Design a Programmable Sequence Controller
Utilizing I2C BUS

Raafat. S. Habeeb
Electrical & Computer Eng. Dept., University of Duhok
E-mail: rhabeeb@gmail.com
Mobil: 00964-7705823389

Abstract

New technology makes possible to manufacturing a better type of programmable
micro-system. Recently, Chip with the CPU, RAM, ROM, TIMERS, UARTS, and
PORTS is available. These types of chip are called microcontroller.
Microcontroller/Microprocessor is a programmable device, which executes a
loaded program sequentially from top to down (end of program). This type of
controller suffer from non-retain last state problem. At any time the electrical
power is turned off, the Microcontroller/Microprocessor will start from initial state
after power is turned on, losing all intermediate states. If this problem is solved, it
might be the Microcontroller/Microprocessor used as programmable sequence
controller efficiently. This paper provides a design of sequence controller based on
a microcontroller utilizing Serial Electrical Erasable Read Only Memory
(SEEPROM) to save the status of process event sequentially. Serial EEPROM is
interfaced to the microcontroller via 12C serial BUS, which is a two wire bus using
special protocol to transfer data between microcontroller and serial memory. The
sequencer is provided with MINI keypad to select the pre-defined time interval
through scrolling UP and DOWN the interval values which is monitor in LCD
display. This design had been manufactured and tested by controlling the medical
syringe process for long time without serious problem.

mailto:rhabeeb@gmail.com

1.0- Introduction

Single-chip microcontrollers are devices
designed for use in products that usually
not considered computers, but require
the sophisticated and flexible control
that a computer can provide. An
example of such product is an automatic
washing machine. In contrast to
microprocessor, microcontrollers are
typically integrated RAM, ROM, and
1/0, logic circuits designed to execute
specific tasks such as Universal
Asynchronous Receiver Transmitter
(UART), Serial port RS232 and square-
wave oscillator (clock), as well as the
CPU, onto the same chip. A
microcontroller is a computer with most
of the necessary support chips onboard.

There are numbers of other common
characteristics that define
microcontrollers. If a micro system
matches a majority of these
characteristics, then it can be classified
as a ‘Microcontroller’. Microcontrollers
may be ‘Embedded’ inside some other
device (often a consumer product) so
that they can control the features or
actions of the product. Another name
for a microcontroller is therefore an
‘Embedded controller’ dedicated to one
task and run one specific program. The
program is stored in ROM and
generally does not change. A
microcontroller may take an input from
the device it is controlling and controls
the device by sending signals to
different components in the device.
Most microcontroller circuits are small
and low cost compared with
microprocessor circuits. The
components may be chosen to minimize
size and to be as inexpensive as
possible. The actual processor used to
implement a microcontroller can vary
widely. In many products, such as

microwave ovens, the demand on the
CPU is fairly low and price is an
important consideration. In these cases,
manufacturers turn to dedicated
microcontroller chips—devices that were
originally designed to be low-cost,
small, low power, and embedded CPUs.
The Motorola 6811 and Intel 8051 are
both good examples of such chips [1].

The predominant family of
microcontrollers is 8-bit types since this
word size has proved popular for the
vast majority of tasks the devices have
been required to perform. The single
byte word is regarded as sufficient for
most purposes and has the advantage of
easy to interface with the variety of IC
memories and logic circuitry currently
available. The microcontroller family
would have a common instruction
subset but family members differ in the
amount, and type, of memory, timer
facility, port options, etc. possessed,
thus producing cost-effective devices
suitable for particular manufacturing
requirements. Memory expansion is
possible with off chip RAM and/or
ROM; for some family members there
is no on-chip ROM, or the ROM is
either electrically programmable ROM
(EPROM) or electrically erasable
PROM (EEPROM) known as flash
EEPROM which allows for the program
to be erased and rewritten many times.
Additional on-chip facilities could
include analogue-to-digital conversion
(ADC), digital-to-analogue conversion
(DAC) and analogue comparators.
Some family members include versions
with lower pin count for more basic
applications to minimize costs. Since
the microcontroller 8051 could not
support 12C devices, software has been
written to enable the microcontroller to
handle this type of communication [2].

1.1- Hardware Overview

The AT89C52 is a low-power, high-
performance Complement Metal Oxide
Semiconductor (CMOS) 8-bit
microcomputer with 8K bytes of Flash
electrical erasable and programmable
read only memory (EEPROM). The
device is manufactured using Atmel’s
high-density nonvolatile ~ memory
technology and is compatible with the
industry-standard 80C51 and 80C52
Instruction set and pin out. The on-chip
Flash allows the program memory to be
reprogrammed in-system or by a
conventional nonvolatile memory
programmer. By combining a versatile
8-bit CPU with Flash on a monolithic
chip, the Atmel AT89C52 is a powerful
microcomputer, which provides a
highly flexible and cost-effective
solution to many embedded -control
applications.

The AT89C52 provides the following
standard features: 8Kbytes of Flash, 256
bytes of RAM, 32 1/O lines, three 16-
bits timer/counters, a six-vector two-
level interrupt architecture, a full-
duplex serial port, on-chip oscillator,
and clock circuitry. In addition, the
ATB89C52 is designed with static logic
for operation down to zero frequency
and supports two software selectable
power saving modes. The Idle Mode
stops the CPU while allowing the RAM,
timer/counters, serial port, and interrupt
system to continue functioning. The
Power-down mode saves the RAM
contents but freezes the oscillator,
disabling all other chip functions

until the next hardware reset. The
AT89C52 has four bi-directional ports
designated as PO, P1, P2, and P3 The
block diagram of 8052 microcontroller

architecture is shown in Figurel. The
8051 could not support 12C devices like
serial memories SEEPROM [3].

1.2 Inter integrated circuit
(IIC or I12C) Bus

Commonly referred to as | squared C,
the 12C bus or 1IC bus was originally
developed as a control bus for linking
microcontroller and peripheral ICs. The
simplicity of a 2-wire bus that
combined both address and data bus
functions was quickly adopted in many
applications such as :

Telecommunications
Automotive dashboards

Energy management systems
Control and measurement
products

Medical equipment

This method of serial data
transmission uses two lines, one for a
serial clock (SCL) and the other for
serial data (SDA). The SDA line is bi-
directional, i.e. data can go up it or
down it [4].

1.2.1 The Physical I2C Bus

As mentioned earlier, 12C bus is two
wires, called SCL and SDA. SCL is the
clock line. It is used to synchronize all
data transfers over the 12C bus. SDA is
the data line. The SCL & SDA lines are
connected to all devices on the 12C bus.
There needs to be a third wire which is
just the ground or 0 volts. There may
also be a 5volt wire is power is being
distributed to the devices.

SCL and SDA lines are "open drain/
collector" drivers. What this means is
that the chip can drive its output low,
but it cannot drive it high. For the line
to be able to go high you must provide
pull-up resistors to the 5v supply. There

should be a resistor from the SCL line
to the 5v line and another from the SDA
line to the 5v line. One set of pull-up
resistors for the whole 12C bus is the
only that need, not for each device, as
illustrated in Figure2 shown below. The
value of the resistors is not critical. It is
range from 1k8 (1800 ohms) to 4k7
(47000 ohms) used. 1k8, 4k7 and 10k
are common values, but anything in this
range should work OK. It is
recommended 1k8 as this gives you the
best performance. If the resistors are
missing, the SCL and SDA lines will
always be low - nearly 0 volts - and the
12C bus will not work.

The devices on the 12C bus are either
masters or slaves. The master is always
the device that drives the SCL clock
line. The slaves are the devices that
respond to the master. A slave cannot
initiate a transfer over the 12C bus, only
a master can do that. There can be, and
usually are, multiple slaves on the 12C
bus, however there is normally only one
master. It is possible to have multiple
masters. Slaves will never initiate a
transfer. Both master and slave can
transfer data over the 12C bus, but that
transfer is always controlled by the
master [5].

1.2.2 ThelI2C Protocol

When the master (your controller)
wishes to talk to a slave (our Serial
EEPROM in this case). It begins by
issuing a start sequence on the 12C bus.
A start sequence is one of two special
sequences defined for the 12C bus, the
other being the stop sequence. The start
sequence and stop sequence are special

in that these are the only places where
the SDA (data line) is allowed to
change while the SCL (clock line) is
high. When data is being transferred,
SDA must remain stable and not change
whilst SCL is high as shown in Figure
3. The start and stop sequences mark
the beginning and end of a transaction
with the slave device.

Data is transferred in sequences of 8
bits. The bits are placed on the SDA
line starting with the MSB (Most
Significant Bit). The SCL line is then
pulsed high, then low. For every 8 bits
transferred, the device receiving the
data sends back an acknowledge bit, so
there are actually 9 SCL clock pulses to
transfer each 8 bit byte of data. If the
receiving device sends back a low ACK
bit, then it has received the data and is
ready to accept another byte. If it sends
back a high then it is indicating it
cannot accept any further data and the
master should terminate the transfer by
sending a stop sequence [4].

The standard clock (SCL) speed for 12C
up to 100KHz. Philips do define faster
speeds: Fast mode, which is up to
400KHz and High Speed mode which is
up to 3.4MHz. All of our modules are
designed to work at up to 100 KHz. We
have tested our modules up to 1MHz
but this needs a small delay of a few
psec between each byte transferred.

1.2.3 I2C Device Addressing

All 12C addresses are either 7 bits or 10
bits. The use of 10 bit addresses is rare
and is not covered here. All of our
modules and the common chips will

have 7 bit addresses. This means that up
to 128 devices can be connected on the
12C bus, since a 7bit number can be
from 0 to 127. When sending out the 7
bit address, it still always needs to send
8 bits. The extra bit is used to inform
the slave if the master is writing to or
reading from it. If the bit is zero, the
master is writing to the slave. If the bit
Is 1 the master is reading from the slave.
The 7 bit address is placed in the upper
7 bits of the byte and the Read/Write
(R/AW) bit is in the LSB (Least
Significant Bit). The placement of the 7
bit address in the upper 7 bits of the
byte is a source of confusion for the
newcomer. For example, to write to
address 21, must actually send out 42
which is 21 moved over by 1 bit left. It
Is probably easier to think of the 12C
bus addresses as 8 bit addresses, with
even addresses as write only, and the
odd addresses as the read address for
the same device. Figure 4a shows the
format of device address [5].

1.2.4- Data transfer sequence

A basic Master to slave read or write
sequence for 12C follows the following
order:

1. Send the START bit (S).

2. Send the slave address (ADDR).

3. Send the Read(R)-1 / Write (W)-0
bit.

4. Wait for/Send an acknowledge bit
(A).

5. Send/Receive the data byte (8 bits)
(DATA).

6. Expect/Send acknowledge bit (A).

7. Send STOP bit (P).

Note: It could be use 7 bit or 10 bit

addresses.

The sequence 5 and 6 can be repeated
so that a multi byte block can be read or
written.

1.2.5- Data Transfer from
master to slave

A master device sends the sequence of
signal with START, ADDRESS, and
WRITE protocol, then waits for an
acknowledge bit (A) from the slave
which the slave will only generate if its
internal address matches the value sent
by the master. If this happens then the
master sends DATA and waits for
acknowledge (A) from the slave. The
master completes the byte transfer by
generating a stop bit (P) (or repeated
start).

Figure 4b shows the protocol of data
transfer from master [4].

1.2.6-Data transfer
slave to master

A similar process happens when a
master reads from the slave but in this
case, instead of W, R is sent. After the
data is transmitted from the slave to the
master, the master sends the
acknowledge signal (A). If instead the
master does not want any more data it
must send a not-acknowledge which
indicates to the slave that it should
release the bus. This lets the master
send the STOP or repeated START
signal. Figure4c shows the protocol of
data transfer to master [4].

2. Materials and Methods

The serial EEPROM supports a
bidirectional two wire bus and data
transmission protocol. A device that
send data onto the bus is defined as
transmitter, and a device receiving data
as receiver. The bus has to be controlled
by a master device which generates the
serial clock (SCL), controls the bus
access, and generates the START and
STOP conditions, while the serial
EEPROM works as slave. Both master

from

and slave can operate as transmitter or
receiver but the master device
determines which mode is activated, up
to eight 1Kb/2Kb serial EEPROM can
be connected to the bus, selected by the
A0, Al and A2 chip address inputs.

The interfacing of 2K Dbyte serial
EEPROM with microcontroller is
shown in Figure5. The memory chip
address inputs A0, Al and A2 of serial
EEPROM must be externally connected
to either VCC or ground (VSS),
assigning to each 24C01A/02A/04A a
unique programmable address. Up to
eight 24CO01A or 24C02A devices and
up to four 24C04A devices may be
connected to the bus. Chip selection is
then accomplished through software by
setting the bits A0, Al and A2 of the
programmable slave address to the
corresponding hard-wired logic levels
of the selected 24C01A/02A/04A. After
generating a START condition, the bus
master transmits the slave fixed address
consisting of a 4-bit device code (1010)
for the 24C01A/02A/04A, followed by
the programmable chip address bits A0,
Al and A2. SDA and SCL lines are
connected to port0.0 and port0.1 via a
pull up resistor SKQ [6].

2.1-Controller Design

The design of programmable system
normally is consisting of two parts. The
first part is concerning with the
hardware design, while the second part
IS concerning with the software design.
The complexity and cost of each part
are the factors that the designer will
decide in which way where have to
emphasis. In this project it is
emphasized on software since the 8051
microcontroller is not 12C support [7].

2.1.1 Hardware Design

Many of the applications of
microcontroller fall into two categories:
Open-Loop or Closed-Loop control
systems. Open loop, often called
sequential control, is used in
applications where the process or device
being controlled is characterized by a
sequence of state. That s, the
application is event- driven. An
example is a automatic washing
machine or vending machine that accept
various value coins, recognizes product,
selection, vends the product, finds the
price, and returns the correct change.

Closed-loop control is characterized by
the use of real-time monitoring of
process to achieve effectively
continuous control. The output of the
process is monitored using various
transducers and A/D converters and the
process is modified continuously [7].

In this application, an event sequential
controller is designed; ten sequential
external events are controlled according
to verification of 8 conditions as shown
in Figure 6 below. Port 0 is conFigured
as output port and is used to drive 8
different processes; port 2 is used to
display the status of above process. Port
1 and p3.0 — p3.2 and p3.7 are
conFigured as input port that is used to
monitor the process conditions. Logic 0
Is considered as active logic of port 0 to
avoid the glitches (jitter) on this port
during RESET or after turn the
controller ON. Octal inverter (open
collector type) is used to drive a relay
bank driver. Serial EPROM of 2 Kb is
used to save the last state which has
been served before the Electrical power
is off. This memory chip is interfaced to
microcontroller through ports P2.0 and
P2.1 via pull up resistors, Serial Data
(SDA), which is a bidirectional signal,

and Clock (SCL) signal are connected
to P2.1 and P2.0 respectively [8].

2.1.2 - Software Design

The function of main program is to read
the content of serial EEPROM to find
the status of the controller was before
power shutdown or system reset by
reading state number, then the program
execute the pre-fetching state. Before
transferring to execute next state, the
program updates the serial EEPROM by
writing the executing state number.
When the jumper switch throws to
maintenance position, then the program
check the all-state sequentially from
state 1 up to state 10 each time pressing
the push button at P3.6 pin [9].

Event sequential process controller is a
process variable dependent. This type of
process is performing the specific
function continuously until the process
variable is true, at this case the
controller enforce the process to jump
to and execute a next state and so on up
to the end of all process state. The
second type is time sequential process,
which is time depending process. This
means that the execution of process is
depending on a pre-defined time period
until time reach zero. At this point, the
controller enforces the process to jump
and execute next state and so on up to
the end of all state. The first type of
sequential controller is taken into
consideration during this research. The
software have not been used the
interrupt feature of microcontroller, so
it is not necessary to enable the interrupt
system of microcontroller [10]. The
software is designed in module
structure, which is a main program and
many subroutines are invoked by it. The
flow chart of main program is shown in
Figure 7.

The following is the subroutine that are
invoked by main program, all
subroutines have a common feature that
are returned a carry flag CY which
indicate the statues of writing into or
readings from serial memory
SEEPROM.

READ STAGE NO:

Read from a specific serial EEPROM
location with stage number. Return
CY=1 to indicate write time over.
REDBYT subroutine is invoked by this
routine. This routine is repeated 5 times
to insure correct reading of serial
EEPROM Registers A and B are
destroyed. The flow chart is shown in
Figure 8

REDBYT:

Serial EEPROM Random Read
Function, called with programmable
address in A. Byte address in R2 return
data in A. Return CY, if CY=1, it
indicates that the bus is not available or
that the addressed device failed to
acknowledge. Three subroutines,
SHOUT, REDCRNT, and START, are
invoked by this routine. Registers A,B
and R2 are used. The flow chart is
shown in Figure 8.

WRITE STAGE NO:

Write into a specific serial EEPROM
location with stage number. Return
CY=1 to indicate write time over.
WRITBYT subroutine is invoked by
this routine. This routine is repeated 5
times to insure correct writing into
serial EEPROM. Registers A and B are
destroyed. The flow chart is shown in
Figure 9

WRITBYT:

Serial EEPROM Byte Write function.
Call with programmable address in A,
Data in register R1. Return CY =1, it

indicates that the bus is not available or
the addressed device failed to
acknowledge. Two subroutines,
START and SHOUT, are invoked by
this routine. A is destroyed. The flow
chart is shown in Figure 9.

START: This routine is recalled in
REDBYT and WRITBYT routines. It is
sending a START signal, define as
high—to-low SDA with SCL high.
Return with SCL, SDA low. CY=1, the
bus is not available. None of registers
are used The flow chart is shown in
Figure 11.

SHOUT: This routine is recalled in
REDBYT and WRITBYT routines. Its
function is to shift out a byte to the
serial EEPROM, most significant bit
MSB first. SCL and SDA expected low
on entry. Return with SCL low, A is
holding data. A reg. will destroy. The
flow chart is shown in Figure 10

REDCRNT: This routine is recalled
in REDBYT routine. The function of
this subroutine is to read programmable
address, call with programmable
address in A. Return data in A and
CY. If CY=1, then it indicates that the
bus is not available or the addressed
device failed to acknowledge. SHIN
subroutine is invoked. The flow chart is
shown in Figure 10

SHIN: This subroutine is recalled in
REDCRNT routine. The function of
this subroutine is to shift in a byte from
the SEEPROM, most significant bit
MSB first. SCL expected low on entry.
Return with SCL low. Returns received
data byte in A. The flow chart is shown
in Figure 11.

3. Discussion and

Conclusion

A microcontroller with serial EEPROM
and suitable program had been
constructed as PCB card as shown in
photograph (Figurel2) and put into real
test. A medical syringe manufacturing
plant had been controlled by this
controller. It was running for more than
6 months without any malfunction or
snakes.

A microcontroller is a specialized form
of microprocessor that is designed to be
self-sufficient and cost-effective, where
a microprocessor is typically designed
to be general purpose (the kind used in
a PC). Microcontrollers are frequently
found in automobiles, office machines,
toys, and appliances. Also, a
microcontroller is part of an embedded
system, which is essentially the whole
circuit board. The difference is that
microcontroller incorporates features of
microprocessor (CPU, ALU, Registers)
along with the presence of added
features like presence of RAM,
ROM,I\O ports, counter etc. Here
microcontroller control the operation of
machine using fixed program stored in
ROM that doesn't change with lifetime.
The advantages of microcontroller over
microprocessor are low cost to
manufacture, easy to implement, and
fast compare with microprocessor.
Atmel 89S52 microcontroller has a
substantial advantage over Atmel
89C52 in term of programming. 89S52
chip has in circuit programming
features, so it is not need to an external
programmer. Unfortunately, this chip is
not available in our local market, so
89C52 microcontroller has been used as
a fait accomplice.

A programmable sequential controller
card as shown in FigurelO based on
89c52 microcontroller was built and
tested. This card was substituted a big
size control board which contain a huge
number of relays and rotary sequencer.
This controller had been put into real
operation in sterilization of medical
injection process for more than year
without any serious problem, only one
malfunction of the controller happened
during this period due to spike
happened in electrical power supply
network. This causes to damage the
serial EEPROM. This controller could
be used in many home appliances such
as washing machine both for dishes or
clothing. Cooling/heating system and
etc.

8052 Microcontroller Block Diagram

External Interrupts

Interrupt
Controlle

256 bytes
RAM

il

[Timerd _

Timerl
Timer2

|1

T\

U

U

4 1/0 Ports

Py

P, P;

Serial
TXD RXD

Figure 1 Block diagram of 8052 Hardware Architecture

£

DA =L

12C Master
e.g. Microcontroller

DA =L

12C Slave
e.g. Seral EEPROM

DA L

I12C Slave
eg.RTC

Figure 2 Interfacing Serial EEPROM withl2C

f |
scL | I scL
|
’ |
= L P
START condition STOP condition
SCL high SDA goes low SCL high SDA goes high

spa _[D7|DB|D5|D4[D3| D2] D1 DO ACK]

SCL T2 13 J4 L fa I8 |7 18 |9

Figure 3 Timing diagram of 12C

IS X5 T £ S T G)

SGL_TI_II_II_II_II—I_II_II_II_I_

|5TAFET| ADDRESS | Few | ACE |

D’XDDXD‘SXD“»XDSKD?XDIXEOXACK)\

—-—JI‘IHHI‘IHHI‘II‘IF@‘E_

| DATA [70K] EIGF |

(a) Typical SDA and SCL Signals and address format

|5TAHT| ADDRESS | W|A.CK| DATA |AJ::F.| DATA |A.CF.| F |

|:| sent by master
I:I sent by slave

(b) Data transfer from master protocol

|5TAHT| ADDRESS | R | HEK| DATA |NEF-| DATA |IMH| F |

(c) Data transfer to master protocol

Lﬂ)uF
% ‘ Vee
82K 1] psT S
J| 2 { xo
Al
30 pF L 51K 5.1K
2 x1
30pF 12MHz 4 15
5) 13
— 8 Woom): 4 o assassas
—1 Pafp—r ¢ ...
8 16
9 17
18
1| paz 19
7[wp Ao|1 7[we A0t
ATS89C52 6]scL A1]|2 6]scL A1 |2
5| SDA A2 3—i """" 5|SDA A2 [3
V' SEEPROM 0 V SEEPROM7

Figure 5 Multi Serial EEPROM(SEEPROM) interfacing

—

12
MHz

| —

Cycle Start

Vacuum SW.
Moisture SW
Timer SW

Gas Entry SW
Gas Exposure SW
Pressure SW

Re -Evacuation SW
Pressure SW

Stop SW

Maint. SW

Abortion status SW

8052

-3 P1.0
P1.1
— P2.7
P1.2 P2.6
P1.3
P2.5
P1.4
P2.4
P15
P2.3
P1.6
P2.2
P1.7
P3.2
— P3.0
— P37 F2.0
— P3.1
p2.1

v

v

v

v

A\ 4

A\ 4

D
A
R
L
P0.0- PO.7 I
N
G
T
O
N
A
R
R
A
Y
Abortion Ind
Stop Ind.
Running Ind
Buzzer
End Cycle Ind.
Ready Cycle Ind.
SCL
Serial
SDA
EEPROM

v

Figure 6. Event sequential controller

IR AR AN

Vacuum Pump

Moisture System

Moisture Exposure system

Gas Entry System

Gas Exposure System
Exhaust Blower

Re- Evacuation System

Air In bleed System

Legend :
M: Manual
A: Auto
Y:YES

N: NO

Read Abortion Key

Is Abortion
Key press?

Read Stage NO

Initialization
Address Pointer

Initialization No. of
Read Count

Is Counter
=0?

Figure

READBYT

Save counter

Load Fix
Device address

v

12C START

SHOUT

r Load Reading Count J

REDCRNT

| Stop

Restore Counter

Figure 8

Write Stage No

Initialization
Address Pointer

v

Initialization
Writing Counter

Load Programmable
Device Address

| |

Check Write
Error C=0?

X

Decrement Write Counter J l Update Address Counter l

WRTBYTE

12C Bus START.

Is Bus
Available
k 4

I Set Fix Deviée Address I

|
[l SHOUT (|

pre—
z
-

S

Set Data Address

!

SHOUT | I

=

o

r Get Data to Send

v

SHOUT

3RS

N

I Clear Error Flag |

| Stop Data Writing J

Start 12C

Load Fixed Device
Address

Check Read
Emor C=1?

SHIN

Clear Error Flag

Figure 9

SET Error Flag

T

>
>

RET

Counter = 8 Bits

v
Move MSB into C Flag

|Tut MSB on SDA Line I

lusec ‘Delay
I Il

| RaiseS‘('?LHigh]

I
[4psec Delay J

[ClearscL |

v
[Decrement Bit Count]

[SET sDALine |

[2usec Delay]

I

| SET SCL Line B

Ii 4usec Delay |
!

SDA into C Flag
CLR SCL

RET

START

A

Set SDA Line
Set SCL Line

Is Bus

Figure 10

Available ?

1p Sec Delay

Clear SDA Line

v

4 usec Delay

Clear SCL Line

A

Clear SCL

-

SHIN

Counter = 8

Set SDA

Put MSB on SDA Line

A

3 psec

Delay

A4

Raise SCL High

v

4usec

Delay

Move SDA Bit into C

Save reading Bit

Clear SCL

4 pSec Delay

Clear Flag Error

]!

Clear Flag Error

4

s

Figure 11

l

Is Count
=07?

(&)

Py | HODSew

LA
V

noinvs © 5

o=)| o (1] sy 1) (S Sma) 2
G

J '3 - b h <%
e] = J = E] & [
‘,E’Jﬁaﬁ =, EJQG?E@I. ng""’ _'.7”520 J'. EDQH
TRS TR6 TR?7 TR8

x

OV T 2 i) ic3
®) =

. L

AL — AMIN FOR ELECT
Reset & INSTRUMENT
TR, "

f
0101PLC
IC7 1C6) IC8 I

Figure 12 controller card

12C JB o133l ga jsa o Slasens prasa

e () plia cdi
Crlaalal) g Al <l digl) and
dsad daala
Al
We s Open Loop 4a sidall 43lall 53 jlanae ey 3 jlasad) duais hai dga s (o (lail) Hlanadl)
358 JOA L dis Jgas)b g 5l e 23adll (a3l 45y jlay Jeay il il ey W
8l huad) aaal bl adiag d8835 5 S 3 sy Discrete Event 3 mal 4
. State Aall /Eaall e sl 5) sall LS alasiul o SailSus oSl g gl (e gl
Sy Ciua gy g Lgale 5 pdapndl o) el il sl o dpelicall cilileall 3 i jlagall (e g sill 138 aadiay
s (oa e llaiall (e 138 dee O e a2l Adlaiall ClEE N (e ol SYWI/EIRY) (4
g sl o 35 da el g il e By (S i€ G AS jaia ol dal pladiul sy (e
Al eadl juadl ey Laie Al /sl gonse Lty 48 e galie Y)Y
sl G Al eSl Al jaeat 3ase aay ladas alee lasaal) Cailing s OIS G (Y A S
e el Lpdlatll) plapsall o g i ki e iSa Apaal) Al | L el jaaall 4y adadil (g3)
saay ol 3) oda (o giad Ays IV (31) dclia Jlaw 8 a3 skl e Jadies
Timer sy, ROM ks sl all 3 SIh; RAM 4 sdall 3 SIA s CPU - 438 jall dsllaall
e Caials Wla i Ports zloaYls Jiay) clais UART (Jlsidl Juai¥) sas g
. Microcontroller 45,8 &l jhadl exig mbedded System s sehall Sl ghaidl)
bl 265 ol plaguall 238 () ey 138 5 A paadl Jilugll e i oDl 45 Sl Gyl
Aladlfcuanll pia s Jadnd ¥ @ plapall 038 (ebill dles) Jiul)) el (e calailly Lggle Jandll
Al el A8l jaiae Bage any alee Cailivg Sl o b Al oSN Al jaae pllail Al 3
Glohdl o aainy e (80 jhiee apeal Sl 138 38 Aleall Sl s gall e e
Allal/Eaal) aia g0 Lisl Serial EEPROM (Sb jeS geasfiss (Al 55 SIS aladinby 5 4y 5 Sl
DY (e 75 0o OsSall 12C (i JBL Aol g0 (55 Sl sl ae (3iad 8 SIN (e g sill 120
Al gl 385 s Sl Dhaaddl g Claglaall Jal JL (ala JS i axdiug oA
CVAl/Calaal) i 68 JWial i 5 5 ja milie da gl Lo (5 sing dasaai ol pall o8l gl
Glilee e 3 bl Lle aeaill 13 Gulad 23| LCD 48LS e lga o 5 all dlli sl & 5k oo
(ST dgiga, JSUie (523 9 ALy gda Bl 5 Al (iall aied

References

1.

Tamy Noergaard “Embedded system architecture A comprehensive
Gide for Engineers and Programs” Newness 2005

. Scott Mackenzie “8051 microcontroller” 1995 prentice-Hall, In
. Atmel Corporation “8-bit Microcontroller with 8K Bytes Flash” 1999

Aix Maldonado “ I2C bus protocol and application” SASE Phillips
2010

. ATMEL Corporation “2-wire Serial EEPROM” 2003

. ATMEL Corporation *“ Interfacing Serial EEPROM to
microcontroller” 2001

. Oudjida,A,S.Liacha; Benamrouche,D;

Goudjil,M;Tiar,R;Ouchabane,A;”Design and Test of Integrated System
in Nan scale technology” DTIS 2006,IEEE.

. Sam Fleming; “Interfacing 12C Device to an Intel SMBUS Controller”

Intel Corporation Jan 2009

. P.Venkatesuern; Anol Kumar; Prosenijit Mandal;, Dhabal and

R.Nandi; “ A novel Opto-isolator technique for 12C bus for Glitch
Elimination in an Industrial Environment”. International Journal of
recent trend in engineering, Vol2.No8. November 2009

10. Thomas Kugelstadt; “Designing an isolated 12C Bus interfacing using

Digital isolator”, analog application Journal 2011

