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Abstract

The aim of this research is to study the effect of electron correlation for the uncorrelated

Hartree-Fock (HF) and correlated Configuration-Interaction (CI) wave functions for N*and O*°

ions. The physical properties of the one-particle radial distribution function D (ry) as well as the

expectation value of the one-particle distribution function(r{*) are discussed. The result shows

that the one-particle radial distribution function and the expectation values for n=1, 2 increase

with the atomic number Z. Indeed, the effect of electron correlation increase with the atomic

number Z.
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I. Introduction

The Hartree-Fock (HF) approximation is a
much useful method to study the electronic
structure of atoms and molecules [1, 2]. In
particular, the effect of electron correlation
cannot be ignore in the quantum mechanical
calculations [3,4]. In spite of the development
of different kind of approaches and methods,
the correlation problem still shifty [5,6,7].
The N-electron wave function of the HF
approximation can be written as the
antisymmetrised product of N one-electron
functions or orbitals [2], where the one-
electron function is a computationally and
conceptually attractive simplification in the
description of the N-electron system. In the
HF orbitals calculation the instantaneous
interaction between the electrons is replaced
(approximated) by the interaction of an
electron with the average field generated by
the other N-1 electrons. Indeed, the
correlation of the electronic repulsion
(Coulomb correlation) is neglected in the HF
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approximation [8, 9]. This is the Hartree Fock
error or correlation error. Coulomb
correlation can be included in the calculation,
for instance, through configuration interaction
(CI) but, compared to the HF, this is
computationally much more complex and
time-consuming [10,11].

Several research have instigated a broad
interest in the Hartree-Fock and configuration
interaction wave functions, and paved the way
for extensive studies of a wide range of both
experimental and theoretical topics. In Ref.
[12] was generalized the self-consistent field
(SCF) formalism. Ref. [13] was obtained an
accurate wave function for the ground state of
atomic systems. The successful approaches of
many-particle quantum mechanics for the
ground and excited states of Helium, Lithium
and Beryllium atoms using a configuration
interaction approximation was done by Ref.
[14]. In particular, Ref. [15] was analyzed and
compared five wave functions for Hydrogen
ion, and discussed the two-particle density.
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To this end, this research deals with the effect
of electron correlation due to the coulomb
repulsion between electrons. Therefore, we
start with the uncorrelated HF and correlated
CI wave functions, respectively, in Sec. II. In
Sec. III. I discuss the atomic properties of the
two-particle density for HF and CI wave
functions, respectively, as well as one-particle
radial distribution function D(r;), and the
expectation value for the one-particle radial
distribution function(r{*). Finally, I mention
and summarize the result in Sec. IV.

II. Wave Functions

A. Hartree-Fock Wave Function

The total wave function of the independent
practical model is given by Slater determinant
[16]:

qJHF(xll X2, - xn) =
| @1 (1) P2 (xz) ... Py (xp)) ... (1)

With the single electron wave function ®;(x;)
and x;denotes spin-orbital components [16]

D;(x;) = ¢;(r)a(d)....... (2)

r; denotes the radial and angular co-ordinate,
while a(d) is the spin wave function. The
spatial part ¢;(r;) can be written as an
expansion in some set of analytic basis
functions [17]:

Q) =i Cixlyennnn.n. 3

Where C! is a coefficient taken to minimize
the energy. The basis set of one-electron
function (basis function) consist to be
normalized Slater-type orbital defined by
[17]:

Xnim(1,0,9) = R, YL, (6,9)....... 4)

Where R,; and Y;},(8,9) represent the radial
and angular parts, respectively. The radial
part is given by [18]

1
207
Ru(r) = 2=t eér .. (5)
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n,l,and mare quantum numbers, with
exponential parameter (. For the HF ground
state calculations of N™and O ions I used
data (C, {, and n) introduced in Ref. [18].
Furthermore, the ground state data for the
correlated wave function of N*>and O™ ions
have taken in Ref. [19].

B. Configuration-Interaction Wave
Function

Configuration interaction (CI) is one of the
most general ways to improve upon Hartree—
Fock theory by adding a description electron
correlation in term of correlation energy.
Simply put, a CI wave function is a linear
combination of Slater determinants (or spin-
adapted configuration state functions), with
the linear coefficients being determined
variationally via diagonalization of the
Hamiltonian in the given subspace of
determinants [20]. The correlation description
of the ground state of N*’and O*® jons have
taken from Weiss [19,21]. Partitioning
technique is used to describe the correlation
effects.

q,CI = Zi C; ¢i ........ (6)

Where each of ¢; s (configurations) is
antisymmetrized product of one-electron
functions (spin orbital), and the coefficients c;
are taken from minimizing the total energy.
Applying the variation theorem and solving
an infinite set of secular equations may in
principle, obtain the exact wave function. In
this work we have used the Wiess method of
configuration interaction (CI) [11]. The
specific form of the configuration system
studied to be linear combination of single
Slater determinant using fifteen configuration
of s symmetry [19,21]

(A1) = =3IA(Dax(2)B

veeene (7)
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The basis set of one-electron function consist
to be normalized Slater-type orbital defined in
Refs. [12-14].

III.  Atomic properties for N**and O*®
Ions
A- The One-Particle Radial D(r;) and
Electron correlation AD () Function

The one-particle radial distribution function
for the correlated CI and uncorrelated HF
wave functions has the form [21]

Dyp(ry) = fooo Yur(r1,12) T% T% dr; ... (8)
Dyp(ry) = fooo Yar(ry,132) r% r% dr,.... (9)

where yeyr(11,15) and y¢ (1, 1,) are the two
particle density for uncorrelated and
correlated wave. To calculate the electron
correlation for the one-particle distribution
function, we have to take the difference
between the correlated and uncorrelated wave
function which has the form [11,22]

AD(TI) = DCI(rl) - DHF(rl) ........ (8)
B. The Expectation Value (r7)

The one-particle expectation value has the
form (r*) [17,22]

(rt) = [ Di(ry) T dry...... (11)
IV. Results and Discussions

The results of this paper achieve by
using of Mathmatica Program version (2010).
Furthermore, A. Sarsa, F.J. Gélvez, and E.
Buendia have used for Hartree-Fock [18]
wave function and Wiess for Configuration-
Interaction wave function [19].

A. The One-Particle Radial Distribution
Function.
The one-particle density distribution
function D(r;) represents the probability
of finding the test electron at distance rl
from the nucleus (where the nucleus is
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fixed at origin point of axis). To this end,
Figure 1 shows the one-particle radial
distribution function D(r;) versus ;.
Solid curves correspond to the
uncorrelated (HF) wave function and
dotted curves represent to the correlated
(CI) wave function of N*° (black curves)
and O™ (gray curves).

4.5

Figure 1: The one-particle radial
function D(r;) in unit of a. u. for N*°
(black curves) and o** (gray curves)
ions using uncorrelated HF (solid lines)
and correlated CI (tringles and square
dots) wave functions.

Indeed, Fig. 1 shows that the probability
increases with the increase the distance 7y,
then decrease after (r; =.015) and (r; =
.013) for N** and O*® | respectively, until
reaches zero which means that the probability
to fining the electron occurs at a distance
(r; = .015) and (r; = .013) for N** and ©*¢,
respectively. This happens due to the anti-
parallel spin component, therefore, two
electrons will be close to each other. We see a
difference between solid and dotted curves
due to the correlation effect which considered
in the configuration interaction wave
function.
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(A) uncorrelated HF (solid curves) and correlated

0.1 CI (dotted points) wave functions for N*5
i (blue curves) and O*° (red curves) ions. We
can see in Fig. 3 that the expectation value of
one-particle decrease with increase n. In this
paper the value of n is important parameter
because we can understand some physical
properties of N*> (blue curves) and O*° (red
— curves) ions that mention in table 1 and Fig.
_— . 3. To this end, n =—2 shows the force
& f\ i between the electron and nucleus, n = —1
-0.01 , # 2 g i gives the electron-nuclear attraction energy.
-0.02 v 211 In particular, n =0 refers to the
-0.03 normalization constant of the wave functions
and finally n = 2 is important to measure the

Figure 2: Electron correlation of one-  diamagnetic susceptibility. We note  the
particle radial distribution function  uncorrelated HF wave function for n =
AD(7;) in unit of a. u. as a function of r, -2, —‘1, 0 is smaller the correlated CI wave
(A) and Zry(B), respectively, for N+ function as well as for n = 1, 2. shows that
(black curves) and O™ (gray curves) ions uncorrelated HF wave function is larger the

using uncorrelated HF and correlated CI  correlated CI wave function due to electron
wave functions. correlation where the correlated CI wave

function takes into account the regulation
The interesting phenomena is the forces between the electrons.
corrclation effect on D(r;) in Fig. 2 which . . .
represents the difference AD(r;), between the ~ Table I: One-particle fg(pectatlon Hyalue. n
correlated wave function (CI) and the umit of au. for N™ and O™ using
uncorrclated wave function (HF) as a function ~ uncorrelated — and  correlated ~ wave

-0.0s §
-0.1

AD(r1)

-0.15
-0.2

AD(r1)/2

of r;. The difference shows an increase in functions.
D{r;) and then a decrease in D(ry), this
change caused by the correlation effect. The Tons N 0
correlation effects come from the separation
of two clectrons of this shell, where we put o
1 HF CI HF CI

each one in virtual state (configuration) for

mnstance ((1s2s), (2s2s) ...). Figure 2 shows

. . ) . . _ 90.572 94.386 119.488 123.647
that the correlation increase as increase the n=-2

atomic number Z.

n=-1 6.687 6.653 7.654 7.687
B. The Expectation Value
neo 1 1 1 1
Table 1 shows the one-particle
expectation value (r*) as a function of the n=1 0.226 0.237 0.196 0.205
cxponeni parameter n = —2..2.
n=2 0.068 0.078 0.051 0.058

In addition Fig. 3 shows the one-particle

cxpectation value (r{*) as a function of
exponent parameter n = —2..2 of the
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Figure 3: The one-particle expectation
value {(r]) in unit of a. u. versus the power
n for N¥ (black curves) and 0o (red
curves) ions. Solid curves represent the
uncorrelated HF wave function and dotted
points show the correlated CI wave
function, respectively.

C. Conclusions

Wc have studied in detail how the effect
of the electron correlation changes the one-
particle radial as well as the expectation value
of the radial distribution function. The effect
of electron correlation increase with increase
the atomic number Z.
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