On some Types of coc-functions

Received:21/5/2015 Accepted:16/8/2015

Sattar Hameed Hamzah

Department of Mathematics, College of Education Al-Qadisiyah University

E-mail: Sattar _ math @ Yahoo.com

And

Noor Hassan Kadhim
Department of Mathematics
College of Computer Science and Mathematics

Al-Qadisiyah University

E-mail: Noor91alzahra@yahoo.com

Abstract:

In this work, we investigate the properties of product of some coc-functions namely coc-continuous, coc-irresolute, strongly coc-closed and introduce the definition of coc-perfect, and investigate the properties of composition, restrictions and product of this type. Also, We give the relation among them.

Keywords: coc-open, coc-irresolute, strongly coc-closed and coc-perfect.

Math.Sub. Classifications: 54H,54 H 15, 22 F 05.

^{*}The Research is apart of on MSC. Thesis in the case of the second researcher

Introduction:

One of the very important concepts in a topological spaces is the concept of functions. There are several types of fu nction related to types of open set in atopological spaces [3],[5], Al Ghour S.and Samarah. S in [1] introduce the definition of coc-open set . Al-Hussaini F.H.[2] introduce coc-continuity as a generalization of continuity, Also they give the concept of coc-closed function. In this work, we study the properties of product of some coc-function namely (coc--open, coc-irresolute, strongly cocclosed) and construct coc-perfect function). Several results and concepts related to them will be introduced. Throughout this paper, we use $\mathbb{R}, \mathbb{Z}, \mathbb{Q}$ and N to denote the set of real numbers, the set of rational

numbers the set of Integer numbers and the set of natural numbers . For a subset A of topological space (X,T) the closure of A and the interior of A will be denoted by \overline{A} and A° respectively. Also, We write T_A to denote the relative topology on A. For a non empty set X T_{dis} T_{ind} will denote respectively the discrete and indiscret topology on X. We use T_U to denote the usual topology on R and T_{fin} to denote the final segment topology on \mathbb{N} , i.e T_{fin} to contain \mathbb{N} , φ and every set $\{n,n+1,\dots\}$ Where \mathbb{N} and positive integer. \mathbb{N} \mathbb{N} denote the set of all compact sets in \mathbb{N} .

*The research is a part of m.s.c. thesis in case of the second researcher

In this section, we recall the definition of coc-open set and investigate some properties.

1.1.Definition : [1]

A subset A of a space (X,r) is called coc-compact open set $(F\alpha)$ brief: coc-open set $(F\alpha)$ if for every $x \in A$ there exists an open set $U \subseteq X$ and a compact subset $K \in C(X,r)$ such that $x \in U - K \subseteq A$. The complement of coc-open set is called coc-closed set. The family of all coc-open set of X is denoute by T^k .

1.2.Remark : [1] [2]

i. Every open set is a coc-open set.
ii. Every closed set is a coc-closed set.
The converse of (i, ii) is not true in general as the following example shows:

Let $X = \mathbb{N}$, $T = T_{fin}$. The set $A = \{1,5,6,7,...\}$ is coc-open set, but it's not an open set and $B = \{5,6\}$ is an

1. COC-Open sets:

coc- closed set, but it's not an closed set.

1.3 . Theorem :[1]

Let (X,T) be a topological space Then i.The collection T^k forms a topology on X. ii.The collection $\beta^k(\tau)$ forms a base for T^k where $\beta^k(\tau) = \{U - K: U \in \tau \text{ and } K \in C(X,\tau)\}$. iii. $T \subseteq T^k$.

The converse of (iii) is not true as the following example shows: Let $X = \mathbb{N}$, $T = T_{ind}$ then $T^k = T_{dis}$ and then $T^k \nsubseteq T$.

1.4.Corollary:

1.5. Theorem:[4]

i.Let Y be a subspace of a topological space X and $A \subseteq Y$. Then A is compact relative to X if and only A is compact relative to Y.

ii. Every closed subset of a compact space is compact.

ii. In a Hausdorff space, a point and a compact set not containg it can be separated by open sets.

iv. Every compact subset of a Hausdorff space is closed.

1.6. Definition:[1]

A space X is called CC if every compact set in X is closed.

1.7 . Theorem :[1]

Let (X, τ) be a space. Then the following statements are equivalent: i. (X, τ) is CC. ii. $T = T^k$.

1.8.Corollary :[1]

Let (X,T) be a space then the intersection of an open set with a cocopen set is a cocopen set

1.10 . Definition: [2]

Let X be a space and $A \subseteq X$. The union of all coc-open sets of X contained in A is called coc-Interior of A and denoted by $A^{\circ coc}$ or coc- $In_T(A)$.

 $\operatorname{coc-}In_{\mathsf{T}}(A) = \cup \{B: B \text{ is } \operatorname{coc} - \operatorname{open in } X \text{ and } B \subseteq A \}.$

1.11.Remark:

It is clear that $A^{\circ} \subseteq A^{\circ coc}$. and $\overline{A}^{coc} \subseteq \overline{A}$, but the converse is not true in general as the following example shows: Let $X = \{1,2,3\}$, and $T = T_{ind}$ and $A = \{2\}$. Then $A^{\circ} = \emptyset$, $A^{\circ coc} = \{2\}$, $\overline{A}^{coc} = \{2\}$ and $\overline{A} = X$.

1.12 . Definition:[2]

Let Y be a subspace of a space X. A subset A of a space X is said to be an coc-open set in Y if for every $x \in A$ there exists an open set $U \subseteq Y$ and a compact subset $K \in C(Y, \tau_Y)$ such that $x \in U - K \subseteq A$.

1.13 . Proposition:[1]

Let (X, τ) be a T_2 -space, then $T = T^k$.

1.9 . Definition:[1]

Let X be a space and $A \subseteq X$. The intersection of all coc-closed sets of X containing A, is called coc-closure of A and is denoted by \overline{A}^{coc} or coc- $Cl_{\tau}(A)$.

 $\overline{A}^{coc} = \cap \{B: B \text{ is } coc - closed in X and A \subseteq B\}$.

Let X be a space and Y be any nonempty closed set in X. If B is a coc-open set in X then $B \cap Y$ is a cocopen set in Y.

1.14. **Proposition:** [2]

Let X be a space and Y be any nonempty closed set in X.If B is an coc-closed set in X then $B \cap Y$ is an coc-closed set in Y.

Note that: If A is an coc-open set in a sub space Y then A is not necessary be an coc-open set in a space X, as the following example shows: Let R be the set of real numbers, T_U be usual topology on R and let $Y=\{1,2\}$ then $\{1\}$ is a coc-open set in Y, but $\{1\}$ is not a coc-open in R.

1.15 .Proposition:

Let X be a space and Y be a coc-open set of X, if A is a coc-open set in Y then A is a coc-open set in X.

Proof:

Let $x \in A$, since A is a coc-open in Y then there exists an open set W in Y and a compact subset $K \in$ $C(Y, T_Y)$ such that $x \in W - K \subseteq$ A, since W an open set in Y then $w = U \cap Y$ (where U an open set in X) then $U \cap Y$ is an coc-open set in X (by Corollary 1.4). Hence for each $x \in U \cap Y$ there exist an open set V_x in X and compact subset $H \in C(X,T)$, such that $x \in V_x - H \subseteq U \cap Y = W$. Therefore A is an cocopen in X.

1.16 .Proposition:

Let X be a space and Y be an cocclosed set of X, if A is a coc-closed set in Y then A is a coc-closed set in X.

Proof:

To show that X - A is an cocopen set in X. Let $x \in X - A$ then either $x \in X - Y$ or $x \in Y - A$, if $x \in X - Y$. Since Y is an cocclosed in X then X - Y is an cocopen set in X, hence there is an open set U in X and a compact subset $K \in C(X,T)$ such that $x \in U - K \subseteq X - Y$ and since A $\subseteq Y$ then $X - Y \subseteq X - A$. Now if $x \in Y - A$. Since Y - A is a coc-open set in Y then there exist an open set V in Y and a compact subset $K \in C(Y, \tau_Y)$ such that $x \in$ $V - K \subseteq Y - A$ hence $V = W \cap Y$ (W an open set in X) Therefore $x \in W - K \subseteq Y - A$ Thus A be coc-closed set in X.

1.17. Remark:

Let X be a space and Y a sub space of X such that $A \subseteq Y$, if A a coc-open (coc-closed) subset in X then A is a coc-open (coc-closed) in Y.

1.18. Remark:

i. We use T_{prod} to denote the product topology on $X \times Y$ of a topological spaces (X, T) and (Y, σ) and the family of all coc-open sets in product space $X \times Y$ is denoted by T_{prod}^k . ii. We use T_{k-prod} to denoted the product topology on $X \times Y$ of a topological space (X, T^k) and (Y, σ^k) .

Now, we study properties of product of coc -open sets in a given space.

1.19. Proposition:

Let X and Y be spaces and A,B are non empty subsets of X and Y (respectively) such that $A \times B$ be a coc-open set in $X \times Y$ then A and B are coc-open sets in X and Y (respectively).

Proof:

Let $x \in A$ then $(x,y) \in A \times B$ for some $y \in B$ and since $A \times B$ be an coc-open set in $X \times Y$ then there exist open set H containing(x,y) in $X \times Y$ and a compact subset $W \in C(X \times Y, T_{prod})$ such that $(x,y) \in H - W \subseteq A \times B$, then $P_{r1}(H)$ is open set in X contain x, $P_{r1}(W)$ compact in X $(x,y) \in H - W \Rightarrow x \in P_{r1}(H) = P_{r1}(W) \subseteq P_{r1}(H - W)$, (since $P_{r1}(W)$ is continuous and W open in $X \times Y$) thus A is an coc-open set in X.

In a similar way we can prove that B be an coc-open set in Y.

1.20. Proposition:

Let X and Y be spaces and A, B are non empty subsets of X and Y (respectively) such that $A \times B$ be a coc-closed set in $X \times Y$ then A and B are coc-closed sets in X and Y (respectively). Proof:clear.

1.21 . proposition :

Let(X,T) and (Y,σ) be two spaces . then $T_{prod}^k \subseteq T_{k-prod}$. **Proof**: Clear .

1.22. Proposition:

Let(X, T) and (Y, σ) be CC-spaces then:

- If A is coc-open(coc-closed) set in (X, T) then A × Y is cocopen(coc-closed) in (X × Y, T_{prod}).
- ii. If B is coc-open(coc-closed) set in (Y, σ) then $X \times B$ is coc-

open(coc-closed) in $(X \times Y, T_{prod})$.

Proof:

i. Let A be coc-open set in (X,T) . since (X,T) is cc-space then $T^k = T$ (proposition 1.8) so A is an open set in (X,T) and then $A \times Y$ is open in $(X \times Y,T_{prod})$ and consequently $A \times Y$ is coc-open.

ii. In Similar way to proof in (i).

1.23. Proposition:

Let X and Y be spaces and let $A \subseteq X$ which $B \subseteq Y$ then:

- i. If A, B are coc-closed subset of X and im respectively ,then (\overline{A}) $||\overline{B}|| ||\overline{S}||^{coc} = \overline{A}^{coc} \times \overline{B}^{coc}$
- ii. If A, B are coc-open subset of X and Y respectively, then $(A \times B)^{\circ coc} = A^{\circ coc} \times B^{\circ coc}$.

2.COC- Irresoute functions:

In this section, we recall the definitions of coc- continuous function and coc- irresolute function and investigate some properties of them.

2.1 .Definition: [2]

Let $f: X \to Y$ be a function of a space X into a space Y then f is called a coc-continuous function if $f^{-1}(A)$ is a coc-open set in X for every open set A in Y.

Note that a function $f: (X, \tau) \to (Y, \sigma)$ is an coc-continuous if and only if $f: (X, \tau^K) \to (Y, \sigma)$ is a continuous.

The following definition introduced in [2].

2.2 .Definition:[2]

Let $f: X \to Y$ be a function of a space X into a space Y then f is called a coc-irresolute function if $f^{-1}(A)$ is a coc-open set in X for every coc-open set A in Y.

Note that a function $f: (X, \pi) \to (Y, \sigma)$ is a coc - irresolute funcion if and only if $f: (X, \tau^K) \to (Y, \sigma^K)$ is a continuous.

2.3 Example :[2]

 The constant function is a coc-irresolute continuous function.

ii. Let X and Y be finite sets and $f: X \to Y$ be a function of a space X into a space Y then f is coc — irresolute function.

2.4.Remark:[2]

 Every a continuous function is a coc-continuous function, but the converse not true in general as the following example shows:

Let $X = \{a, b\}$ and $Y = \{c, d\}$, $T = T_{ind} X$ and $\sigma = \{\phi, Y, \{c\}\}\$ be a topology on Y. Let $f: X \to Y$ be a function defined by f(a) = c, f(b) = d then f is an coc-continuous, but is not continuous.

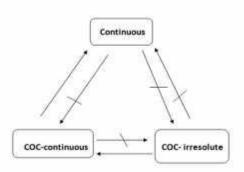
ii. Every a *coc* — irresolute continuous function is a coccontinuous function, but the converse not true in general as the following example shows:

Let T_u be usual topology on \mathbb{R} and $T = T_{ind}$ on $Y = \{1,2\}$. Let $f: \mathbb{R} \to Y$ be a function defined by

$$f(x) = \begin{cases} 1 & if x \in Q \\ 2 & if x \in Q^c \end{cases}$$

Then f is coc- continuous but is not coc – irresolute continuous since $f^{-1}(\{1\}) = Q$ is not coc-open in \mathbb{R} .

The following diagram shows the relations among the different types of continuous function.



2.5. Proposition:[2]

Let $f: X \to Y$ be a function then:

- i. f is coc- continuous if and only if $f^{-1}(A)$ is coc-closed set in (X, T), for every closed set A in (Y, σ) .
- ii. f is coc irresolutte continuous function if and only if $f^{-1}(A)$ is coc closed set in (X,T), every coc-closed in (Y,σ) .

Now study restriction of coccontinuous (coc-rresolutte continuous) functions [1][2].

2.6 .Proposition:

Let $f: X \to Y$ be a function and A be a nonempty closed set in X. Then i If f coc-continuous, then $f|_A: A \to Y$ is coc-continuous, ii. If f coc- irresolute continuous, then $f|_A: A \to Y$ is coc- irresolute continuous, continuous,

Now, we study the composition of coc- continuous functions.

2.7 .Remark:[2]

A composition of two coccontinuous functions not necessary be a coccontinuous function as the following example shows:

Let $X = \mathbb{R}$ the set of real numbers, $Y = \{0,1,2\}, W = \{a,b\}$

 $\tau = \{X\} \cup \{U \subseteq X: 1 \notin U\}$, the compact set are $\{K \subseteq X: 1 \in$ K} $\bigcup \{K \subseteq X: 1 \notin K \text{ is finite}\}\$ hence $\tau^k = \tau \cup \{U \subseteq X: 1 \in U \text{ and } X - V\}$ U is finite \. $\tau' = \{\phi, Y, \{0\}, \{0,1\}\}, \tau'' =$ $\{\phi, W, \{a\}\}\$ be topologies on Y and W respectively. If $f: X \to Y$ be function defined by $f(x) = \begin{cases} 2\\ 1 \end{cases}$ $ifx \in \{0,1\}$ otherwise and $g: Y \to W$ is a function defined by g(0) = g(2) = a and g(1) =b. Then f, g are coc- continuous functions .But $g \circ f$ is not a coccontinuous since $(g \circ f)^{-1}(\{a\}) =$ $\{0,1\}$ is not coc-open set in X.

2.8.Proposition:[2]

Let X, Y and Z be spaces and $f: X \to Y$ be coc-continuous if $g: Y \to Z$ is continuous then $g \circ f: X \to Z$ is coc-continuous.

2.9 Proposition: [2]

Let X, Y and Z be spaces and $f: X \to Y$, $g: Y \to Z$ be functions. Then if f is an coc-irresolute continuous and g is a coc-continuous then $g \circ f: X \to Z$ is coc-continuous.

2.10 .Proposition: [2]

Let $f: X \to Y$ and $g: Y \to Z$ be coc-irresolute continuous. Then $g \circ f: X \to Z$ is coc-irresolute continuous.

2.11 .Theorem:[1]

Let $f: X \to Y$ be a function and (X, τ) is CC then the following statements are equivalent: i. f is continuous. ii. f is coe-continuous.

2.12 .Theorem:[2]

Let $f: X \to Y$ be a function and (X, τ) is CC then the following statements are equivalent: i. f is continuous. ii. f is coc - irresolute continuous.

2.13 .Proposition:

Let X,Y and Z be spaces and, $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions then If f and g are coc-continuous functions and Y is an cc-space then $g \circ f$ is an coc-continuous.

Proof:

Since Y is cc-space and g is a coccontinuous so g is continuous by theorem (2.8) then $g \circ f$ is an coccontinuous.

Now, we study the product of coccontinuous functions

2.14 .Theorem :[1]

Let $f: (X,T) \to (Y,\sigma)$ and $g: (X,T) \to (Z,\mu)$ be two function. Then the function $h: (X,T) \to (Y \times Z, \tau_{prod})$ defined by h(x) = (f(x), g(x)) is coc-continuous if and only if f and g are coccontinuous.

2.15 .Remark:

The product of two coccontinuous functions is not necessary be ecc- continuous function as the following example shows:Let $X_l = Y_l = \mathbb{N}, T_l = T_{fin}, \sigma_l = T_{ind}, i=1,2$ and $f_l: (X_l, T_l) \rightarrow (Y_l, \sigma_l)$ be identity function then f_l is coccontinuous. But $f_1 \times f_2: (X_1 \times X_2, T_{prod}) \rightarrow (Y_1 \times Y_2, \sigma_{prod})$ is not coc-continuous, since $\{1,2\} \times \mathbb{N}$ is a closed set in $Y_1 \times Y_2$, but $(f_1 \times f_2)^{-1}(\{1,2\} \times \mathbb{N})$ is not coc-closed set in $X_1 \times X_2$.

2.16.Proposition:

Let $f_i: (X_i, T_i) \to (Y_i, \sigma_i)$ i = 1, 2, be functions such that $f_1 \times f_2: (X_1 \times X_2, T_{prod}) \to (Y_1 \times Y_2, \sigma_{prod})$ be an coe-continuous function then f_i are coe-continuous.

Proof:

To prove $f_1: X_1 \rightarrow Y_1$ be a coccontinuous. Let V be an open set $\operatorname{in} Y_1$, then $V \times Y_2$ is an open set $\operatorname{in} Y_1 \times Y_2$, since $f_1 \times f_2$ is a coccontinuous then $(f_1 \times f_2)^{-1}(V_1 \times Y_2) = f_1^{-1}(V_1) \times f_2^{-1}(Y_2)$ is an coccopen set $\operatorname{in} X_1 \times X_2$. Hence $f_1^{-1}(V_1)$ is a cocopen subset $\operatorname{in} X_1$, therefore $f_1: X_1 \rightarrow Y_1$ is an coccontinuous. In similar way we can prove that $f_2: X_2 \rightarrow Y_2$ is an coccontinuous.

2.17 .Remark:

The product of two cocirresolute continuous functions is not necessary be coc-irresolute function as shown in example in Remark(2.15).

2.18.Proposition:

Let $f_i: (X_i, T_i) \to (Y_i, \sigma_i)$ i = 1, 2, be functions such that $f_1 \times f_2: (X_1 \times X_2, T_{prod}) \to (Y_1 \times Y_2, \sigma_{prod})$ be an coc-irresolute continuous function then f_i are coc – irresolute continuous.

Proof: Similar to proof of proposition(2.16).

3. Strongly coc-closed functions:

In this section, We recall the definition of coc-closed function and introduce a strongly coc—closed function and investigate the properties of them.

3.1 .Definition: [2]

Let $f: X \to Y$ be a function of a space X into a space Y then: i. f is called an coc-closed function if f(A) is an coc-closed set in Y for every closed set A in X. ii. f is called an coc-open function if f(A) is an coc-open set in Y for every open set A in X. i. The constant function is an cocclosed function.

ii. Let $f: X \to Y$ be a function of a space X into a space Y such that Y is a finite set then f is an coc-open function.

3.3 . Remark: [2]

i. A function $f:(X,\tau) \to (Y,\sigma)$ is an coc-open if and only if $f:(X,\tau^k) \to (Y,\sigma^k)$ is a open function. ii. Every closed (open) function is an coc-closed (an coc-open) function, but the converse not true in general as the following example shows:

3.4 Example: [2]

Let $X = \{1,2,3\}$, $Y = \{4,5\}$, $\tau = \{\phi, X, \{3\}\}$ be a topology on X and $\tau' = T_{ind}$ be topology on Y. Let $f: X \to Y$ be a function defined by f(1) = f(2) = 4, f(3) = 5 then f is an ecc-closed (an coc-open) function but is not a closed (an open) function.

3.5. Remark:

The composition of two coc-closed function is not necessary be coc-closed function, so we put conditions either on function or on atopology spaces to obtain the result as show in the following proposition:

3.6.Proposition:

Let $f:(X,T) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ be functions then:

if f is a closed and g is an coc-closed then g of is a coc-closed function.

ii. If f and g be coc-closed and Y co-space then $g \circ f$ is a coc-closed function.

Proof:

i.see in [2]

ii. let A be closed set in (X,T)then f(A) is coc-closed in (Y,σ) , since (Y,σ) , is cc-space then f(A) is closed in (Y,σ) , (proposition 1.7) A nd then $g(f(A)) = (g\circ f)(A)$ is coc-closed set in (Z,μ) .

3.2 . Example:[2]

3.7.Proposition:[2]

Let $f: X \to Y$ be a coc-closed function then the restriction of f to a closed subset F of X is an coc-closed of F into Y.

3.8 .Proposition:[2]

A bijective function $f: X \to Y$ is an coc-closed function if and only if f is an coc-open function.

3.9 .Proposition: [2]

Let $f: X \to Y$ be bijective function from a space X into a space Y. Then:

i. f is an coc-open function if and only if f^{-1} is an coc-continuous. ii. f is an coc-closed function if and only if f^{-1} is an coc-continuous.

3.10 .Proposition : [2]

Let $f: (X,T) \to (Y,\sigma)$ be cocclosed function and A be closed subset of (X,T)then $f|_A: (A,T|_A) \to (Y,\sigma)$ is coc-closed.

3.11 .Proposition:

Let f_i : $(X_i, \tau_i) \rightarrow (Y_i, \sigma_i)$, i=1,2be a functions such that $f_1 \times f_2$: $(X_1 \times X_2, T_{prod}) \rightarrow (Y_1 \times Y_2, \sigma_{prod})$ be coc-closed function then f_i is coc-closed function, i=1,2. **Proof**:

To prove $f_1: (X_1, \tau_1) \rightarrow (Y_1, \sigma_1)$ is coc-closed Let A be closed set in (X_1, τ_1) then $A \times X_2$ is closed set in $(X_1 \times X_2, T_{prod})$, so $(f_1 \times f_2)(A \times X_2) = f_1(A) \times f_2(X_2)$ is coc-closed set in $(Y_1 \times Y_2, \sigma_{prod})$ so $f_1(A)$ is coc-closed set in (Y_1, σ_1) By proposition (1.20)So f_1 is coc-closed function. In similar way f_2 is coc-closed function.

Now we recall the definition of strongly coc-closed function and introduce some propositions about it.

3.12 .Definition:[2]

Let $f: X \to Y$ be a function of a space X into a space Y then: i. f is called an strongly coc—closed function if f(A) is an coc-closed set in Y for every coc-closed set A in X. Note that a function $f:(X,T) \to (Y,\sigma)$ is strongly coc-closed if and only if $f:(X,T^k) \to (Y,\sigma^k)$ is closed

3.13 .Example:[2]

The constant function is an strongly coc-closed function.

3.14 . Remark : [2]

It is clear that every strongly cocclosed function is coc-closed but the converse is not true in general.

3.15 .Proposition:[2]

Let X, Y and Z be spaces and $f: X \to Y$, $g: Y \to Z$ be functions. Then: i. If f and g are strongly coc-closed function, then $g \circ f$ is strongly cocclosed function. ii. If $g \circ f$ is strongly coc-closed function. f is strongly coc-closed continuous and onto ,then gis strongly coc-closed iii. If $g \circ f$ is strongly coc-closed function, g is strongly coc-closed continuous and onto, then gis strongly coc-closed continuous and onto, then g

3.16 .Remark:

3.19 .Proposition:

let $f_i: (X_i, T_i) \rightarrow (Y_i, \sigma_i), i = 1,2$ be afunction if $f_1 \times f_2: (X_1 \times X_2, T_{prod}) \rightarrow (Y_1 \times Y_2, \sigma_{prod})$ is strengly coc-closed function and (X_i, T_i) is cc - space then f_i is cocclosed function, i=1,2.

Proof:

To prove $f_1: (X_1, T_1) \rightarrow (Y_1, \sigma_2)$ be strongly coc-closed function. Let A be coc-closed set in (X_1, T_1) then $A \times X_2$ is coc-closed in $(X_1 \times X_2, T_{prod})$, propostion (1.22) So $(f_1 \times f_2)(A \times X_1) = f_1(A) \times f_2(X_1)$ if $f: (X,T) \to (Y,\sigma)$ be strongly coc-closed function and $A \subseteq X$ then it is not necessary $f|_A: (A,T|_A) \to (Y,\sigma)$ be strongly coc-closed as the following example shows: $X = Y = Z, T = \{\emptyset, \mathbb{Z}, \mathbb{Z} - \{1,2\}\}, \sigma = T_{ind}, A = \mathbb{Z}_0$ and $f: (X,T) \to (Y,\sigma)$ be identity function then f is coc-closed function but $f|_A: (A,T|_A) \to (Y,\sigma)$ is not coc-closed.

3.17 .Proposition:

Let $f: (X,T) \to (Y,\sigma)$ be strongly coc-closed function and A be coc-closed set in (X,T) then $f|_A:$ $(A,T|_A) \to (Y,\sigma)$ be strongly cocclosed

Proof:

Since A is coc-closed set in (X,T) then inclusion function $i_A: (A,T_A) \to (X,T)$ is strongly coc-closed so $f|_A = f \circ i_A: (A,T|_A) \to (Y,\sigma)$ is strongly coc-closed.

3.18 .Remark:

The product of two strongly coc-closed function is not necessary strongly coc-closed function as the following example shows: $X_i = Y_i = \mathbb{N}, T_i = T_{ind}, \sigma_i = T_{fin}, i = 1,2$ and $f_i: (X_i, T_i) \rightarrow (Y_i, \sigma_i), i = 1,2$ are identity functions then f_i is coc-closed function. But $f_1 \times f_2$ is not coc-closed function.

is coc-closed set in $(Y_1 \times Y_2, \sigma_{prod})$, so $f_1(A)$ is coc-closed set in (Y_1, σ_1) propostion (1.20), so f_1 is strongly coc-closed function.

In similar way f_2 is strongly cocclosed function.

4.COC-Perfect functions

In this section, We introduce the definition of coc-perfect function and investigate the properties of it. Also we give the relation between cocperfect and perfect.

4.1 .Definition : [5]

A function $f: (X, T) \to (Y, \sigma)$ is called perfect if f is continuous closed surjection and each fiber $f^{-1}(y)$ is compact, $\forall y \in Y$.

Now we introduce the following definition .

4.2 . Definition

A function $f: (X,T) \to (Y,\sigma)$ is called coc-perfect if:

- (i) f is coc- continuous function.
- (ii) f is coc-closed function
- (iii) The fibers of f are coccompact (i.e. $f^{-1}(y)$ is coc-compact $\forall y \in Y$).

4.3.Example:

Let $X=\{1,2,3\}$, $Y=\{2,4,6\}$ and $T=T_{ind}$, $T=\{\emptyset,Y,\{4\}\}$ be topologies on X, Y(resp). A function $f:X\to Y$ defined as f(x)=2x, $\forall x\in X$ is coc-perfect.

4.4. Example:

Let $X = Y = \{a, b, c\}$ and $T = \{\emptyset, X, \{b\}, \{a, b\}\}, \sigma = \{\emptyset, Y, \{b\}, \{a, b\}, \{b, c\}\}$ be topologies on X and Y respectively. Then a function $f: (X, T) \to (Y, \sigma)$ Which defined by f(a) = c; f(b) = b; f(c) = a. Then f is not coc-perfect

4.8.Proposition:

Let $f: (X,T) \to (Y,\sigma)$ be cocperfect and A be closed set in (X,T) then $f|_A: (A,T|_A) \to (Y,\sigma)$ is coc-perfect. **Proof**:

 $f|_A$ is coc- continuous (Proposition 2.6 i).And ccc -closed (proposition 3.10). Now, let $y \in Y$ then $f^{-1}(y)$ is coc-compact in (X.T) so $f^{-1}(y) \cap A$ is coc-compact in(X,T)since A is closed in (X,T)there fore $(f|_A)^{-1}(y) = f^{-1}(y) \cap A$ is coc-compact in (A,T|_A) hence f(A) is coc-perfect function, since it is not coccontinuous function.

4.5. Remark:

 (i)Every perfect function from CC —space into any topological space is coc-perfect.
 (ii)Every homeomorphism

(ii)Every homeomorphism from CC —spaceinto any topological space coc-perfect.

From the definition (4.2), every cocperfect function is coc-closed, but the converse is not true in general as the following example shows:

4.6. Example:

Let R be the real numbers, N be a subset of R. $T = \{U \subseteq R : U = R \text{ or } U \cap N = \emptyset \}$ be a topology on R, a function $f: R \to R$, which defined as f(x) = 0 for all $x \in R$ is coc-closed, but not coc-perfect function. Since $f^{-1}(\{0\})=R$ is not coc-compact.

4.7.Rremark:

If $f:(X,T) \to (Y,\sigma)$ be cocperfect and $A \subseteq X$ then it is not necessary $f|_A:(A,T|_A) \to (Y,\sigma)$ is cocperfect since the restriction of coc-closed function not necessary cocclosed.

4.9 . Remark:

A composition of two coc-perfect functions is not necessary coc-perfect function.

Now, we put the condition either on a function or on topological spaces to satisfy the composition of two cocperfect function is coc-perfect.

4.10 .Proposition:

Let $f: X \to Y$ and $h: Y \to Z$ be functions, then: (i) If f and h are coc-perfect functions, Y is a cc-space, then hof is coc-perfect. (ii) If f is perfect and h is coc-perfect functions, where X, Y are cc—spaces, then hof is coc-perfect.

(iii) If f is coc-perfect and h is perfect function Y is cc—space, then hof is coc-perfect

Proof:

(i) By theorem (2.13), hof is coccontinuous and by theorem , (3.6.ii) hof is coc-closed . Now, to prove that $(hof)^{-1}\{z\}$ is coc-compact set in X for every $z \in Z$. Since h is cocperfect, then $h^{-1}\{z\}$ is coc-compact set in Y for every $z \in Z$. But f is coc-perfect, then $f^{-1}(h^{-1}\{z\}) = (hof)^{-1}\{z\}$ iscoccompact set in X for every $z \in Z$. Hence hof is coc-perfect function. (ii) By theorem (2.8), hof is coccontinuous and by theorem (2.6.i), hof is coc-closed. Now, to prove that $(hof)^{-1}\{z\}$ is coc-compact set in X for every $z \in Z$ Since h is cocperfect, then $h^{-1}\{z\}$ is coc-compact set in Y. But Y is ec-space pace, then $h^{-1}\{z\}$ is compact in Y, since f is a perfect, then $f^{-1}(h^{-1}\{z\}) =$ $(hof)^{-1}\{z\}$ is compact set in X, butX is cc-space then $(hof)^{-1}\{z\}$ is coccompact . hof is coc-perfect.

(iii)Clear.

.

References

[1] . Al Ghour .S .and Samarah" Cocompact Open Sets and Continuity", Abstract and Applied analysis, Article ID 548612, 9 pages ,2012.

[2]. AL-Hussaini F,H. " On Compactness Via cocompact Open Sets

", M .S. c. Thesis University of AL-Qadissiya , College of Mathematics and computer Science , 2014.

[3]. Al.Omari.A and Noorani.M.S.Md

"New characterization of

4.11 .Remark:

The product of two cocperfect function is not necessaty be cocperfect function.

4.12.Proposition:

Let $f_i: (X_i, T_i) \to (Y_i, \sigma_i)i = 1,2$ be functions such that $f_1 \times f_2: (X_1 \times X_2, T_{prod}) \to (Y_1 \times Y_2, \sigma_{prod})$ is coc-perfect function then f_i is coc-perfect function.

Proof

To prove that $f_1: (X_1, T_1) \to (Y_1, \sigma_1)$ is coc-perfect.

- (a) Since $f_1 \times f_2$ is continuous then f_1 is coc-continuous (by proposition 2.16)
- (b) Since f₁ × f₂ is coc-closed then f₁ is coc-closed (by proposition 3.12)
- (c) Let $y_1 \in Y$ then $(y_1, y_2) \in Y_1 \times Y_2$ for each $y_2 \in Y$ and $(f_1 \times f_2)^{-1} (y_1, y_2) = f_1^{-1} (y_1) \times f_2^{-1} (y_2)$ is coccompact in $(X_1 \times X_2, T_{prod})$ So $f_1^{-1} (y_1)$ is coccompact in (X_1, T_1) .

 f_2 is we can prove coc-perfect. From (a), (b) and (c) f_1 coc-perfect and in similar way

compact spaces " proceedings of the 5thAsian Mathematical conference, Malaysia, (2009).

[4] .Bourbaki N. , Elements of Mathematics , " General topology" chapter 1-4 , Spring Verlog , Berlin , Heidelberg , New-York ,London , Paris , Tokyo , 2^{nd} Edition (1989). [5].DugundjiJ. , Topology , Allyn and Bacon , Boston , (1966) .

حول بعض الانماط من الدوال -COC

تاريخ القبول :2015/8/16 تاريخ الاستلام: 2015/5/21

ستار حميد حمزة

جامعة القادسية ,كلية التربية ,قسم الرياضيات

البريد الالكتروني :- Sattar _ math @ Yahoo.com

و نور حسن كاظم

جامعة القادسية . كلية علوم الحاسوب والرياضيات . قسم الرياضيات noor91alzahra @ Yahoo.com -: البريد الالكتروني

المستخلص:

في هذا العمل درسنا خصائص اله ليعض الأنماط من الدوال-COC وبالتحديد الدالة المنحلة من النمط -COC والمغلقة من النمط -000 وقدمنا تعريف الدالة التامة من النمط -000 أعطينا خصائص التركيب والقصر والضرب لهذه الدوال وكذلك العلاقة بينهم

كلمات افتتاحية:

المجموعة المفتوحة من النمط -co , المنطق من النمط -coc والمغلقة من النمط -coc, التامة من النمط -coc,

*البحث مستل من رسالة ماجستير للباحث الثاني .