Using differential transform method to solve fractional nonlinear integro-differential equations

Received :23/ 10 / 2017 Accepted : 2 / 7 /2018

L. Noor Ali Hussein Department of Mathematics, Education of College , Al-Qadisiyah University

Abstract

In this paper we'll to solve the fractional integro-differential equations by employment differential transform method and compare with integro-differential equations by graph.

1- Introduction

In this paper we'll find solution the fractional non-linear integrodifferential equations which the form $v^q(t) = (t, v(t), v'(t), \int_{t_0}^t G(s, v(s), v'(s)) ds$, (1)

with conditians

$$v(t_0) = v_0$$
 , $v'(t_0) = v_1$. (2)

Where $t \in [t_0, T]$ and $m - 1 \le q \le m$, $m \in N$,

by using differential transform method

There are sundry definitions of a fractional derivativ of order q > 0,

here we depended on Caputo definition.

$$D_{t_0}^q f(t) = J^{m-q} \left[\frac{d^m}{dt^m} f(t) \right]$$
 (3)

Where $m-1 < q \le m$ and $m \in N$.

The Caputo fractional drivative first calculates an ordnary drivative followed by a fractional integral to ascertain the wanted order of fractional derivative.

2- Differential Transform

Definition 2.1. Let z(t), is anatomy function of one inconstant which is defined on $L = [0,t] \subseteq \Re$ and $t_0 \in L$. Z(k), is Differential transform of z(t) and is predefined on N union $\{0\}$ as the following:

$$Z(k) = \frac{1}{k!} \left[\frac{d^k z(t)}{dt^k} \right]_{t=t_0}$$
 (4) ,

where z(t) is the fundamental function and Z(k) is called the transformed function .Inverse differential transform of Z(k) in the is predefined as follows

$$z(t) = \sum_{k=0}^{\infty} Z(k)(t - t_0)^k .$$
(5)

Then from the above two equations (4) and (5), with $t_0 = 0$, the function z(t) can be written as:

$$z(t) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{d^k z(t)}{dt^k} \right]_{t=0} t^k$$
(6)

the principal mathematical specifications of differential transform can be summarized in the following theorems .

3. Theorems [1],[2]

Theorem 3.1

If Z(k), F(k) and G(k) are differential transforms of the functions z(t), f(t) and g(t) consecutive, then:

1. If
$$z(t) = f(t) \pm g(t)$$
 then $Z(k) = F(k) \pm G(k)$.

2. If
$$z(t) = af(t)$$
 then $Z(k) = aF(k)$.

3. If
$$z(t) = f(t)g(t)$$
 then $Z(k) = \sum_{l=1}^{k} F(l)G(k-l)$.

4. If
$$z(t) = \frac{df(t)}{dt}$$
 then $Z(k) = (k+1)F(k+1)$.

5. If
$$z(t) = \frac{d^m f(t)}{dt^m}$$
 then $Z(k) = (k + 1)(k+2)\cdots(k+m)F(k+m)$.

6. If
$$z(t) = \int_0^t f(s)ds$$
 then $Z(k) = \frac{F(k-1)}{k}$, $K \ge 1$, $Z(0) = 0$.

7. If
$$z(t) = t^m$$
 then $Z(k) = \delta(k-m) = \begin{cases} 1, & k=m \\ 0, & O.W. \end{cases}$

8. If
$$z(t) = \sin(\omega t + a)$$
 then $Z(k) = \frac{\omega^k}{k!} \sin(\frac{k\pi}{2} + a)$.

9. If
$$z(t) = \cos(\omega t + a)$$
 then $Z(k) = \frac{\omega^k}{k!} \cos(\frac{k\pi}{2} + a)$.

10. If
$$z(t) = e^{\omega t}$$
 then $Z(k) = \frac{\omega^k}{k!}$.

Theorem 3.2. Assume that

Z(k), W(k), $J_1(k)$ and $J_2(k)$, are the differential transforms of the functions z(t), w(t), $j_1(t)$ and $j_2(t)$, consecutive, then for $k = 1, 2, \dots, N$,

1. If
$$z(t) = \int_{t_0}^t j_1(s)j_2(s)ds$$
 then
$$Z(k) = \frac{1}{k} \sum_{\ell=0}^{k-1} J_1(\ell)J_2(k-\ell-1)$$

2. If
$$z(t) = w(t) \int_{t_0}^t j_1(s) j_2(s) ds$$
 then
$$Z(k) = \sum_{\ell=0}^k \sum_{s=0}^{k-\ell-1} \frac{1}{k-\ell} W(\ell) J_1(s) J_2(k-\ell-s-1).$$

3. If
$$z(t) = \int_{t_0}^t \frac{d^{n_1}}{dt^{n_1}} j_1(s) \frac{d^{n_2}}{dt^{n_2}} j_2(s) ds$$
, then
$$Z(k) = \frac{1}{k} \sum_{\ell=0}^{k-1} \frac{(n_1+\ell)!(n_2+k-\ell-1)!}{l!(k-\ell-1)!} \times I_1(n_1+l) I_2(n_2+k-\ell-1).$$

4. If
$$z(t) = \frac{d^m}{dt^m} w(t) \int_{t_0}^t \frac{d^{n_1}}{dt^{n_1}} j_1(s) \frac{d^{n_2}}{dt^{n_2}} j_2(s) ds \text{ the } Z(k) = \sum_{\ell=0}^k \sum_{s=0}^{k-\ell-1} \frac{(m+\ell)!(n_1+s)!(n_2+k-\ell-s-1)!}{(k-\ell)\ell!s!(k-\ell-s-1)!} \times J_1(n_1+s) J_2(n_2+k-\ell-s-1)!$$

$$J_1(m_1+s) J_2(n_2+k-\ell-s-1)!$$
1) $W(m+\ell)$

4. Fractional differential transform

Let the anatomy and continuous function z(t) in terms of a fractional reinforce series as follows:

$$z(t) = \sum_{k=0}^{\infty} Z(k) (t - t_0)^{k/\alpha},$$
(7)

where α is the order frction and Z(k)is the frctional differential transform of z(t).

The fractional derivative in Caputo is $D_{t_0}^q z(t) =$

$$\frac{1}{\Gamma(m-q)} \frac{d^m}{dt^m} \left\{ \int_{t_0}^t \left[\frac{z(s) - \sum_{k=0}^{m-1} \left(\frac{1}{k!}\right) (s - t_0)^k z^{(k)}(t_0)}{(t-s)^{1+q-m}} \right] ds \right\} \frac{\Gamma(q + 1 + k/\alpha)}{\Gamma(1 + k/\alpha)} F(k + \alpha q).$$
(8)
6. If

The transformation of the initial conditions are defined as follows:

$$Z(k) = \begin{cases} \text{If } k/_{\alpha} \in Z^{+}, & \frac{1}{(k/_{\alpha})!} \left[\frac{d^{k/_{\alpha}} z(t)}{dt^{k/_{\alpha}}} \right]_{t=t_{0}} \\ \text{If } k/_{\alpha} \notin Z^{+}, & 0 \end{cases}$$
,(9)

where, q is the order of fractional differential equation considered.

we succinct the fractional differential transform method with some theorems

Theorem 4.1.

1. If
$$h(t) = g(t) \pm f(t), \text{ then } H(k) = G(k) \pm F(k).$$

2. If
$$h(t) = g(t)f(t)$$
, then $H(k) = \sum_{l=0}^{k} G(l)F(k-l)$.

3. If
$$h(t) = f_1(t)f_2(t)\cdots f_{n-1}(t)f_n(t)$$
, then

$$\begin{split} H(k) &= \\ \sum_{k_{n-1}=0}^{k} \sum_{k_{n-2}=0}^{k_{n-1}} \cdots \sum_{k_{2}=0}^{k_{3}} \sum_{k_{1}=0}^{k_{2}} F_{1}(k_{1}) F_{2}(k_{2} - k_{1}) \cdots F_{n-1}(k_{n-1} - k_{n-2}) F_{n}(k - k_{n-1}) \end{split}$$

4. If
$$h(t) = (t - t_0)^p$$
 , then $H(k) = \delta(k - \alpha p)$ where ,

$$\delta(k) = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases}$$

5. If
$$h(t) = D_{t_0}^q [f(t)]$$
, then $H(k) = ds$

$$\begin{cases} \frac{\Gamma(q+1+k/\alpha)}{\Gamma(1+k/\alpha)} F(k+\alpha q). \end{cases}$$

$$\begin{array}{l} 6. \text{ If } \\ h(t) = \\ \frac{d^{q_1}}{dt^{q_1}}[f_1(t)] \frac{d^{q_2}}{dt^{q_2}}[f_2(t)] \cdots \frac{d^{q_{n-1}}}{dt^{q_{n-1}}}[f_{n-1}(t)] \frac{d^{q_n}}{dt^{q_n}}[f_n(t)], \text{ then } H(k) = \\ \sum_{k_{n-1}=0}^k \sum_{k_{n-2}=0}^{k_{n-1}} \cdots \sum_{k_2=0}^{k_2} \sum_{k_1=0}^{k_2} \frac{\Gamma(q_1+1+k_1/\alpha)}{\Gamma(1+k_1/\alpha)} \frac{\Gamma[q_2+1+(k_2-k_1)/\alpha]}{\Gamma[1+(k_2-k_1)/\alpha]} \cdots \frac{\Gamma[q_{n-1}+1+(k_{n-1}-k_{n-2})/\alpha]}{\Gamma[1+(k_{n-1}-k_{n-2})/\alpha]} \frac{\Gamma[q_n-1+1+(k_n-1-k_n-2)/\alpha]}{\Gamma[1+(k_n-1-k_n-2)/\alpha]} \frac{\Gamma[q_n-1+(k_n-1-k_n-2)/\alpha]}{\Gamma[1+(k_n-1-k_n-2)/\alpha]} \frac{\Gamma[q_n-1+(k_n-1-k_n-2)/\alpha]}{\Gamma[1+(k_n-1-k_n-2)/\alpha]} \frac{\Gamma[q_n-1+(k_n-1-k_n-2)/\alpha]}{\Gamma[1+(k_n-1-k_n-2)/\alpha]} \frac{\Gamma[q_n-1+(k_n-1-k_n-2)/\alpha]}{\Gamma[1+(k_n-1-k_n-2)/\alpha]} \frac{\Gamma[q_n-1+(k_n-1-k_n-2)/\alpha]}{\Gamma[1+(k_n-1-k_n-2)/\alpha]} \frac{\Gamma$$

4. Numerical examples

Example 1 To solve the equation

$$z^{q}(t) = \frac{1}{2}z'(t)u(t) - u(t) - \int_{0}^{t} [z'(s)]^{2} ds + \frac{1}{2} + t , \quad t \ge 0$$
(10)

with conditions

$$z(0) = -1$$
, $z'(0) = 1$, $z''(0) = \frac{1}{2}$ (11)

By using differential transformation method on Equ.(10), for k=1,2,... , we acquire

$$Z(k + \alpha q) = \frac{\Gamma(1+k/\alpha)}{\Gamma(q+1+k/\alpha)} \left[\frac{1}{2} \sum_{\ell=0}^{k} (\ell + 1) Z(\ell+1) Z(k-\ell) - Z(k) - \frac{1}{k} \sum_{\ell=0}^{k-1} (\ell+1) (k-\ell) Z(\ell+1) Z(k-\ell) + \frac{1}{2} \delta(k) + \delta(k-1) \right],$$
(12)

where α is the unknown value of the fraction of q.

By using Eq.(9) the initial conditions is

$$Z(0) = -1$$

$$Z(1) = 1$$

$$Z(2) = \frac{1}{2}$$

$$Z(3) = 0$$
.

for
$$k = 3, ..., 9, 11, 12, ..., 19, 21$$
 (13)

$$Z(10) = 1$$

$$Z(20) = \frac{1}{4}$$

Now, in [1], when q = 2, the exact solution of Eq.(10) is $(z(t) = \sin(t) - \cos(t))$ and it's got from the serise solution

$$z(t) = -1 + t + \frac{1}{2}t^2 - \frac{1}{6}t^3 - \frac{1}{24}t^4 + \frac{1}{120}t^5 + \frac{1}{720}t^6 - \frac{1}{5040}t^7 + \cdots$$

Here, we take q=2.1 then the approximate solution for Eq.(10) is $z(t)=-1+t^{\frac{1}{10}}+\frac{1}{2}t^{\frac{2}{10}}+t+\frac{1}{4}t^2-2t^{\frac{2}{10}}+t^{\frac{2}{10}$

Fig.1 shows the complete solution for Eq.(10), when q = 2, Fig.2 shows the Sacrificial solution for Eq.(10), when q = 2.1

$$z^{q}(t) = \frac{1}{2}z'(t) - z(t) \int_{0}^{t} z'(s)z'(s)ds + \frac{1}{2}e^{3t}$$
(14)

with conditions

$$z(0) = z'(0) = 1$$
(15)

By using differential transformation method on Eq.(14), for $k=1,2,\dots$, we acquire

$$Z(k+19) = \frac{\Gamma(1+k/10)}{\Gamma(q+1+k/10)} \left[\frac{k+1}{2} Z(k+1) - \sum_{\ell=0}^{k-1} \sum_{s=0}^{k-\ell-1} \frac{(k-\ell-s)(s+1)}{k-\ell} Z(\ell) Z(s+1) Z(k-\ell-s) + \frac{3^k}{2k!} \right],$$
(16)

where α is the unknown value of the fraction of q.

By using Eq.(9) the initil conditions is

$$Z(0) = 1$$

$$Z(1) = 1$$

 $Z(3) = 0$, for $k = 2,3,...,9,11,12,...,19$
 $Z(10) = 1$ (17)

Now, in [1], when q = 2, the the exact solution of Eq.(14) is $(z(t) = e^t)$ and it's got from the series solution

$$z(t) = 1 + t + \frac{1}{2}t^2 + \frac{1}{6}t^3 + \frac{1}{24}t^4 + \frac{1}{120}t^5 + \frac{1}{720}t^6 + \frac{1}{5040}t^7 + \cdots$$

If we continues for k > 5 the solution is $z(t) = e^t$

Here, we take q = 2.1 then the approximate solution for Eq.(14) is

$$z(t) = 1 + t^{\frac{1}{10}} + t + \frac{1}{2} \frac{\Gamma(\frac{11}{10})}{\Gamma(\frac{30}{10})} t^{\frac{20}{10}} + \frac{5}{4} \frac{\Gamma(\frac{12}{10})}{\Gamma(\frac{31}{10})} t^{\frac{21}{10}} + \frac{9}{4} \frac{\Gamma(\frac{13}{10})}{\Gamma(\frac{32}{10})} t^{\frac{22}{10}} + \cdots$$

Fig.3 shows the complete solution for Eq.(14) acquired for the value of q = 2, i.e $(z(t) = e^t)$. Fig.4 shows the Sacrificial solution for eq.(14) acquired for the value of q = 1.9.

By practise differential transformation method on Eq.(18),for $k=1,2,\dots$, we acquired

$$Z(k + \alpha q) = \frac{\Gamma(1+k/\alpha)}{\Gamma(q+1+k/\alpha)} \Big[(k + 1)Z(k+1) - 2\sum_{\ell=0}^{k-1} \sum_{s=0}^{k-\ell-1} Z(\ell)Z(s)Z(k-\ell-1) + \frac{1}{k!} \sum_{\ell=0}^{k} \frac{\delta(\ell-3)3^{k-\ell}}{(k-\ell)!} \Big] ,$$
(20)

where α is the obscure value of the fraction of q.

Initial conditions in Eq.(19) are transformed by employment Eq.(9) as follows:

$$Z(0)=0$$

$$Z(1) = -1$$

$$Z(2) = 0$$
, for $k = 2,3,...,9,11,12,...,18$
 $Z(10) = 1$,

Now, in [1], when q = 2, the the exact solution of Eq.(18) is $(z(t) = te^t)$ and it's got from the series solution

Example 3 we take the D.T. for the following integro-differential equation

$$z^{q}(t) = z'(t) - 2z(t) \int_{0}^{t} z(s)z'(s)ds + e^{t} + t^{3}e^{3t}$$
 (18)

with initial conditions

$$z(0) = 0$$
, $z'(0) = 1$ (19)

$$z(t) = t + t^{2} + \frac{1}{2}t^{3} + \frac{1}{6}t^{4} - \frac{1}{24}t^{5} + \frac{1}{120}t^{6} - \frac{1}{720}t^{7} + \cdots$$

If we continues for k > 5 the solution is $z(t) = te^t$

when, q = 1.8 the approximate solution for eq.(18) is

$$z(t) = t^{\frac{1}{10}} + t + \frac{\Gamma(\frac{11}{10})}{\Gamma(\frac{29}{10})} t^{\frac{19}{10}} + \frac{1}{2} \frac{\Gamma(\frac{12}{10})}{\Gamma(\frac{30}{10})} t^{\frac{20}{10}} + \frac{7}{6} \frac{\Gamma(\frac{13}{10})}{\Gamma(\frac{31}{10})} t^{\frac{21}{10}} + \cdots$$

Fig.5 shows the complete solution for Eq.(18) when q = 2. Fig.6 shows the Sacrificial solution for eq.(18) acquired for the value of q = 1.8.

8 7 6 -5 -4 -3 -2 -0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- 2. M.Mohseni Moghadam and H.Saeedi , Application of differential transforms for solving the volterra integro-partial differential equations, Shiraz University , 2010.
- 3. Vedat suat Ertürk, Shaher Momani, Solving systems of fractional differential equations using differential transform method, Journal of Computational and Applied Mathematics, 2008.
- 4. Saurabh M.,Akshay B. and Prashikdivya G. , Solution of non-linear differential transform method, IOSR-JM , 2014.

References

1. A.Borhanifar, Reza Abazari , Differential transform method for a class of nonlinear integro-differential equations with derivative type kernel , Canadian Journal on Computing in Mathematics, 2012.