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1. Introduction:

Throughout this work, R stands a commutative
ring with identity element 1and a module
means a unitary left R-modules. The class of all
R-module will be denoted by R-Mod and the
symbol p means a preradical on R-Mod (A
preradical p is defined to be a subfunctor of the
identity functor of R-Mod). For an R-module
M, the notations J(M), L(M), E(M) and
S = Endg(M) will respectively stand for the
Jacobson radical of M, the prime radical of M,
the injective envelope of M and the
endomorphism ring of M. The notation

Hompgp(N,M) denoted to the set of all
R-homomorphism from R-module N into
R-module M. An R-module M is called

injective, if for every R-monomorphism
f:A—= B (where A and B are R-modules) and
every R-monomorphism g:A — M, there exists
an R-homomorphism h:B — M such that
g=hef[1].

Injective modules have been studied
extensively, and several generalizations for
these modules are given, for example, quasi-
injective modules [2], P-injective Modules [3],
and S-injective module [4].

In 2000, nearly-injective modules were
discussed in [5] as generalization of injective
modules. An R-module M is said to be nearly
injective if for each R-monomorphism
f:A - B (where A and B are two R-modules),
each R-homomorphism g: A — M , there exists
an R-homomorphism h:B - M such that
(hof)(a)—g(a) € J(M) ,foralla € A[S].

Also, in [6] M. S. Abbas and Sh. N. Abd-
Alridha introduced the concept of special
injective modules as a generalization of
injectivity. An R-module M is said to be special
injective if for each R-monomorphism
f:A = B (where A and B are two R-modules),
each R-homomorphism g: A — M, there exists
an R-homomorphism h:B — M such that
(ho f)(a) —g(a) € L(M) ,foralla € A[6].
A ring R is called Von Neumann

regular (in short, regular) if for each a € R ,
there exsits b € R such that a = aba. For a
submodule N of an R-module M anda € M,
[N:iga] ={r € Rlra € N}. For an
R-module M and a € M. A submodule N of
an R-module M is called essential and denoted
by N <¢ M if every non zero submodule of M
has nonzero intersection with N.

2. Injective Modules Relative to a Preradical

In this section, we will introduce a new
generalization of injective module namely,
injective module relative to a preradical.
We will study some properties and
characterizations of these modules.

We start by the following definition:-

Definition 2.1. Let p be a preradical on
R-Mod and let M, N and K be R-modules. A
module M is said to be N-injective relative to
the preradical p (shortly, p-N-injective) if for
each R-monomorphism f:K = N and each
R-homomorphism  g:K - M there is an
R-homomorphism h:N - M  such that

(hof)(x)-g(x) € p(M)', for each x in K.

l
0—» K —»N

gl S h
K/

M
An R-module M is said to be injective relative
to the preradical p (shortly, p-injective) if M is
p-N-injective for all R-modules N. A ring R is
said to be p-injective ring, if R is a p-injective
R-module.

Examples and Remarks 2.2.
(1) It is clear that injective modules and
N-injective modules are p-N-injective for every
R-module N.
(2) There are many types of preradical functors,
for examples: the Jacobson radical functor (J),
the socle functor (soc), the prime radical functor
(L) and the torsion functor (T) [7]. Each one of
these functors gives a special case of p-injective
modules, for example a left R-module M is said
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to be (soc)-injective if M is p-injective, where
p = soc.

(3) The concept of nearly-injective module
(which is introduced in [5]) is a special case of
p-injective R-modules by taking p =J, where J
is the Jacobson radical functor.

(4) Special injective modules (which are
introduced in [6]) are special case of
p-injectivity by taking p =L, where L is the
prime radical functor.

(5) Let M be a module such that p(M) = 0, thus
M is injective if and only if M is p-injective.

(6) It is clear that if p(M) = M, then M is a
p-injective module, in particular:

(a) Every module M which has no maximal
submodule (i.e, J(M) = M) is J-injective.

(b) Every semisimple module M (i.e.,

soc(M) = M) is (soc)-injective. Thus
p-injective modules may not be injective, for
example: let M = Z, as Z-module, where p is a
prime number. Since M is semisimple, thus
soc(M) = M and hence M is (soc)-injective but
M is not injective.

(7) Let M, be an R-module. If M,is a p-N-
injective R-module and M, is isomorphic to M,,
then M, is a p-N-injective.

(8) Form (7) above we have that p-injectivity is
an algebraic property.

(9) Every submodule of semisimple R-module
is p-injective, where p is the socle functor.

Lemma 2.3. Let N and M be R-modules. Then
the following statements are equivalent:
(1) M is p-N-injective;

(2) for any diagram, )
i
0—» A —»N
gl h
‘l
M

where A4 is a submodule of an R-module N,
g:A = M is any R-homomorphism and i is the
inclusion mapping, there exists an
R-homomorphism h: N = M such that
(hoi)(a) —g(la) € p(M), forall ainA.
Proof: The proofis obvious. O

In the following proposition we show that
the set of all essential submodules of N is a test
set for p-N-injectivity.

Proposition 2.4. Let N be an R-module. Then
an R-module M is p-N-injective if and only if
for each essential submodule A of N and each
there is an
that

R-homomorphism f:A4 - M,
R-homomorphism g:N —- M  such
(gei)(a)— f(a) € p(M) for each a in A.
Proof: (=) This is obvious.

(&) Let A be any essential submodule of N
and f: A - M be any R-homomorphism.
Consider the diagram (1).

i
00— A —»N

!

M

(diagram (1))

Let A¢ be any complement submodule of 4 in
N.By[8, p.16], we have that A @ A° <® N.
Define g: A @ A° - M by g(a + a,) = f(a),
forall a € Aand a; € A°. Tt is easy to prove
that g is a well-defined R-homomorphism.
Therefore, we have the diagram (2).

0—> ADAT ——» N

By hypothesis, there exists an
R-homomorphism h: N — M such that
(heod)(x) —gx)e p(M) forall x in A P A°.
For the diagram (1), we get that

(he)(a) = f(a) = (hoi)(a) — g(a) € p(M)
for all a in A. Therefore, M is a p-N-injective
R-module, by Lemma 2.3. OO

Now, we will study the direct product and
the direct sum of p-N-injective modules.

Proposition 2.5. Let {M;};c, be a family of
R-modules. Then :

(1) if TIzeq My is a p-N-injective (where N is
an R-module), then each M, is p-N-injective.
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@) if p(ITrea M) = IMaea(p(My)), then the
converse of (1) is true.
Proof: (1) Put M = [[c4 M; and let
ip:M; > M andp,: M — M, be the injections
and projections associated with this direct
product respectively. Suppose that M is p-N-
injective. To prove that M, is p-N-injective for
each A € A. Consider the following diagram
where A is a submodule of N and «; is
an R-homomorphism.
i
0—»A —»N

77/

a) gr 7,

Since M is a p-N-injective module, thus there
exists an R-homomorphism h: N = M such that
(hoi)(a) — (iyo ay)(a) € p(M) for all a in
A. Putg/1 =pyoh:N - M;.Forevery a in A,

we have that (g, o i)(a) — a;(x) = gala) —
ay(a) = (py o h)(a) — ay(a) = (pyo h)(a) —
((paoip)oay)(a) =

pa(h(@) — (i 0 @) (@) € p(My).

Thus (g, °i)(a) — a,(a) € p(M,), for each
A € A and for every a € A and hence M is
p-N-injective, for each A € A.

(2) Suppose that p(I1xeq My) =

[T1ea(p(My)) and consider the following
diagram. i

M;
Foreach A € A, let py: M — M, be the
projection R-homomorphism. Since each M; is
p-N-injective, thus there exists an
R-homomorphism g;: N — M,, for each 1 € A
such that (g; o i)(a) — (p; o @)(a) € p(M,),

for every a in A. Define g:N - M by g(x) =
{g1(x)}1e4, for every x € N. It is clear that g is
an R-homomorphism. For every a in 4, we
have that

(g ° D@~ al@ = {g(i@)},., ~

{(pa > ) (@}req = {(g2°D(a) -

(P2 ° @(@}rea € [aea(p(My)). Since
Mrea(p(My)) = p(ITzea M;) (by hypothesis) it
follows that (g o i)(a) — a(a) € p(M), for
every a in A. Therefore, M is a p-N-injective
module. O

Corollary 2.6. Let R be a ring such that
R/J(R) is a semisimple R-module, let {M3} ;¢4
be a family of R-modules and let N be any
R-module. Then []3e4 M, is (soc)-N-injective if
and only if M, is (soc)-N-injective, for each
AEA.

Proof: Since R/J(R) is a semisimple
R-module, soc([Tiea M;) = [Theasoc(My)

[7, Exercise (11), p.239]. Therefore, the result
follows from Proposition 2.5. OI

Corollary 2.7. Let R bearing and let ] be a
finitely generated ideal of R. Let {M;},¢4 be a
family of R-modules and let N be

R-module. Then [3e4 M is p;-N-injective if
and only if M, is p;-N-injective.

Proof: Since [ is a finitely generated ideal of R
it follows from [9, Exercise 3(1), p.174] that
[(ITaca Ma) = TTaea(IM;) and hence

p1(I12ea Ma) = laea(pi1(My)). Therefore, the
result follows from Proposition 2.5. OO

For any family {M;};c4 of R-modules, if
@D ea My is an N-injective R-module, then each
M) is an N-injective and the converse is true, if
A is finite by [3, Proposition(1.11), p. 6].

The following proposition shows that this
result is true in case of p-N-injectivity.

Proposition 2.8. Let {M;};¢c4 be a family of
R-modules, let M = @, M; and let N be any
R-module.
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(1) If M is p-N-injective, then each M} is p-N-
injective.

(2) If A is a finite set, then the converse of (1) is
true.

Proof: Suppose that M is a p-N-injective
module. To prove that each M, is p-N-injective.
(1) Letiy:My, - M and p;: M — M, be the
injections and projections associated with this
direct product respectively. Consider the
following diagram, where A is a submodule of
N and ) is an R-homomorphism.

Since M is p-N-injective, there exists an
R-homomorphism h: N = M such that
(hoi)(a) — (izo ay)a) € p(M), forall a in
A.ForeachA € A,put g; =pyoh:N - M;,.
For every a in A, we have that (g o i)(a) —
a(a) = ga(a) —az(a) = (pr o h)(a) -
az(a) = (pz o h)(@) — ((proip) o ay)(a) =
(pa o M) (a) — (palir o ax)(@)) =

pa(h(@) = (ir ° ) (@) € p(My) (because p is
a preradical). Thus g, (a) — a;(a) € p(M;),
for each A € A and for every a € A.

Therefore, M, is p-N-injective, for each 1 € A.

(2) Suppose that A is a finite set. Let {M3} ¢4
be a family of p-N-injective modules. Since A
is finite it follows from [7, p.82] that

Daca My = [1rea Mj. Since

p(Direa My) =@ 2e4 p(My) (by [10,
Proposition 2, p.76]) it follows that

p(ITaea M) = [1aeap(M;). By Proposition 2.5
(2), [1aea My, is p-N-injective and hence

@D eq M, is p-N-injective. O

The following corollary is immediate from
Proposition 2.8(1).

Corollary 2.9. Let M be a p-N-injective
R-module and let K be a direct summand of M.
Then K is a p-N-injective R-module. O

Corollary 2.10. Let {M; };c, be a family of

R-modules and let M =@ ¢4 M, .Then

(i) (1) If p is a preradical and M/p(M) is p-N-

injective, then each M, /p(M,) is p-N-injective.
(2) If p is aradical and M /p(M) is p-N-

injective, then each M, /p(M,) is N-injective.

(ii) (1) If p is a preradical, then My /p(M;) is

p-N-injective and A is a finite set, then

M /p(M) is p-N-injective.

(2) If p is a radical, each M, /p(M;,) is p-N-
injective and A is a finite set, then M /p(M) is
N-injective.

Proof: (i)(1) Suppose that p is a preradical
and M/p(M) is a p-N-injective R-module.
Since M/p(M) =@ ¢4 (M /p(M;)) and

M /p(M) is p-N-injective (by hypothesis)

it follows that @ ¢4 (Ma/p(Mj)) is p-N-
injective. By Proposition 2.8(1), My /p(M,) is
p-N-injective, for all A € A.

(i)(2) Suppose that p is a radical and M /p(M)
is a p-N-injective module. By (i)(1),

M; /p(M,) is p-N-injective, for all 1 € A.
Since p is a radical, p(My/p(M;)) = 0and
hence M, /p(M,) is N-injective, for all A € A.

(ii)(1) Suppose that p is a preradical, each

M, /p(M,) is p-N-injective and A is a finite set.
By Proposition 2.8(2), ®ea (Ma/p(My)) is
p-N-injective. Since e, (My/p(My)) =
Direa Ma/Drea p(My) = M/p(Baea Mp)

= M /p(M) it follows that M/p(M) is p-N-
injective.

(ii(2)) Suppose that p is a radical, each

M, /p(M,) is p-N-injective and A is a finite set.
By (ii(1)), M /p(M) is p-N-injective. Since p is
aradical, p(M,/p(M;)) = 0 and hence

M, /p(M,) is N-injective. OI
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Examples 2.11.

(1) The converse of Proposition 2.8(1) is not
true in general. For example, let A be an infinite
countable index set and let T; = Q forall1 € A
(where Q is the field of rational numbers).

Let R = [I;e4 T be the ring product of the
family {T; |2 € A}. It is easy to prove that R is a
regular ring. For k € A, let e, be the element of
R whose kth-component is 1 and whose
remaining components are 0.

Let A =@ ¢cq Rey, itis clear that Aisa
submodule of an R-module R. By [7, p.140], A
is a direct sum of injective R-modules, but 4 is
not injective R-module. Since every injective
R-module is p-injective, thus A is a direct sum
of p-injective R-modules. Let p be any
J-preradical. Assume that A4 is p-injective. Since
R is aregular ring, thus J(A) = 0 ( by [7,
p-272]). Since p is a J-preradical, thus p(4) =
0 and hence A4 is injective and this is a
contradiction. Thus 4 is not p-injective.
Therefore, A is a direct sum of p-injective
modules, but it is not p-injective.

(2) Let M = Q@Z. Thus M is not p-injective
Z-module, where p is a J-preradical. In fact, if
M is p-injective, then by Proposition 2.8(1) we
have Z is p-injective Z-module and hence Z

is an injective Z-module (because p(Z) =

J(Z) = 0) and this is a contradiction. Thus M is
not p-injective Z-module.

In following, we will introduce further
characterizations of p-injective modules.

Recall that a submodule N of an R-module M
is said to be a direct summand of M if there
exists a submodule K of M such that
M=N®@K,ie,M=N+Kand NNK =0)
[7]. This is equivalent to saying that, for every

commutative diagram with cxact rows,
a
» B

(where A and B are two R-modules), there
exists an R-homomorphism h: B — N such that
f = hoa[ll]. Itis well-known that an
R-module M is injective if and only if M is a
direct summand of every extension of it self[1,
Theorem (2.1.5)].

For analogous result for p-injective
R-modules, we introduce the following concept
as a generalization of direct summands.

Definition 2.12. A submodule N of an
R-module M is said to be p-direct summand of
M if for every commutative diagram with exact

B
l g

0 M
(where A and B are two R-modules), there

exists an R-homomorphism h: B = N such that
(heoa)(a) — f(a)e p(N), for all a in A.

rows,

0 >

a
A
f l h
K/
> N B

>

»
»
7

Proposition 2.13. Let N be a submodule of an
R-module M. Then the following statements are
equivalent:-

(1) N is p-direct summand of M;

(2) for each diagram with exact row,

a
0—» N —» M

where Iy is the identity homomorphism of N,
there exists an R-homomorphism h: M - N
such that (h o a)(a) —a € p(N),forall a € N.
Proof: (1) = (2) Suppose that N is a p-direct
summand of M and consider the following
diagram with exact row.

a
0—s N —»M

INl

N
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Thus we have the following commutative
diagram with exact rows.

0 > N >

0 > N
By hypothesis, there exists a homomorphism
h:M — N such that (h e a)(a) — Iy(a)e p(N),
for all @ in A and hence (heoa)(a)—a€
p(N), forall ain N.
(2) = (1) Consider the following
commutative diagram with exact rows.

0 > A » B

0—>» N —M

Thus we have the following diagram.

0— 4

By hypothesis, there exists a homomorphism
h:M — N such that (ho 8)(a) —a € p(N),
foralla € N.Puth; =hog:B — N.Itis
clear that hq is a homomorphism. Let a € A,
thus (hy ° @)(a) = f(a) = ((h° g) o a)(@) —
f@=(he(gea)(@-fla=
(hoBeN)@=f@ = (hep(f@) -
f(a) € p(N). Hence (hy °ca)(a) — f(a) €
p(N), for all a in A and this implies that N is a
p-direct summand of M. O

In the following theorem we will give a
characterization of p-injective modules, by
using p-direct summands.

Theorem 2.14. For an R-module M, the
following statements are equivalent:

(1) M is p-injective.

(2) M is a p-direct summand of every extension
of itself.

(3) M is a p-direct summand of every injective
extension of itself.

(4) M is a p-direct summand of at least, one
injective extension of itself.

(5) M is a p-direct summand of E(M), where
E(M) is the injective hull of M.

Proof:- (1) = (2) Suppose that M is a
p-injective R-module and let M, be any
extension R-module of M. We will prove that
M is p-direct summand of M;. Consider the
following diagram with exact row.

a
0—> M — M,

Since M is p-injective, there exists an
R-homomorphism f: M; — M such that
(fea)(a@) —a € p(M), forall a € M. Thus
Proposition 2.13. implies that M is a p-direct
summand of M;.

(2)=(@3) and (3) > (4) are clear.

(4) = (1) Suppose that M is a p-direct
summand of at least, one injective extension
R-module of M, say E. To prove that M is a
p-injective module. Consider the diagram (1)
with exact row, where A and B are R-modules
and f: A —» M is an R-homomorphism.

a
0—» A —» B
f l
M
Since E is an extension of M, there is an

(diagram (1))

R-monomorphism, say §: M — E. Thus we
have the diagram (2).
0—» 4 —»B

fl'

M (diagram (2))
aw
E
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Since E is an injective R-module, there exists
an R-homomorphism g: B — E such that
(gea)(a) = (B f)(a)forall ainA. Thus
we have the commutative diagram (3) with
exact rows.

a
0 > A » B
/ l e 19 diagram 3))
¥ B
0 > > I

Since M is a p-direct summand of E (by
hypothesis), thus there exists a homomorphism
h: B = M such that (h e a)(a) — f(a)

€ p(M), for all a € A. Thus, for the diagram
(1), we get a homomorphism h: B - M such
that (h o @)(a) — f(a) € p(M), forall a in A.
Therefore, M is p-injective.

(3) = (5) This is clear.

(5) = (1) Suppose that M is a p-direct
summand of E(M). Since E(M) is an injective
extension of M, thus M is a p-direct summand
of at least, one injective extension of itself. O

In the following corollary we will give an
inner characterization of p-injective modules,
for the term inner see [7].

Corollary 2.15. An R-module M is p-injective
ifand only if M is a p-direct summand of an
R-module Homy (R, B), with B is a divisible
Abelian group.

Proof: (=) Suppose that M is p-injective. By
[7, p.91], there is a Z-monomorphism

f:M — B, where B is a divisible Abelian
group. Thus Lemma (5.5.2) in [7] implies that
Homgz(R, B) is an injective R-module.

Define : M — Homy(R, B) by 8(m)(r) =
f(@rm), forallm € M and for all € R. It is
easy to see that 8 is an R-monomorphism and
hence Homy(R, B) is an extension R-module of
M. Since M is a p-injective R-module, thus
Theorem 2.14. implies that M is a p-direct
summand of an R-module Homy (R, B).

(&) Suppose that M is a p-direct summand of
an R-module Homy(R, B) with B is a divisible
Abelian group. By [7, Lemma (5.5.2)], we have

that Homy (R, B) is an injective R-module.
Thus M is a p-direct summand of an injective
extension R-module. Therefore, M is a
p-injective R-module, by Theorem 2.14. O

An R-monomorphism a: N - M (where N
and M are R-modules) is called split, if there
exists an R-homomorphism : M = N such that

Boa=1y[7.

An R-module M is injective if and only if
for every R-module N, each R-monomorphism
a:M — N is split [7].

For analogous result for p-injective modules,
we introduce the following concept.

Definition 2.16. An R-monomorphism
a:N — M is said to be p-split, if there exists an
R-homomorphism : M — N such that
(Boa)(a)—ae€ p(N),forallainN.

a
0—m»N —>»M

e

The following theorem gives and
characterization of p-injectivity by using
p-split monomorphisms.

Theorem 2.17. The following statements are
equivalent for an R-module M:

(1) M is p-injective;

(2) for each R-module N, each
R-monomorphism a: M — N is a p-split;

(3) for each injective R-module N, each
R-monomorphism a: M — N is a p-split;

(4) each R-monomorphism a: M -E(M) is
p-split.

Proof: (1) = (2) Suppose that M is a
p-injective R-module. Let N be any R-module
and let a: M — N be any R-monomorphism.
Consider the following diagram.

a
0—»M—>N

//
IM //
4

K
M
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Since M is p-injective, there exists an
R-homomorphism : N = M such that
(Bea)(a) —a€ p(M), forall a € M.

Hence «a is a p-split.

(2) = (3) and (3) = (4) are obvious.

(4) = (1) Suppose that each R-monomorphism
a:M = E(M)is a p-split. To prove that M is a
p-injective. Consider the following diagram
with exact row, where A and B are R-modules
and g: A - M is any R-homomorphism.

f
0o—»A—>»B

g

M
Since E(M) is an extension of M, thus there is a
monomorphism, say a: M — E(M) and hence
we get the following diagram with exact row.

| 4
E(M)
Since E(M) is an injective module, there exists
a homomorphism h: B —» E(M) such that
(ho f)(a) = (aog)(a),foralla € A. By
hypothesis, we have a: M — E(M)is a
p-split and hence there exists a
homomorphism 8: E(M) — M such that
Bea)a)—aepM),foralla e M.
Put hy = B o h, it is clear that h, is an
R-homomorphism. For each a in 4, we have
that (hy o f)(a@) = g(@) = ((Boh) o f)(a) -
g@@) = (Bhef))(a) —g(a) =
(Bla° )@ —g(@) =B °a)(g@) -
g(a) € p(M). Thus (hy © f)(a) — g(a) €
p(M), for all a € A and hence M is a
p-injective module. O

The following proposition gives a
characterization of p-injective modules by
using the class of injective modules.

Proposition 2.18. The following statements are
equivalent for an R-modules M:

(1) M is p-injective;

(2) M is p-B-injective, for every injective
module B;

(3) for each diagram with B is an injective
R-module and A is an essential submodule in B,

there exists a homomorphism g: B — M such
that (g o i)(a) — f(a) € p(M), for all a € A.
Proof: (1) = (2) and (2) = (3) are obvious.
(3) = (1) Consider the following diagram
with B is any R-module and A is any essential
submodule in B.
ia
0o—»A —»B

f

M

By [1], there exists an injective R-module say
E, such that B is an essential submodule in E.
Thus we have the following diagram,

ig ip
0—»A —>»B——>F
A
‘// /”/ h
M a”

where iy and ig are inclusion
R-homomorphisms. Since A <¢ B (by
hypothesis) and B <€ E it follows from [8] that
A <° E. By hypothesis, there exists an
R-homomorphism h: E — M such that
(hoigoiy)(a)—f(a) € p(M), forall a € A.
Put g = ho ip, thus (goiy)(a)— f(a) €
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p(M), for all a € A. By Proposition 2.4., M is
p-B-injective, for every R-module B and hence
M is a p-injective R-module. O

In the following proposition, we will give
another characterization of p-injectivity by
using the class of free modules.

Proposition 2.19. An R-module M is
p-injective if and only if M is p-F-injective, for
every free R-module F.

Proof: (=) This is obvious.

(<) Suppose that M is p-F-injective, for every
free R-module F. Consider the following
diagram with exact row.

f i

0—»A —>»B —>»F

e /’
g h. e
7 -
" -7 h1

-
s

M a7
Since B is a set, thus there exists a free
R-module, say F, such that B is a basis of F
[12, p.58]. By hypothesis, there exists an
R-homomorphism h;: F — M such that
(hyo (o f))(@) — g(a) € p(M), for all
a €A.Puth=:hyoi: B— M,itis clear that
h is an R-homomorphism. For every a € 4, we
have that
(ho )@ —g@ = ((hyod)of)(a) -
g(a) € p(M) and hence M is a p-injective
R-module. O

3. Endomorphism Ring of p-Injective
Modules

Let M be an R-module, S = Endg(M)
and let A = {f € S| ker(f) <® M}. It is well-
known that A is a two-sided ideal of S [13] and
if an R-module M is injective, then the ring S/A
is regular. Moreover, if A = 0, then the ring S
is a right self-injective ring [8].

For analogous results for p-injective modules
we consider the following.

Let M and N be R-modules and f: M — N be
an R-homomorphism. The set f~1(p(N)) =

{x EM | fx) e p(N)} is said to be the kernel
of f relative to a preradical p and denoted
by pker(f).

Let M be an R-module and § = Endgz(M).
We will use the notation pA for the set

{f €S| pker(f) <¢ M}.

Proposition 3.1. Let M be an R-module

and S = Endgz(M). Then pA is a two-sided
ideal of S.

Proof. Since the zero function belong to A |
thus pA is a non-empty set. Let f, g € pA, thus
pker(f) <¢ M and pker(g) <¢ M and hence
Lemma 5.1.5(b) in [7] implies that

pker(f) n pker(g) <€ M. Since

pker(f) n pker(g) € pker(f — g), thus
pker(f — g) <° M (by [7, Lemma 5.1.5(a)])
and hence f — g € pA.

Let f € pA and h € S, thus pker(f) <€ M.
Since pker(f) € pker(h o f), thus

pker(h o f) <¢ M (by[7, Lemma 5.1.5(a)])
and hence h o f € pA. Now we will prove that
f o h € pA. Since pker(f) <¢ M, thus Lemma
5.1.5(c) in [7] implies that

h~1(pker(f)) <¢ M.But h=*(pker(f)) <
pker(f o h), therefore pker(f o h) <¢ M, by
[7, Lemma 5.1.5(a)]. Thus f o h € pA and
hence pA is a two-sided ideal of S. OJ

Now, we are ready to state and prove the
main result in this section.

Theorem 3.2. Let M be an R-module and

S = Endg(M). If M is p-injective, then:

(1) S/pAis aregular ring;

(2) if pA= 0, then S is a right self-injective
ring.

Proof. Suppose that M is a p-injective
R-module.

(I)Let A + pA € S/pA, thus A €S. Put

K = ker(4) and let L be a relative complement
of K in M. Define a: A(L) - M by a(A(x)) =
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x, for all x € L. It is easy to prove that « is a
well-defined R-homomorphism.

Thus we have the following diagram, where i is
the inclusion R-homomorphism.

i
0—>AL)—> 4

'I
7’
al s B
7’
K

M
Since M is p-injective (by hypothesis), there
exists an R-homomorphism §: M = M such that
BA(x)) — a(A(x)) € p(M) for each x € L.
That is for each x € L, we have that
BA(x)) = a(A(x)) + m,, for some m, €
p(M). Letu € K @ L, thus u = x + y where
x € Kand y € L and hence (1 — ABA) (u) =
(A= 2ABD)(x +y) = 2(x) — A8 (1) +
A0) = 28(2()) =0-0-2() -
l(al(y) + my) =Ay)—-Aly) - /'l(my) €
p(M) (because p is a preradical) and hence
u € pker(A — ABA). Thus for eachu € K @ L,
we have that u € pker(1 — AB1) and this
implies that K @ L S pker(d — AB8A). Since
K @ L <° M [8], thus Lemma 5.1.5(a) in [7]
implies that pker(Ad — 181) <¢ M and hence
A —ABA € pA. Thus A + pA = (ABA) + pA and
hence S/pA is a regular ring.

(2) Suppose that pA= 0, thus by (1) above, we
have that S is a regular ring. Let I be any right
ideal of S and let f:I —» S be any right
S-homomorphism. Consider the following
diagram.

i
0—>» [ —>»§

d

S
Let IM be the R-submodule of M generated by
{Am| 2 € I, m € M}. Thus, if x € IM, then
X = Xi-q Aym; for some A4, 5, +++, 4, € I and
some my, My, -+, M, € M wheren € Z*.
Define 8:IM — M as follows, for each
x =Y, Aim; € IM, put

0(x) = 0¥, 4my) = X1y f(A)(my). Let
X,y € IM, thus x = 27, A;m; and
y = X%, aymj, for some A;, a; €1
and mi,m]’- €M,withi=1,--,nandj =
1,---,t where n,t € Z*. Since S is a regular
ring, thus Proposition 4.14 in [8] implies that
each finitely generated right ideal of S is
generated by an idempotent. Hence the right
ideal of a ring S which is generated by
A1, Ay, @q, -+, @y Written as eS, where
e = e? €[ and hence /11-,0(]- € eS for all
i=1,-,n,j=1,-,t and this implies that
A = eh; and a; = eh; for some h;, hj € S and
foralli=1,--,n, j=1,-,t. Hence e4; =
e(eh;) = e*h; = eh; = A;, foralli=1,---,n
and ea; = e(eh}) = e?h; = ehj = a; for
allj =1,--,t. Thus, f(4;) = f(e)A; and
f(a]-) = f(e)aj foralli=1,--,n and
j=1,-,t. Therefore, 8(x) = 0Qf=; Aim;) =
P fQ)my) =X, fle)Am;
f(e) X, ym; = f(e)x and similarly we have
that 8(y) = f(e)y. Clearly, 0 is a well-defined
R-homomorphism, since for all x,y € IM, if
x =y, then f(e)x = f(e)y. Since 8(x) =
f(e)x and 6(y) = f(e)y (as above), thus
0(x) =0(y).Letx,y € IM and r € R, thus
0(x+y)=f(e) x+y)=f(e)x + fle)y =
0(x) +0(y) and 8(rx) = f(e)(rx) =
r(f (e) (x)) = 18 (x). Therefore, 8 is a well-
defined R-homomorphism. Thus we have the
following diagram (where i is the inclusion
R-homomorphism).

i
0—> IM—»M

Since M is a p-injective, there exists an
R-homomorphism ¢: M — M such that

@(x) —0(x) € p(M), for all x € IM.

Letm €M and A € I. Thus (pA)(m) =
o(m) = 6(am) + I, = fF(D)m + 1, for
some L, € p(M) and hence ((p/l —f (A))(m)
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€ p(M) and this implies that m € pker(pA —
(D). Thus M = pker(pA — (1)), for each
A € I. Therefore pker(pA — f(1)) <€ M and

hence @A — f(1) € pA, forall A € I. Since
pA = 0 (by hypothesis), thus f(1) = @A, for

all A € I and hence S satisfied Baer's condition.

Therefore, S is a right self-injective ring, by [8,
Theorem 1.6.]. O

Proposition 3.3. Let M be an p-injective
R-module and S = Endgz(M). Then

INK =IK+ pAn (I nK), for every two-
sided ideals / and K of S.

Proof. Suppose that M is a p-injective
R-module, thus Theorem 3.2. implies that
S/pA is a regular. Let I and K be any two-
sided ideals of S. Let € I N K, thus a + pA €
S/pA. Since S/pA is aregular ring, thus there
exists an element § + pA € S/pA such that

a + pA = afa + pA and hence @ — affa € pA.

Sincea—affa €I NK,thus a —affa € pAN
(INnK).Puta; = a — afa, thus

a=afa + a; €EIK +pAn(InK)and
hence INK S IK + pA n (I NK). Since

IK € TandIK € K, thus IK € I N K. Since
pAN(INK)cS (INK),thus IK + pANn
(INnK)SINnK. Therefore,  NK = IK +
pANn(INnK). O

By applying Proposition 3.3. we have the
following result.

Corollary 3.4. Let M be a p-injective
R-module, S = Endg (M) and let K be any
two-sided ideal of S.Then K = K? + (pANK)

In [14], Osofsky showed that, for an
R-module M, if Z(M) = 0, then the Jacobson
radical of the ring S = Endg (M) is zero. Also,
if M is an injective R-module with Z(M) = 0,
then the ring S = Endz (M) is a right self-
injective regular [8].

In the following, we will state and prove
analogous results for p-injective modules.
Firsty, we need the following lemma.

Lemma 3.5. Let M be an R-module and

S = Endg(M). Then for each 1 € S and for
cach x € M we have

[o(M): A(x)]g = [pker(A): x]g.

Proof. Let A € S and x € M. Thus if

r € [p(M): 2(x)], then A(x)r € p(M) and
hence A(xr) € p(M) and this implies that

xr € pker(1) and so r € [pker(A): x]g.
Therefore, [p(M):A(x)]g € [pker(2):x]g and
by similar way we can prove [pker(1): x]z S
[o(M): 2(x)]&. Thus [p(M): 2(x)]g =
[oker(D): x]g. O

Let M be an R-module. It is easy to prove
that the set {m € M| [p(M): m]y is an essential
ideal in R} is a submodule of M. This
submodule is said to be the p-singular
submodule of M and denoted by pZ (M).

The following proposition is an analogous
result of the Osofsky's result [14].

Proposition 3.6. Let M be an R-module and
S = Endg(M). If pZ(M) = 0, then pA = 0.
Proof. Suppose that pZ(M) = 0 and let

a € pA, thus pker(a) <¢ M and hence [8,
Lemma 3, p. 46] implies that

[pker(a): x]gr <® R, for each x € M. Since
[o(M): a(x)]g = [pker(a): x]g (by Lemma
3.5.), thus [p(M): a(x)]z <°® R and hence
a(x) € pZ(M). Since pZ(M) = 0 (by
hypothesis), thus a(x) = 0, for all x in M (i.e
a = 0) and hence pA = 0. O

The following corollary (for p-injective
modules) is analogous of the statement for
injective modules [8].

Corollary 3.7. Let M be a p-injective
R-module and S = Endz(M). If pZ(M) = 0,
then S is a right self-injective regular ring.
Proof. Suppose that M is a p-injective module
with pZ(M) = 0. Thus Proposition 3.6. implies
that pA = 0. Therefore, S is a right self-
injective regular ring, by Theorem 3.2. O
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Corollary 3.8. If R is a self p-injective ring and
PZ(R) = 0, then R is aright self-injective
regular ring.

Proof. Since R = Endg (R), thus the result
follows from Corollary 3.7. O

Let R bearingand x € R. Let x;:R—> R
be the mapping defined by xy,(r) = rx, for all
r € R. Then x; is an R-homomorphism and
Endg(R) = {x,| x € R} [8].

Lemma 3.9. Let R be aring and S = Endg(R).
Define a: R/pZ(R) — S/pA as follows:

a(x + pZ(R)) = x; + pA for each x € R. Then
a is an R-isomorphism.

Proof. It is easy. O

The following proposition is an analogous
result of the statement for self-injective rings
[15].

Proposition 3.10. If R is a self p-injective ring,
then R/pZ(R) is a regular ring.

Proof. Let a:R/pZ(R) — S/pA be the
R-isomorphism as in Lemma 3.9., where

S = Endg(R). Let x + pZ(R) € R/pZ(R), thus
a(x + pZ(R)) = x, + pA € S/pA. Since R is a
self p-injective ring, thus S/pA is a regular ring
(by Theorem 3.2.) and this implies that there
exists an element y; + pA € S/pA such that

x, + pA=x,y.x, + pA = (xyx), + pA. Since
@ is an R-isomorphism, thus a ™! exists and
a(x, + pA) = a”1((xyx), + pA). Hence

x + pZ(R) = xyx + pZ(R) = (x + pZ(R)) .
(y + pZ(R)) - (x + pZ(R)). Since

a 'y, + pA) =y + pZ(R) € R/pZ(R), thus
we get an element y + pZ(R) in R/pZ(R) such
that x + pZ(R) = (x + pZ(R)) . (y + pZ(R)) .
(x + pZ(R)). Therefore, R /pZ(R) is a regular
ring. O
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