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ABSTRACT

Multi-Objective Optimization (MOO) techniques have become increasingly popular in recent
years due to their potential for solving real-world problems in various fields, such as logistics,
finance, environmental management, and engineering. These techniques offer comprehensive
solutions that traditional single-objective approaches fail to provide. Due to the many innova-
tive algorithms, it has been challenging for researchers to choose the optimal algorithms for
solving their problems. This paper examines recently developed MOO-based algorithms. MOO is
introduced along with Pareto optimality and trade-off analysis. In real-world case studies, MOO
algorithms address complicated decision-making challenges. This paper examines algorithmic
methods, applications, trends, and issues in multi-objective optimization research. This exhaustive
review explains MOO algorithms, their methods, and their applications to real-world problems.
This paper aims to contribute further advancements in MOO research. No singular strategy is
superior; instead, selecting a particular method depends on the natural optimization problem,
the computational resources available, and the specific objectives of the optimization tasks.

Keywords:Multi-objective optimization, Real-world problems, Pareto optimality, Trade-off analysis,
Decision-making challenges

1. Introduction

Decision-makers are faced with the daunting task of trying to achieve several objectives
at once everyone is competing for attention and resources. From optimizing the costs
for production and environmental impacts to balancing stakeholders’ needs and wants,
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the demand for appropriate optimization techniques has never been higher. Fortunately,
the arsenal of optimization algorithms has expanded, offering diverse approaches to
address these nuanced challenges. Several real-world search and optimization issues are
organically formulated as nonlinear programming problems with multiple objectives. Due
to a lack of suitable solution strategies, these problems were artificially converted into
single-objective problems and solved [1]. Such problems produce a set of trade-off optimal
solutions, known as the Pareto-optimal solutions, rather than a single solution. It becomes
pertinent to look for as many Pareto-optimal solutions as possible if it is possible to
demand more than one. Algorithms that seek to solve cases where there are several
times varying objectives that are usually conflicting are referred to as Multi-Objective
Optimization (MOO) or Multi-Objective Evolutionary Algorithms (MOEAs) [2]. In general,
the problem of this kind of optimality concerns only one criterion function that should
be maximized or minimized. However, in practical situations, numerous goals must be
considered simultaneously [3]. The idea of MOO is thus to find the ‘optimum’ which
will best meet all the mutually exclusive objectives. Pareto optimal solutions offer the
best opportunities with the least undesirable trade-offs that favor the higher number of
benefits over the number of costs. The Pareto set, or Pareto front, is a set of solutions
to define the best result according to the Pareto principle [4]. This review provides an
effective overview of MOO algorithms and how they function in practice, methodology,
and applications to various real-life problems. Discussions on the Pareto principle and the
importance of trade-off type research for decision-making are made. These methodologies,
including Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective
Fitness-Dependent Optimizer (MOFDO) algorithm, enable decision-makers to understand
the complexities of trade-offs between multiple goals. However, due to their computational
requirements and potential to become massive, they still require significant attention in
practice [3, 5]. Among all those approaches, Evolutionary Algorithms (EA) have become
prominent as they are capable of identifying the particular trade-off space and provide a
range of Pareto-optimal solutions, besides the decomposition-based methods, and how
they can be used to solve different kinds of problems will be discussed. On the other
hand, algorithms are more suitable for solving complex problem landscapes, such as Multi-
Objective Simulating Annealing (MOSA) with Multi-Objective Invasive Weed Optimization
Algorithm (MOIWOA) but suffer from certain problems that can be seen in real-world
scenarios: their reliance on parameter tuning and resource-intensive computations [6].
Meanwhile, Indicator-based methods, as represented by the Island Multi-Indicator Algo-
rithm (IMIA)—provide consistently high performance when it comes to solving complex
and Pareto fronts and optimizing solutions with complex geometries. However, they
are very sensitive to indicators selection and specific characteristics of problems, thus
requiring a careful approach towards their application [7]. Case studies from the real
world show how well MOO systems work when making hard decisions. There are many
ways to use it, such as in supply chain management, portfolio optimization, treatment
planning, resource sharing, and other areas [8, 9]. Also, every method has its strengths and
weaknesses, and the choice of method depends on many factors, such as the nature of the
optimization problem, the computational resources available, and the specific objectives
of the optimization tasks. MOO can be applied to a range of different sorts of problems,
and this reveals how it will be able to assist people who are in a position where they have
to make decisions. Then, it details the methods and uses of MOO and the current research
trends and problems that are coming up in the field. The most important aspects related to
the context of MOO are discussed, including the issues of how to handle the uncertainty,
about objectives and restrictions of decision-makers, how to solve the high-dimensional
problems, and how to avoid the “curse of dimensionality.”
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This paper intends to contribute positively to knowledge in the field of MOO by pre-
senting principles and methodologies used, examples of applications and the challenges
faced in the field. It means that by engaging with the specifics of MOO algorithms and
how they can be used in practice we will be able to better understand the nuances of the
corresponding processes. This paper endeavors to fill the gap between theory and practice,
proposing guidelines that can inform decision-making processes across various domains.

The outline of this paper is as follows: Section 2 introduces the MOO methods. Section 3
presents the applications of MOO algorithms. Section 4 provides a discussion and analysis
of the work. Finally, the conclusions are given in Section 5.

2. Multi-Objective Optimization

An unconstrained continuous Multi-Objective Problem (MOP) can be formally described
without compromising generality as follows [6]:

minimize F (Q) =
(
f1 (Q1) , f2 (Q2) , . . . , fn (Qn)

)> (1)

subject to Q ∈ �

where the variable vector is denoted as Q = (Q1,Q2, . . . ,Qn)>, � represents the variable
space, n is represented by the variable number, the constructed of n real-valued objec-
tive functions denoted as F : �→ Rn, and the objective space is represented by Rn. The
attainable objective can be defined as the set {F (Q) | Q ∈ �}.

Definition 1 (Domination): p = (p1, . . . , pn)>, v = (v1, . . . , vn)> ∈ Rn Are pair of vectors, p
dominates v if p j ≤ v j for every j ∈ {1,2,3, . . . , n}. At least one exists i ∈ {1,2,3, . . . , n}
satisfying pi < vi, which can be represented as p > v.

Definition 2 (Pareto optimal solution): A point K∗ ∈ � is named as a Pareto optimal to
Equation (1) only if pointless K ∈ � satisfying F (K) dominates F (K∗).

Definition 3 (Pareto optimal Set (PS)): The PS can be described as PS =

{K∗ ∈ � | ¬∃K ∈ � : F (K) > F (K∗)}; it represents all Pareto optimal solutions.

Definition 4 (Pareto Front (PF)): Corresponding with the meaning of PS, the Front of
Pareto (PF) is characterized as follows: PF = {F (K) | K ∈ PS}, displaying all objective space
Pareto optimum solutions.

MOEAs have three MOP goals: (1) good convergence, (2) good variety, and (3) good
coverage, which means it can cover the complete PF.

When attempting to identify MOO, utilizing a collection of solutions from several meth-
ods is common. Fig. 1 displays the structure of the methods used to balance competing
goals.

2.1. Pareto-based methods

Pareto-based methods, which are also called Pareto optimization or MOO, are ways to
solve problems where different goals are essential. The Italian economist Vilfredo Pareto
developed the idea of Pareto efficiency, which is how it got its name [7]. Pareto-based
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ε 

Fig. 1. The multi-objective methods.

techniques seek Pareto-optimal alternatives. No alternative answer can advance one goal
without damaging another [8]. This is to give people who have to make decisions choices
trade-offs between different goals, as shown in Fig. 2.

The Pareto dominance idea is a famous tool in Pareto-based techniques. It ranks solutions
based on how well they meet several criteria. Dominant solutions are at least as good as
other solutions and better in at least one way. These methods can find Pareto-optimal
answers by comparing and contrasting them repeatedly. Pareto-based solutions could be
useful in engineering [10], finance [11], logistics [12], and many other fields where
choices must be made while trying to balance competing goals.

2.2. Decomposition-based methods

The challenges of MOO can be tackled with the help of Decomposition-Based Methods
(DBMs), a family of optimization techniques. These techniques break down the original

Fig. 2. The sets of solutions generated by a multi-objective Pareto technique [7].
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MOP into simpler optimization issues with a single target [13]. By combining the results
of these smaller issues, an estimate of the Pareto front can be made. DBMs come in a few
versions, but all work the same way. The weighted sum method is a popular approach
whereby the MOP is converted into a single-objective problem by allocating different
weights to the objectives in each sub-problem [14]. The shape of the final Pareto front is
modified by weights that, in turn, define an optimum point that favors the target achieve-
ments [15–17]. The explicit MOP can be broken down into individual subproblems, each
linked to a single individual and optimized using data from its neighboring subproblems.
Decomposition-based multi-objective optimization relies on the principle that optimal
solutions to neighboring subproblems should be near one other and that any knowledge
gained from one subproblem should be valuable for optimizing another subproblem [18].

2.2.1. The ε-dominance method
It is a type of dominant relation that allows for some degree of choice amongst different

solutions, and is frequently employed when many solutions share similar objective values
and must be differentiated by a fixed threshold [19]. In ε-Dominance, a way out it is said
that solution A “dominates” solution B if it is at least as good as solution B in all goals and
better than solution B by a certain amount in at least one objective. The parameter ε is
a small positive number that shows how much someone can handle or wants something
[20]. ε-Dominance can be used to divide a set of solutions into various Pareto fronts. Each
front is made up of solutions that are not dominated by any other solution in the set. In
MOO, this allows answers to be ranked in a more complex and flexible way [21]. This
strategy chooses one objective function and constrains the others to make the problem
a single-objective problem. The different ε results represent optimal Pareto answers. The
prescribed format of this approach is given below.

min F (X) =
{

fi
(
y
)
, . . . , fn

(
y
)}

subject to : g
(
y
)
〈=〉 b and x ≥ 0 (2)

min F (X) =
{

fi
(
y
)
, . . . , fn

(
y
)}

subject to : g
(
y
)
〈=〉 b, f j ≤ ε j,

j 6= i, j = 1, . . . , n, and y ≥ 0 (3)

If the objective function is max, the constraint is f j(y) ≥ ε j. Selecting the ε is important
since this option affects answers so much. So, the selected ε must be in the range of fmin

j ≤

ε j ≤ fmax
j for each objective function [18].

2.2.2. The Tchebycheff approach
The Tchebycheff approach (also known as the Tchebycheff method or the Tchebycheff

scalarization) is widely applied in MOO. Considering the worst-case results across all
goals, this DBM seeks to identify the optimal compromise option [22]. The Tchebycheff
decomposition breaks a MOP into scalar optimization subproblems as follows:

min
x∈�

gtch (F (y) | w, u∗) = max
1≤i≤m

{
wi
(
fi
(
y
)
− u∗i

)}
(4)

where
∑m

i=1 wi = 1 and wi ≥ 0 is the vector of weights for a subproblem, and u∗ =
(u∗1, . . . , u∗m) with u∗i < min{ fi(y) | y ∈ �} is a perfect objective vector. The traditional
Tchebycheff decomposition does not explore subproblem objective functions’ geometric
properties. This is the first study to look into the geometric feature of Tchebycheff decom-
position subproblem objective functions.
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Theory 2.1: Let u∗ = (u∗1, . . . , u∗m) be a perfect objective vector, and w = (w1, . . . ,wm) be
assigned as a positive weight vector.

If the objective vector is given as: F(y) = ( f1(y), . . . , fm(y)) is in the line

L1 : w1( f1(y)− u∗1) = · · · = wm( fm(y)− u∗m) (5)

Then

gtch(F(y) | w, z∗) =
wT (F(y)− u∗)

m
(6)

The traditional Tchebycheff decomposition does not explore the geometric characteris-
tics of objective functions in subproblems. This study is the first to investigate the geometric
feature of objective functions in the Tchebycheff decomposition subproblem. With the
Tchebycheff approach, a weight vector or reference point is introduced to the MOO
problem, turning it into a single-objective problem. The reference point is a user-defined
in the goal space that symbolizes the desired solution, and the weight vector denotes
the relevance or priority assigned to each objective [23]. The highest weighted departure
from the reference point among all objectives is then used in the Tchebycheff scalarization
formula to determine a scalar value for each candidate solution [21]. Thus, Tchebycheff
scalarization seeks the least favorable outcome concerning the objective problem function.
The purpose is to eliminate the maximum deviations from the optimization target. Next,
the Tchebycheff optimization locality is reached when values of scalarization tend to be
minimal to solve the problem. By applying this procedure, leaders can first rank their
favorite targets and then strike a compromise that suits them best [24]. The method
is less rigid and simplified enough to be adaptable for different cases. Maintenance is
predominantly about MOO. This is a multi-functional device that can be used for weighing
and a lot more things. Pareto optimization offers a different view where the ranking of
alternatives is considered, and an array of Pareto-optimal solutions can then be developed.

2.2.3. The penalty-based boundary intersection approach
In multi-objective optimization, the search is generally directed towards the Pareto

the front using the Penalty-primarily based Boundary Intersection (PBI) approach. To
reap a well-rounded investigation of the goal area, it combines the concept of boundary
intersection with penalty functions [25].

The PBI method frames optimization as a multi-objective minimization hassle [26]. This
approach results in a penalty function that draws solutions too close to the Pareto front,
which searches for alternatives more consistent with the Pareto front [27].

The objective features and penalty terms are combined using a secularizing characteristic
in the PBI approach. The optimization system is directed toward the threshold of the Pareto
the front using the secularizing characteristic. By increasing penalties for solutions that
stray from the boundary intersection websites, it finds an appropriate balance between
absolutely exploring the objective space and convergent shifting closer to the Pareto front
[28]. The PBI method can be written as follows:

gPBI(x|λ, θ ) = d1 + θd2

d1 =

∥∥( f (x)− z∗)Tλ

∥∥
‖λ‖

d2 =

∥∥∥∥ f (x)−
(
d1

λ
‖λ‖
+ z∗

)∥∥∥∥
(7)
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where θ (θ ≥ 0) denotes the penalty value. d1 denotes the distance between the ideal point
z∗ and the projection of x on the search direction line, d2 denotes the perpendicular distance
to the search direction line. Both the distances should be as small as possible [26].

The PBI approach encourages algorithms to explore the Pareto front better by including
penalty capabilities and boundary intersection notions. It encourages answers to converge
closer to the actual Pareto front while preserving solution variety [29].

The PBI approach has proven to be useful in numerous multi-objective optimization
situations, yielding top-quality Pareto-front answers [30].

For complex issues concerning numerous targets and selection variables, decomposition-
primarily based processes have been significantly used in MOO. By breaking down the
problem and successfully navigating the alternate-off area, they provide an opportunity
for traditional EAs.

2.3. Indicator-based methods

Several researchers have turned to indicator-based multi-objective optimization strate-
gies to find Pareto’s most appropriate solutions to multi-goal optimization problems. By
including signs that quantify the exceptional diversity of solutions, those methods try
to strike a stability between convergence, which means identifying answers close to the
Pareto front, and variety, which means retaining a numerous organization of answers [31].
Some well-known MOO approaches are listed below, all of which rely on indicators.

2.3.1. Indicator-based evolutionary algorithm
Indicator-Based Evolutionary Algorithm (IBEA) is an algorithm that employs indications

to direct the search. It uses a metric, like hyperactive volume or spacing, to assess the
range and depth of the possible answers. Using the solution’s impact on the indicator’s
total value, IBEA calculates a fitness score for it. Using this fitness assignment method,
IBEA promotes both Pareto front exploration and solution diversity [32].

2.3.2. R2-indicator-based evolutionary algorithm
R2-IBEA is an enhancement of IBEA that adds a 2D indicator. The R2 value quantifies

the coverage of the goal area via the answers. R2-IBEA can discover components of the
objective space underserved by way of gift answers by using the R2 indicator. It limits
the quest for unique websites to grow the number of solutions. This procedure is executed
most effectively offline [33].

2.3.3. Strength pareto evolutionary algorithm version two: Indicator-based selection
The benefits of Strength Pareto Evolutionary Algorithm Version Two (SPEA2) and

Indicator-Based Selection (IBS) have been combined in SPEA2-IBS. The dominance re-
lationships between potential solutions are measured by a strength number, while an
indicator is used to help make the final selection. Since indicator values measure qual-
ity and diversity, higher indicator values are more likely to be chosen. This combined
approach boosts convergence and solution variety in SPEA2-IBS [34].

2.3.4. Indicator-based selection for multi-objective evolutionary algorithm-based decomposition
A new version called IBS for MOEA-based Decomposition (MOEA/D-IBS), IBS is added to

the MOEA/D algorithm. A MOEA/D-IBS indicator, like hyper-volume, is used to measure
the quality and variety of answers for each sub-problem [35]. It promotes the search to
zero in on areas that better cover the Pareto front, achieved by selecting and reproducing
solutions with higher indicator values [36].
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Fig. 3. An example flowchart of the EAs [40].

These MOO approaches rely on performance indicators to direct the search process and
give a framework for doing so. These techniques use indicators to efficiently probe the
Pareto front and keep a range of options available to indicate the compromises necessary
to achieve competing goals [37]. The indication and method will be chosen based on the
type of problem and the user’s preferences [38].

2.4. Evolutionary algorithms

In a single simulation session, the population method of EAs quickly finds many Pareto-
optimal solutions. Because of this, Evolutionary Multi-objective Optimization (EMO) study
and use have become very popular in the last ten years [2]. Fig. 3 shows the flowchart of
the EAs, which can deal with goals that are at odds with each other; they are often used to
solve MOPs. These algorithms are based on the way evolution works in nature. They use
techniques like selection, reproduction, and mutation to find the best answers in a space
with multiple goals [39].

2.4.1. Non-dominated sorting genetic algorithm II
NSGA-II is a famous EA used to optimize more than one thing. It saves a list of all

the possible answers and uses non-dominated sorting and crowding distance to help the
search find several Pareto-optimal solutions [41]. It uses a fast-sorting method called
“non-dominated sorting” to put solutions in order based on their dominance relationships.
This lets the algorithm keep the variety of solutions. NSGA-II has been widely used and
demonstrated effective performance for many MOO tasks [42].

Customers can create offspring (N), and then the worst N people within the discern and
offspring population are eliminated by using rank and crowding distance. The smallest rank
will live on to the following era, and the important rank (this is, if all individuals with this
rank live on, the populace size might be at the least N but less than N if all individuals no
longer enter the next era) will simply have its people with the largest crowding distances
live to tell the tale to make sure the subsequent population length (O) [43].
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2.4.2. Strength pareto evolutionary algorithm 2
The well-known algorithm SPEA2 also uses a population-based method but uses a

different strategy to keep various solutions [44]. It uses a concept called "strength" to
measure the quality of solutions and combines this with a density estimation method to
choose the best solutions for reproduction. SPEA2 has done a good job of solving MOPs
with many goals [45]. NSGA-II and SPEA2 are not the only evolutionary methods for
MOO, but there are many more. MOEA/D is one of these [46], IBEA, and many others.
Each algorithm has its strengths and flaws, and how well it works depends on how the
optimization problem is set up [7].

3. Applications using multi-objective algorithm

Many problems in the real world have many different, sometimes conflicting goals and
a large search space. Conflicting goals lead to Pareto-optimal compromises. No trade-off
is better without preference knowledge. However, accurate approaches cannot solve huge
and complex search spaces. Thus, effective optimization solutions must address both issues
[2, 47].

In this section, some works that use multi-objective algorithms in their applications will
be shown:

1. Marina Khoroshiltseva et al. [48] designed and built a new energy-efficient fixed day-
light around the outside window of a Madrid apartment building. MOO algorithm
combined Harmony search and Pareto-based approaches to optimize the shading
scheme for a social housing complex in Madrid. The resulting methodology provided
here focuses on energy efficiency. The best way to design effective shading devices
is when the performance of the proposed solution depends on several conflicting
objectives.

2. Chao Ni et al. [49] built a Multi-Objective Feature Selection (MOFS) with ways to
enhance it. One optimization intention is to select as few tendencies as possible
related to fee analysis. Another objective is to utilize Pareto-based multi-objective
optimization Algorithms (PMAs) to enhance the overall efficiency of software defect
prediction SDP models. The analysis examined the impact of different PMAs on
MOFES and determined that NSGA-II performed well on all datasets.

3. Erfan Babaee Tirkolaee et al. [50] provide reliable and enduring solutions that en-
hance the efficiency of supply chain operations, create transportation routes, reduce
greenhouse Gas (GHG) emissions, and improve customer satisfaction. This study pre-
sented a variant of Bi-Objective Mixed-Integer Linear Programming (BOMILP) with
two objectives that aim to minimize the overall cost while utilizing the MOSA and
NSGA-II algorithms to identify Pareto solutions that maximize distributed reliability.
This revolutionary solution to docking and sustainable supply chain management
should be seen. The BOMILP version aims to minimize pricing frequency and
maximize supply chain reliability by considering transportation route planning,
GHG emissions, and consumer satisfaction. Statistical testing is used to assess the
effectiveness of the proposed strategies in addressing real-world problems. They
have found that response methods can also produce superior solutions, and NSGA-II
is the most effective tool.

4. Jesus Guillermo Falc et al. [51] used IMIA to overcome the limitation of IB-MOEAs-
based multi-objective optimization problems with irregular Pareto-front geometry.
It connects the MOEAs. IMIA outperforms the original IB-MOEA and some current
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MOEAs by their detection biases. The invariance of the Pareto-front makes IMIA
ideal for MOPs with complex Pareto-front geometries.

5. Jie Hou et al. [42] presented a study that employed the NSGA-II to enhance the
crossover and mutation probabilities through reinforcement learning. This led to
improved joint growth and runtime results for the manipulator, surpassing other
conventional optimization methods. The total runtime was reduced by 19.26 %,
enhancing work efficiency.

6. Kuihua Huang et al. [52] proposed a competition and cooperation approach based
on a robust Pareto-evolution strategy to reduce the makespan and Total Energy
Consumption (TEC) in distributed heterogeneous permutation flow shop scheduling
problems. The heuristic information from each solution divides the population into
statistical tests. Speed increases the convergence of lost solutions and winners.
Problem-based initialization, local search, and energy conservation strategies also
reduce makespan and total energy consumption.

7. Mingjing Wang et al. [53] suggest an approach based on MOEA, named MOEA/D-
HHL, that combines deconstruction with Harris Hawks Learning (HHL) for medical
device learning. The MOEA/D-HHL algorithm was effectively used to analyze clin-
ical data on lupus nephritis and pulmonary hypertension. The algorithm achieved
a normalized mutual information score of 0.9652 and an adjusted rand index score
of 0.9749 for lupus nephritis. For pulmonary hypertension, the normalized mutual
information score was 0.9686, and the adjusted rand index score was 0.9742. The
analytical results demonstrate that the MOEA/D-HHL algorithm surpasses other
techniques in treating Pulmonary hypertension of lupus nephritis. The statistical
analysis indicates that all indicators have predictive capabilities. The proposed HHL
approach in MOEA/D is a more resilient alternative to the existing system developed
for the medical device class.

8. Saúl Zapotecas-Martínez et al. [54] developed a box restriction of the multi-objective
continuous optimization problem and used EA based on the Lebesgue measure. The
constant property of the continuous multi-objective optimization problems is ex-
ploited privately by the proposed method of continuous problems with approximate
Pareto sets, and this property is effective when solving. The results demonstrate the
high competitiveness of the presented approach, which in many cases provided the
evolutionary criteria-based algorithms used in their investigation of multi-objective
success problems.

9. Amir M. Fathollahi-Fard et al. [55] developed a context-dependent and resilient
optimization method to handle uncertainty in logistical and service aspects of home
healthcare and to plan resources for home healthcare effectively. Their advanced
optimization model for sustainable and efficient home healthcare logistics and ser-
vices incorporates a heuristic technique based on the Lagrangian relaxation notion.
Three heuristic algorithms are employed to tackle the problem. Heuristic algorithms
symmetrically route chemists and patients. The epsilon constraint approach and
Lagrangian relaxation theory yield very efficient Pareto-based solutions rapidly.
A comprehensive analysis demonstrates that both the multi-objective optimization
version and the proposed heuristic approach are environmentally friendly and feasi-
ble. An analysis is conducted to examine certain sensitivities to provide managerial
insights for developing sustainable and robust home healthcare services.

10. Seyed Jalaleddin Mousavirad, et al. [56] proposed a multi-objective approach to
improve image quality and reduce image file size by using a quantization table
in JPEG image compression, which can help in mobile device energy efficiency.
This study also offers secular methods based on Pareto-principles. The authors
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incorporate the proposed method under metaheuristic algorithms, such as Enhanced
Multi-Objective Genetic Algorithm (EnMOGA), Enhanced Multi-Objective Practice
Swarm (EnMOPS), and Enhanced Multi-objective Non-dominated Sorting Genetic
Algorithm-II (EnNSGA-II). The results show that the EnMOGA and EnMOPS pri-
oritized objective functions 6 and 7, in 13 secularization processes, respectively.
EnNSGAII outperformed EnNSGAIII in 10 excess measurements among 13 Pareto-
based algorithms. The Wilcoxon signed-rank test is used to statistically evaluate the
performance of the algorithm and perform sensitivity analysis.

11. Erfan Babaee Tirkolaee et al. [57] suggested a multi-objective mixed-integer linear
programming model for supply chain decisions involving multiple periods, echelons,
and products. The authors simultaneously mitigate human peril, pollution, and
expense. Multi-objective Gray Wolf Optimizer (MOGWO) and NSGA-II discover
Pareto optimal solutions by solving the model. The MOGWO algorithm generates
a COVID-19 mask closed-loop supply chain network more effectively. By 25 % in
Pareto solution dispersion and 2 % in solution quality, MOGWO surpasses NSGA-II.

12. Erfan Babaee Tirkolaee et al. [58] suggested a sustainable garbage collection model.
This work introduced a mixed-integer linear programming model to decrease costs,
environmental emissions, and operational variability while optimizing public sat-
isfaction. The authors developed a hybrid multi-objective optimization technique
to address the challenge properly. The objectives aim at minimizing the set costs,
approximate the impact on environment, influence the concern level, and guarantee
that variations in workload will not be an issue. To solve the problem with the
highest level of effectiveness, the authors introduced the concept of a mixed multi-
objective optimization algorithm identified as MOSA with MOIWOA.

13. Jaza M. Abdullah et al. [59] proposed a Multi-Objective Fitness-Dependent Op-
timizer (MOFDO). The authors evaluate how appropriate the algorithm is for
benchmark issues that are artificial and for real-life situations encountered in en-
gineering. The impacts show that the effects verify that MOFDO is better than the
alternative optimization approaches in terms of convergence and answer diverse.
Moreover, MOFDO presents a vast array of feasible options that choice-makers can
select from, hence acting as a tool for addressing rational ingenuity design issues.

14. Chnoor M. Rahman et al. [60] designed an overall performance-based learner
conduct gadget to solve engineering optimization problems with multiple goals
by introducing a new multi-objective optimization set of rules called the Multi-
Objective Based learner Performance (MOBP) primarily based behavior algorithm.
As for the evolution, the algorithm was used with five real tasks in engineering, and
the case was different in the comparison with three other multi-goal ones. The result
shows that the advised set of rules outperformed the others in both accuracy and
variety.

4. Discussions and analysis

Complex issues with conflicting aims require multi-objective algorithms. Instead of
focusing on one goal, these algorithms create solutions that optimize numerous criteria
concurrently. This section examines the effects of applying multi-objective algorithms to
engineering, finance, and data analysis. Fig. 4 shows the rank of researchers used in this
paper.

Table 1 discusses the pros and cons of these algorithms and how they can assist decision-
makers in balancing competing priorities.
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Fig. 4. The rank of researchers.

This section emphasizes that many real-world situations feature a complex search space
and many competing objectives. Effective optimization algorithms that can handle both
challenges are needed in such a situation [37]. One such method that helps manage
challenging decision-making scenarios is the use of multi-objective algorithms.

Segment maintained by bringing up posted works that use multi-objective algorithms
in their designs. For instance, Marina Khoroshiltseva et al. [48] presented a multifaceted
optimization methodology for shading design to address the challenge of creating novel
energy-efficient fixed daylight systems that enclose the external windows of a residential
building in Madrid. The algorithm combined Harmony search with Pareto-based optimiza-
tion to identify the most significant trade-offs. Another case in point is the work by S. S.
Rathore et al. [49], who optimized the design of a solar-powered water pumping system
using a multi-objective optimization method. The program discovered optimal compromise
options that improved the system’s efficiency while reducing costs.

This section aims to show how valuable multi-objective algorithms can be applied to real-
world issues with numerous competing goals and intricate search spaces. These algorithms
can aid decision-makers in establishing the optimal balance between competing objectives.

5. Conclusion

This paper offers a comprehensive review to explore multi-objective algorithms and their
various uses. It explores optimization methods for difficult issues with conflicting goals.
The results show the importance of these algorithms in numerous fields and their potential
to change decision-making.

This review paper starts by explaining multi-objective optimization’s essential notions
and how these algorithms handle conflicting goals and discover the algorithms like NSGA-
II, SPEA2, and MOEA/D strengths, which efficiently explore Pareto fronts and capture
varied solutions.

The applications section demonstrated the actual implementation of these algorithms
in several fields. Multi-objective algorithms excel in finding optimal solutions for several
objectives in engineering, finance, healthcare, and environmental management. In
portfolio optimization, medical treatment planning, sustainable resource allocation,
and their ability to find Pareto-optimal solutions usher in a new era of informed
decision-making. The studied literature emphasizes the need to continuously enhance and
adapt multi-objective algorithms to different problem landscapes. Combined with new
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technologies like machine learning and artificial intelligence, these algorithms open up
new optimization possibilities.

This paper gives the readers a bird’s-eye view of MOO algorithms, methodologies, and ap-
plications. It helps scholars and practitioners use MOO to make smart decisions in complex
real-world situations by combining knowledge from diverse domains. A fascinating world
of computational brilliance and practical significance in applications of multi-objective
algorithms has been explored.
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