𝑋. A 
straightforward computation shows that 

𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ 𝜌́𝜇́,𝜈́(𝑥 + 𝑦, 𝑡), 

∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0. Also we have  

lim
𝑗→∞

𝑀𝑖=1
∞ (𝜌́𝜇́,𝜈́(𝑥, 0, 2𝑗+2𝑡))

= lim
𝑗→∞

lim
𝑚→∞

𝑀𝑖=1
∞ ( 𝜌́𝜇́,𝜈́(𝑥, 0, 2𝑗+2𝑡)) 

   = lim
𝑗→∞

lim
𝑚→∞

( 𝜌́𝜇́,𝜈́(𝑥, 0, 2𝑗+2𝑡) 

= lim
𝑗→∞

𝜌́𝜇́,𝜈́(x,0,2𝑗+2𝑡) = 1𝐿∗ 

∀𝑥 ∈ 𝑋,𝑡 > 0. Therefore, ∃!quadratic mapping 

𝑆: 𝑋 → 𝑌 suchthat 

𝜌𝜇,𝜈(𝑓(𝑥) − 𝑆(𝑥), 𝑡) ≥𝐿∗ 𝜌́𝜇́,𝜈́(𝑥, 0,4𝑡), 

 

∀𝑥 ∈ 𝑋, 𝑡 > 0. 
 

7. HYERS-ULAM STABILITY OF THE 

ADDITIVE-QUADRATIC 

FUNCTIONAL EQUATION (1.1) IN IRN-

SPACES BY FIXED POINT 

METHOD 
By the fixed point method, we prove the generalized 
stability of the mixed type F-E (1.1) in complete 
IRN-spaces. Before giving the main result, we 
present a definition and a theorem will be used later. 

 
Definition 13 ( [6]).Let X be a set. A 

function 𝑑: 𝑋 × 𝑋 → [0, ∞]is called ageneralized 
metric on X if  d  satisfies 
(1)  𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 ; 
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)for all 𝑥, 𝑦 ∈ 𝑋; 
(3) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
We recall a fundamental result in fixed point theory. 

THEOREM 5( [6]).Let(𝑋, 𝑑)be a  complet 
generalized metric spaces and  let 

𝐽 ∶ 𝑋 → 𝑋 be a strictly contractive mapping with 

Lipschitz constant 𝛼 < 1.  Then foreach given 

element𝑥 ∈ 𝑋,either 

𝑑(𝑗𝑛𝑥, 𝑗𝑛+1 𝑥) = ∞ 
for all nonnegative integers n or there exists a 

positive integer  n0 such that 
 

(1)𝑑(𝐽𝑛𝑥, 𝐽𝑛+1 𝑥) < ∞, ∀𝑛 ≥ 𝑛0; 
(2) the sequence{𝐽𝑛𝑥}converges to a fixed point𝑦∗ 𝑜𝑓 𝐽; 
(3)𝑦∗is the unique fixed ponit of J in the set 𝑌

= {𝑦 ∈ 𝑋 ∖ 𝑑(𝐽𝑛0𝑥, 𝑦) < ∞}; 

(4) 𝑑(𝑦, 𝑦∗) ≤
1

1 − 𝛼
𝑑(𝑦, 𝐽𝑦)for all 𝑦 ∈ 𝑌. 

Now we present the main result in this section 

 

THEOREM 6.Let𝑋 be a real linear space 

and(𝑌, 𝜌𝜇,𝜈 , 𝜏)be a complete IRN-space  

and 𝑓: 𝑋 → 𝑌 be an even mapping with 𝑓(0) = 0 

for which there is a map 𝜉: 𝑋2 → 𝐷+and a map 

ζ from 𝑋2 to the space of non-measure distribution 
functions. 

𝜉(𝑥, 𝑦) is denoted by   𝜉𝑥,𝑦 , 𝜁 (𝑥, 𝑦) is denotedby  

𝜁𝑥,𝑦 and  ( 𝜉𝑥,𝑦(𝑡), 𝜁𝑥,𝑦(𝑡))    denoted 

by𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡)with the property 

𝑄 𝜉,𝜁(2𝑥, 2𝑦, 𝛼𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡), 0 < 𝛼 < 4 

and 

𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡)(7.1) 

∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0.Then there exists a unique 

quadratic mapping 𝑔: 𝑋 → 𝑌 
such that 
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𝜌𝜇,𝜈(𝑓(𝑥) − 𝑔(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,2(4 − 𝛼)𝑡)                    

(7.2) 

∀𝑥 ∈ 𝑋, 𝑡 > 0. Moreover, we have 

𝑔(𝑥) ≔ lim
𝑛→∞

𝑓 (
2𝑛𝑥

4𝑛
). 

Proof. Let y = 0 in (7.1); we get 

𝜌𝜇,𝜈(2𝑓(2𝑥) − 8𝑓(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0, 𝑡)                           

(7.3) 

∀ 𝑥 ∈ 𝑋, and𝑡 > 0 and hence 

𝜌𝜇,𝜈 (
𝑓(2𝑥)

4
− 𝑓(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,8𝑡)                               

(7.4) 

Consider the set 

𝐸 ≔ {𝑔: 𝑋 → 𝑌: 𝑔(0) = 0}, 
and the mapping 𝑑𝐺defined on𝐸 × 𝐸 by 

𝑑𝐺(𝑔, ℎ) = inf{𝜖 > 0 ∶ 𝜌𝜇,𝜈(𝑔(𝑥) − ℎ(𝑥), 𝜖𝑡) ≥

𝑄 𝜉,𝜁(𝑥, 0,8𝑡)}, 

∀𝑥 ∈ 𝑋, and 𝑡 > 0. Then (𝐸, 𝑑𝐺)is a complete 
generalized metric space (see the 
proof of [12, lemma 2.1]). Now, let us consider the 

linear mapping𝐽 ∶ 𝐸 × 𝐸 defined 
by 

𝐽𝑔(𝑥) =
𝑔(2𝑥)

4
 . 

Now, we show that 𝐽is a strictly contractive self-

mapping of 𝐸with the Lipschitz 

constant 𝑘 = 𝛼

4
. Indeed, let 𝑔, ℎ ∈ 𝐸be the mappings 

such that 𝑑𝐺(𝑔, ℎ) < 𝜀. Then we have 

𝜌𝜇,𝜈(𝑔(𝑥) − ℎ(𝑥), 𝜖𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,8𝑡) 

  ∀𝑥 ∈ 𝑋,𝑡 > 0and hence 

𝜌𝜇,𝜈 (𝐽𝑔(𝑥) − 𝐽ℎ(𝑥),
𝜀𝛼𝑡

4
)

= 𝜌𝜇,𝜈 (
𝑔(2𝑥)

4
−

ℎ(2𝑥)

4
,
𝜀𝛼𝑡

4
) 

=  𝜌𝜇,𝜈(𝑔(2𝑥) − ℎ(2𝑥), 𝜀𝛼𝑡) 

≥𝐿∗ 𝑄 𝜉,𝜁(2𝑥, 0, 𝛼8𝑡) 

  ∀ 𝑥 ∈ 𝑋, and𝑡 > 0.Since 

𝑄 𝜉,𝜁(2𝑥, 2𝑦, 𝛼𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡), 0 < 𝛼 < 4 

we have 

𝜌𝜇,𝜈 (𝐽𝑔(𝑥) − 𝐽ℎ(𝑥),
𝜀𝛼𝑡

4
) ≥𝐿∗ 𝑄 𝜉,𝜁(2𝑥, 0,8𝑡) 

that is, 

𝑑𝐺(𝑔, ℎ) < 𝜀 ⟹ 𝑑𝐺(𝐽𝑔, 𝐽ℎ) <
𝛼

4
𝜀. 

This means that 

𝑑𝐺(𝐽𝑔, 𝐽ℎ) <
𝛼

4
𝑑𝐺(𝑔, ℎ), 

∀𝑔, ℎ ∈ 𝐸. Next, from 
 

𝜌𝜇,𝜈 (
𝑓(2𝑥)

4
− 𝑓(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,8𝑡) 

follows that 𝑑𝐺(𝑓, 𝐽𝑓) ≤ 1. Using the Theorem (5), 
there exists a fixed point of J, 

that is, there is a mapping 𝑔: 𝑋 → 𝑌 such 

that𝑔(2𝑥) = 4𝑔(𝑥) ∀𝑥 ∈ 𝑋. 
Since, for all 𝑥 ∈ 𝑋 and 𝑡 > 0, 𝑑𝐺(𝑢, 𝑣) < 𝜀 ⟹

𝜌𝜇,𝜈(𝑢(𝑥) − 𝑣(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁 (2𝑥, 0,
8𝑡

𝜀
). 

It follows from 𝑑𝐺(𝐽𝑛𝑓, 𝑔) → 0 that lim
𝑚→∞

𝑓 (
2𝑛𝑥

4𝑛
) =

𝑔(𝑥) for all𝑥 ∈ 𝑋. 

Since 𝑓: 𝑋 → 𝑌is even, 𝑔: 𝑋 → 𝑌 is an even 
mapping. Also from 

 𝑑𝐺(𝑓, 𝑔) ≤
1

1 − 𝐿
𝑑(𝑓, 𝐽𝑓), 

∀𝑔, ℎ ∈ 𝐸.Then 𝑑𝐺(𝑓, 𝑔) ≤
1

1−𝛼
4

. It immediately 

follows that 

𝜌𝜇,𝜈 (𝑔(𝑥) − 𝑓(𝑥),
4

4 − 𝛼
𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,8𝑡) 

∀𝑥 ∈ 𝑋 and 𝑡 > 0.This means that 
 

𝜌𝜇,𝜈(𝑔(𝑥) − 𝑓(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,2(4 − 𝛼)𝑡) 

∀𝑥 ∈ 𝑋 and 𝑡 > 0.Finally, the uniqueness of 

𝑔follows from the fact that 𝑔is the 

unique fixed point of  𝐽 such that there exists such 

that𝐶 ∈ (0, ∞) such that 

𝜌𝜇,𝜈(𝑔(𝑥) − 𝑓(𝑥), 𝐶𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,8𝑡) 

∀𝑥 ∈ 𝑋 and 𝑡 > 0. This completes the proof.∎ 
 

In Theorem (6) if f  is an odd mapping, then the 
following theorem can be proved 
similarly. 

THEOREM 7..Let𝑋 be a real linear space 

and(𝑌, 𝜌𝜇,𝜈 , 𝜏)be a complete IRN-space  

and 𝑓: 𝑋 → 𝑌 be an odd  mapping with 𝑓(0) = 0 for 

which there is a map 𝜉: 𝑋2 → 𝐷+and a map ζ from 

𝑋2 to the space of non-measure distribution 
functions. 

𝜉(𝑥, 𝑦) is denoted by   𝜉𝑥,𝑦 , 𝜁 (𝑥, 𝑦) is denotedby  

𝜁𝑥,𝑦 and  ( 𝜉𝑥,𝑦(𝑡), 𝜁𝑥,𝑦(𝑡))    denoted 

by𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡)with the property 

𝑄 𝜉,𝜁(2𝑥, 2𝑦, 𝛼𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡), 0 < 𝛼 < 2 

and 

𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁  

∀𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0.Then there exists a unique 

quadratic mapping 𝑔: 𝑋 → 𝑌 
such that 

𝜌𝜇,𝜈(𝑓(𝑥) − 𝑔(𝑥), 𝑡) ≥𝐿∗ 𝑄 𝜉,𝜁(𝑥, 0,2(2 − 𝛼)𝑡) 

∀𝑥 ∈ 𝑋,𝑡 > 0. Moreover, we have 

𝑔(𝑥) ≔ lim
𝑛→∞

𝑓(2𝑛𝑥)

2𝑛
. 

 

 COROLLARY4.Let (𝑋, 𝜌́𝜇́,𝜈́ , 𝜏)be an IRN- space 

and(𝑌, 𝜌𝜇,𝜈 , 𝜏)be a complete 

IRN-space.  If 𝑓: 𝑋 → 𝑌be an even mapping 
satisfying 
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𝜌𝜇,𝜈(𝐷𝑠𝑓(𝑥, 𝑦), 𝑡) ≥𝐿∗ (
𝑡

𝑡+‖𝑥+𝑦‖
,

‖𝑥‖

𝑡+‖𝑥+𝑦‖
), 

∀ 𝑥, 𝑦 ∈ 𝑋,𝑡 > 0  

Then there existsa uniquequadratic mapping𝑆: 𝑋 →
𝑌  satisfying(1.1) and 

𝜌𝜇,𝜈(𝑓(𝑥) − 𝑆(𝑥), 𝑡) ≥𝐿∗ (
2(4−𝛼)𝑡

2(4−𝛼)𝑡+‖𝑥‖
,

‖𝑥‖

2(4−𝛼)𝑡+‖𝑥‖
), 

∀𝑥 ∈ 𝑋, 𝑡 > 0.Moreover, we have 

𝑆(𝑥) ≔ lim
𝑛→∞

𝑓(2𝑛𝑥)

4𝑛
. 

 

Proof. It is enough to put, 

𝑄 𝜉,𝜁(𝑥, 𝑦, 𝑡) = (
𝑡

𝑡+‖𝑥+𝑦‖
,

‖𝑥‖

𝑡+‖𝑥+𝑦‖
), 

∀𝑥 ∈ 𝑋, and𝑡 > 0 in theorem 6. Then we can 

choose 2 ≤ 𝛼 < 4and so we get the desired 

result.∎ 
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