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Abstract. n this paper we are introduce the relationship between the
best approximation by the polynomiad g, €[], and modules of
smoothriess ;. (f,n'), end the modules of smoothness t; , in quas
normed L, ,,(1) space 0 < p < 1,and the polynomial g,, which change its

comonotone approximation with the function f at every point in an
interval 1.
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1.Introductions and definitions:

The approximation will be carried out by a polynomials g,, € [, the
space of polynomials of degree not exceeding n.which have the same
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shape in which we are interested as f, namely, have the same sign as f
doesin various parts of I , or change their monotonicity exactly where f
doesinI .

Interest in the subject began in the 1960s with work on monotone
approximation by Shisha([3]), Lorentz and Zeller. It gained momentum in
the 1970s and early 1980s with the work on monotone approximation of
Devore,and the work on comonotone approximation of Shvedov, of
Newman and of Beatson and Leviatan([5]).The last 15 years have seen
extensive research and many new results, the most advanced of which are
being summarized here([4]). We are not going to give an elaborate
historical account and we direct the interested reader to an earlier survey
by the author ( [1]).

To be specific, let s = 0 and let ¥, be the set of all collectiors Y, =
Vi -0 ¥lyo=—b <y, < - <y, = b}, where for s =0,y = ¢ . For
v, € ¥, we set [[(x, ¥;) = [T2,(x — y;) , we let A(y,) be the set of all
functions f which change monotone at the points y; € Y, . . In particular
if = 0 . then f is non-decreasing in I = [—b, b], and we will write f € A’
. Moreover if f is differentiable in (—b,b) .then f € A'(y,) iff
FOO[(x,y.)=20,-b<x<b Now we are introduced some of
definitions which are important in this paper .

The weighted quasi normed space Ly, ,,(1),0 < p < 1([2]) is:

.
LIM(I):{fo:ICR——rR:(j’I % dx)p{m,0<p<1}

and the quasi normed || fll¢,, ) < 0.

Now for € A'(y)NLy,(I) . the degree of best comonotone
approximation ([2])we are denote by:

1) .
Erfi (f) Yy = 'annEHnﬂﬂ’f}'ﬂ"f - p'"”frw.n[”‘

Agein if yo = ¢uthen ES” (F)yp = ESV(f, ¢)ypWhich is usualy
referred to as the degree of monotone approximation.

Let f € Ly, (I).and the symmetric kth difference ([2]) :
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AR(F, % D)y = AR )y

The Ditizian-Totik modulus of smoothness of f which is defined for
such an f as follows ([2]):

mé_‘; (f, 5,1;),41%;; — :}f:igﬁllﬂﬁ (fr']u;,%p{”

Where ¢ be a function of , and the so called r-modulus (or sendove-
popov modulus), an averaged modulus of smoothness, defined for a
function f on an interval [ by :

T (f, 8. Dyp = llwr(f -, )y, ([2]) where

@i (f, %, 8)yp

ACF, kh
= sup —ﬂ%:{yi?
Y, =)

k& k&
[I—?,I"i"j ﬂ[—b,b]}

Isthe kth local modulus of smoothness of f. We take new chepyshev
partition X; = acas% , 1a<o, 0<j<n ([3].

2.Auxilary and main results:

our am in auxiliary results are the following Lemmas are the main
components of the proof:

Theorem (2.1): There exists a polynomial gy_; € [[e- N A (1) k> 1
, interpolate f € Ly, ,,(NN a* (1),0 <p <1, at k > 1 points in side an
interval of [, = [vg + £, vy — ] . where & -::I% is a strictly

positive constant then:

1f = grca (Pl 1y < e, )l (.11, Dyyp -
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Theorem (2.2): For a function f € Ly, (I)N A’ (I), there exists a
polynomial gy_, € [Te_q1 ' (Y:),k > 1, satisfies:

If = gx-1(Flley,0) = c(p, KT (f, 1T, Dy p -
Lemma (2.3): There exists a polynomial %;,_, . interpolate f €
Lyp,(ZD)N A (£),0<p<1 a k-1, points in sde Y;cé¥; =
[y.m,yi[k ”] ,v=1,.., k=2 suchthat :

1R~ g,y S €@ f Ny 00

(k=1)

Where = [}':’f; ,d] and d = EL:_'T-d—m}}’i-l < yi.[k_” ,M> 0.

Proof: Suppose that Ji,_4(f)interpolate f at the points y; inside

Y;i,i=1,..,5 then Np_,(f) = [f(yi, Vo) 1M i=1 O — yij} , since

0=yi=n
fViv¥s) =0 and T (f) is non decreasing for x; = y; , hence
Ne-1(f) =20 for x; =y, (since f(y)=0) thus f = IN,_(f) for

(k=1)

gyl -
yl:i yﬁ:—ri +m|y) <y there fore
9%, OO, i wm n < c(pmlfll yery D
Ly pl x| L;j_hp{ s ]
[k=1]}
Since Fi—y'—- ” Y] . we get

II‘Rk 1(f:|”j¢_, () = C(p- m}"f"f..wp{ i)

Corollary 2.4: let Y; c £ and f € L, ,(£)N A" (£),0<p<1.Let
Te—1(f) € Mi—1N &' (£;) . interpolate f at k — 1 pointsin side ¥; then
for any constent w1 > 0 such that :

191 (Ol 00 < c@mIf Ly, 000

{ke=1) (r)
Where =[5, 25— ]andb_l’-ﬂ;— n %] <y
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Proof: by the same method in Lemma (2.3) where = [b,“”"* ] and
E FE+TJL” (v) —

St [Y;| <y; " we get theresult. If s = 0, then the result
IS no true.

Lemma 2.5: Let f € A'(I) . k=1 and let ¥; be an interval of length

Ey!-w“”—yf”j(%+1] in the center of I (i.e: dis(¥;, —~y!.[k_”) =
dis(€;, v . let ap_, € MNiky » interpolate f at k — 1 points in €;. if
FELy,UI)0<p<l then:
Uf = ap-1lly,m < c(p, Ky (f 11, Dy -

Proof: For an interval €; = l i[w.yf ] we denote that |£;] = }’a'[k_” _

Yy and [(25. + 1)£,] = [yl.‘”] — .oy + rmlfil], it is sufficient
to prove (2.5) for the interval #; 3 [#;| = (k —1)|Y;| where Y; =

(vl (k=1}) (k=1} ()
Yity; - y e
[‘k R ]and Y| = Z—2— ¢, = (k — 1)¥; , which is means

=1

¥; consists of k — 1 of interval ¥; with (k — 1)|¥;| = |€;] .k = 4 assume
that V; ¢ (k—1)Y; =¥; .k = 4nowlet f € A'(]) and q;,_; interpolate f
a k — 1 points inside ¢;

If = Qr=alley pie-1yvi) = c(p, )y (f 1€, €D yp -

Take || =|¥;] and since k=210<p<1,Y; clandf €
Lu':,p(’r)r'fi cl 3 Yy ¥, then

N — qk—l”l.’rwjpu’,-} <clf - ':lk—lur,,j,‘p[{k—l]‘r’g] + Cmf (f, I’E;'l,ei)u;p 8
I

Hence

|f— flk-1||L,;,,,,u; = c(p, k]‘“k

Lemma 2.6 : Let #; be an interva in the center of I and g, interpolate
fE€Lyy(I),0<p<1atk—1 points inside £; then :

If = ap-1lley,m < c@ )t LDy -
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Proof : By lemma (25) there exist q_y € [[x—y cOmMoONnotony
approximation and interpolate with f inside in #; .such that IIf —
qk—l”:,,#,,,u} = c(p, k}m;f f 11 Dy

Since |f — qi-1| < c(PIf — Au-1llL, 0

mf(f:”L‘I)lﬁp “_:CL'::D al”rf)u';,m = mjf[fax-‘i)#!,m

We get

]}F - q!r—l] = C{:P. kjm;f (fr |x], f)u';,m

By take Ly,(/) —quasi norm of both sides we get I —
@
G-l = c@ O] (f,, f)u;,m"me

By take T —modulus, we get the result.

Proof theorem (2.1): Let A > 0, be fixed and let #; ,i = 1,...,5 be an

interval of length & =y" " —y™ k>1,v=1,.,k=2 in the

center of I | i.e, dist (afi,-—y!.[k_”) = dist{f’i,}'i{k_”) Jet 9p—1 € [r=1
interpolate f at k — 1 points inside €; N ] 4 . by lemma (2.5) implies that

Nf = ae-1 (Nl < c(p, g (f, 11, Dyyp-
Now, let Fy_y = Fr_1(f) € [1x—, interpolate f at k—1 paints in

[yi.[k_” — 1],y —%a‘![!l] . then
Wf = Fres Moy = IF = a1 (F) + Q=1 (f) = Fre—1 Pley iy
< cf = ae-1 Dl ,in + E@NFpr (F = Q=1 o0y <

c@ ONf = te-1(Nly, 00 +

c(p, I Fp_1 (f — ””‘“)HLt;,,p[y,-”‘"’—ﬂlil.y“""‘-"| . by lemma (2.3)

=cpllf - QR-l(J‘F)"LwIpU}
+c(p.RIf — qk—ll||‘Lw|yigk—1:|_fﬁmly:_u-:—nl
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(k—1) :

Since y, 4N < y!.”“”e%aqm using lemma (2.3) with a

constant # = 1 Hence If —Tk_l(f)]}wwm <c(p IIf -
'Zlk—l:}"rﬂﬁ,ip{;}

< c(p, Ky (f, 11, Dey )
If = gr-1( My, = If = Fimt + Fem1 = Ge—1 (Dl )
= c(p. IO = Fre-a(Ollypir + I (f = Frea (D1,
=< c(p, S = Fi-1 (N1, 09

+ e g = Frma DN, [y y v

< c(p, KIIf — Fr— (f:l"Lﬂ,,pm
+c(p. k]||f~Tk_;(f)”LW,[-y}"‘”y}'“‘”-mn]
By corollary(2.4) with [—y}k—ﬂ +=ffI|i’|,J-’;-”{_ﬂl —<|Il] and n =
AJR2A — A)

thus  |If = @1 (Dley 0 S c@ N = Fra (Dl o) =
c(p, kYo (f, 11, Dy 0y

Proof of theotem (2.2): let Gy, _; € [[i-1,k>1 3

= f(x)
Gr_q _w{ }+Ek_1(f )y » ad Gy 1}#,” when f(x) =0 =
ii_x;_ 0 = G,y =0, and when f(x) <O :i::i{ 0 hence G, <

ﬂ l.hlb ImP“E'ﬁ I.h::“ gﬁ-..l(x:} = .I'I_"l.1(fi) and SI'I'L'E g;[-_l = I_lk_l . We gﬂt
Gi—1(x) € [k—1 NA(#;), this meaning that G,_; comonotony with f at
every points in an interval . Now

Gre-1 = - fO) G f()

P(x) o) T Y )

Tk—l[x)_'f[x) <Tk_1(x)—-f(x)
P (x) 3 h(x)

Gk=i 20—

+Ey(f i €i)wp

Hence
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UG = U, oy < c@If = Pialll, oy + CDYExr (£, 205,
Since P;,_ best approximation of fthen
"gk—l = flliﬂl.p{” = L(F]‘"f - Tk—lllfullp[fj
By theorem (2.1) there exist gj—; (f) € [Tx—1NAY(I) such that
Fr-1ley = =15 ), = Ge-1(Fr 5, ¥0 0 ¥y, k> 1
By using lemma (2.6) , we get
"f _h“‘F"fraj.-,p{” = C(p k)Tk (f, l”,f)w}n <

Hence

If = g-alloy o) < c(p )t (F, 1 Dy -
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