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ORIGINAL STUDY

Optimization of Resources Allocation
using Evolutionary Deep Learning

Sanaa Ali Jabber *, Soukaena H. Hashem, Shatha H. Jafer

Department of Computer Science, University of Technology – Iraq, Baghdad, Iraq

ABSTRACT

The Bidirectional Long Short-Term Memory (Bi-LSTM) network structure enables data analy-
sis, enhances decision-making processes, and optimizes resource allocation in cloud computing
systems. However, achieving peak network performance relies heavily on choosing the hyperpa-
rameters for configuring the network. Enhancing resource allocation improves the Service Level
Agreement (SLA) by ensuring efficient utilization and allocation of computational resources based
on dynamic workload demands. This paper proposes an approach that integrates a Multi-Objective
Evolutionary Algorithm (MOEA) with deep learning techniques to address this challenge. This
approach combines the optimization capabilities of MOEA with the learning predictive models to
establish a framework for resource allocation in cloud environments. Snake Optimizer Algorithm
(SOA) and Genetic Algorithm (GA) are utilized to identify specific hyperparameters through
optimization procedures, which serve as the foundation for setting up the Long Short-Term
Memory (LSTM) network. The search process begins with a random selection of parameters. The
process is iterative in nature and concentrates on the best results for the parameters, with initial
random sampling done according to the results obtained. This methodology considers all areas and
examines the most effective areas, which improves the effectiveness of the approach when solving
the problem of moving through the hyperparameter space. The modifications that were made to
the snake algorithm have the goal of optimizing resource management within the data center
in cloud environment. LSTM-SOA approach achieved an accuracy level of 97% on the dataset
created in the Cloudsim simulation environment. This approach is based on multi-objectives to
meet the requirements of determining the optimal data center. By comparison, the LSTM-AG
approach achieved an accuracy level of 87%.

Keywords: Cloud computing, Service level agreement, Long short-term memory, Snake optimizer
algorithm, Genetic algorithm, Resource allocation

1. Introduction

Cloud computing goals and features include providing convenient, smooth, and on-
demand access to shared computing resources. There are numerous ways that deployment
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models are provided in cloud computing, such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS) [1]. Companies that
provide cloud computing services to organizations and customers are called Cloud Service
Providers (CSPs). These services include online storage, computing resources, databases,
applications, and others in cloud computing administration and service provisioning. The
Quality of Service (QoS) and Service Level Agreement (SLA) are of the utmost impor-
tance. QoS refers to the level of performance, dependability, and accessibility provided
by services [2]. The QoS aspect is essential for vendors and consumers within the cloud
computing domain. Providers must negotiate with consumers to agree. As explained in the
SLA, to determine the QoS, the service providers must provide the service within the re-
quirements of the service level agreement and meet the standards. It must be clarified that
the service provider will face financial consequences if they do not meet the set standards
for QoS [3, 4]. Guaranteeing the QoS for consumers and cloud providers is becoming vital
due to the rapid growth of distributed cloud computing resources. Consequently, there
emerged a necessity to achieve multiple objectives that could occasionally be conflicting
[5]. Therefore, the SLA negotiation process must enhance cloud service performance, foster
trust between providers and consumers, and minimize SLA violations [6]. Developing
an automated negotiation system is crucial to expediting the negotiation rounds and
enhancing the negotiation process, thereby reducing the communication time between
the involved parties. Furthermore, the service provider may avoid necessary financial
losses to maintain QoS by facilitating the exchange of information between parties. This
exchange allows each party to communicate their negotiation objectives and standards,
especially when there are multiple objectives to be considered. In this sense, it is crucial
for parties to be aware of various factors that may arise during the negotiation process
[7, 8]. The main goal of this paper is to reduce negotiation time between providers and
consumers and reduce SLA violations. The primary objective of this paper is to enhance
the negotiation processes and steer clear of monetary fines, all to uphold the QoS. Many
researchers have studied the issue of resource allocation in cloud computing; some of them
and their summarization are given in Table 1.

The authors in [9] introduced the Intelligent Multi-Agent Reinforcement Model
(IMARM), a resource allocation model combining intelligent multi-agent systems and
reinforcement learning. IMARM dynamically allocates resources based on changing con-
sumer demands, leveraging the properties of multi-agent systems. The reinforcement
learning component learns the optimal state of virtual machines given the environment
thus enhancing the performance parameters such as power consumption and fault toler-
ance. Experimental results demonstrate IMARM’s superiority over comparable algorithms,
achieving better load balancing and execution times while maintaining efficiency and fault
tolerance.

In [10], the authors presented a novel approach called Multi-Objective Genetic Algo-
rithm (MOGANS) for dynamic resource allocation in multi-virtual machine environments,
and this emphasizing stability and optimization. MOGANS comprehensively considers
current and predicted application load data, relocation costs, and placement stability. Sim-
ulation results show that MOGANS did achieve longer stability times and optimizes energy
savings when compared to GA-NN. MOGA-C is proposed based on MOEA/D for virtual
machine distribution for the purpose of addressing limitations. Experimental simulations
provide evidence that MOGA-C shows faster convergence and, at the same time, achieves
comparable optimization results at the same computational scale.

The Multi-Objective Improved Cuckoo Search (MOICS) algorithm for enhancing task
scheduling in a cloud computing atmosphere was proposed in [11]. The proposed algo-
rithm aims to reduce processing time and overall costs. The methodology addresses discrete
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Table 1. Summarization of resource allocation in cloud computing previous studies.

Ref. Problem Solution method

[9] Inefficient resource allocation in response to
dynamic demand and suboptimal virtual
machine state.

Combines intelligent multi-agent systems and
reinforcement learning for efficient resource
allocation and virtual machine optimization.

[10] Dynamic resource allocation in multi-virtual
machine environments.

Multi-objective Genetic Algorithm for addressing
limitations in virtual machine distribution.

[11] Discrete multi-objective task scheduling,
automating work assignment to cloud nodes.

Multi-Objective Improved Cuckoo Search
Algorithm (MOICS) for optimizing task
scheduling in cloud environments.

[12] Management of fluctuating traffic patterns. LSTM for dynamic resource allocation, analyzing
application resource usage to optimize resource
additions in near real-time.

[13] Intersection of cloud task scheduling, distribution,
and machine learning to optimize cloud
environments.

Cloud Linear Regression (CLR) for efficient
resource management.

[14] Distributing workloads evenly between the clouds
and the edges of the network.

XCS learning classifier systems (LCS), namely,
XCS and BCM-XCS, to balance the power
consumption at the edge of the network and to
reduce delays in the processing of workloads.

[15] Optimizing task scheduling in cloud computing to
reduce resource usage and operational costs.

(WOA) to cloud task scheduling, enhanced with
IWC for improved solution search aiming at
improving the performance of a cloud system
with given computing resources.

multi-objective task scheduling, automating work assignments to cloud nodes to optimize
resource allocation effectively. Implementation results demonstrate that the proposed ap-
proach minimizes makespan and costs significantly compared to Modified Particle Swarm
Optimization (MPSO), Bee Life Algorithm (BLA), a Time–Cost aware Scheduling (TCaS)
algorithm, and Round Robin (RR) algorithm, highlighting its effectiveness in cloud task
optimization.

The authors in [12] focused on implementing LSTM for dynamic resource allocation,
analyzing application resource usage to optimize resource additions in near real-time. The
study integrates LSTM with dynamic routing algorithms for cloud traffic optimization,
demonstrating effective management of fluctuating traffic patterns. Recent comparisons
with Monte Carlo Tree Search (MCTS), a method to which LSTM is often compared and
whose versatility is best seen, demonstrate that LSTM can sustain its performance while
significant pattern changes occur. For the load balancing techniques, as in other models
designed by researchers, the proposed LSTM model provides relatively acceptable SLAs,
improves the accuracy rate by 10 to 15%, and decreases the error rate of the traffic
load blocking probability by 9%, 5–10%, and 2%. Future research will explore energy-
efficient load balancing using heuristics and machine learning approaches in cloud data
centers.

In his dissertation, the author [13] presented Cloud Linear Regression (CLR), a novel
machine learning model that integrates cloud technology with linear regression principles.
CLR explores the intersection of cloud task scheduling, distribution, and machine learning
to optimize cloud environments. CLR achieves high predictive accuracy and response times
across various scenarios, demonstrating effectiveness in handling big data environments.
CLR offers efficient resource management, including task scheduling, provisioning, alloca-
tion, and availability assurance. Performance results highlight CLR’s capabilities, achieving
significant improvements in multitasking resource utilization, memory utilization, logical
disk utilization, and bandwidth utilization.
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The Extended Classifier System (XCS) and Best Classifier Memory (BCM)-XCS methods
for workload balancing and reducing delays at the network edge have been presented in
[14]. BCM-XCS demonstrates superiority over XCS, minimizing processing and communi-
cation delays. These methods control processing delay fluctuations significantly and reduce
processing delay by 42% with moderate power consumption. Additionally, they improve
battery recharge by 18% compared to state-of-the-art methods.

The authors in [15] applied the latest metaheuristic, the Whale Optimization Algorithm
(WOA), for cloud task scheduling within a multi-objective optimization framework to
enhance cloud system performance using available computing resources. Accordingly, they
introduced an advanced approach called Improved WOA for Cloud Task Scheduling (IWC)
to enhance the optimal solution search capability of the WOA-based method. The detailed
implementation of IWC was presented, and simulation-based experiments demonstrated
that IWC achieves better convergence speed and accuracy in finding optimal task schedul-
ing plans compared to existing metaheuristic algorithms. Additionally, it performs better
in terms of system resource utilization for both small and large-scale tasks.

The main contributions of this paper can be summarized as follows:

a. Proposing a new approach for adjusting Long Short-Term Memory (LSTM) hyperpa-
rameters to expedite the process of choosing the most suitable data center for a task,
cutting down on negotiation time and boosting profits.

b. Configuring data set for LTSM training by multi-objective cloud computing resource
allocation standards.

c. Increasing the ability of LSTM to correspond with sequential data and capture tempo-
ral patterns makes the proposed approach adaptable to the changing SLA and evolving
requirements. The LSTM units can learn and adapt to new data patterns. This ensures
that the negotiation strategies remain effective even in dynamic and fickle scenarios.

The rest of this paper is organized as follows: Section 2 explains the background of LSTM.
Section 3 describes the proposed approach. Section 4 shows the testing and validation
processes. Finally, Section 5 illustrates the conclusion.

2. Long Short-Term Memory architecture

In 1997, Hochreiter and Schmidhuber developed an LSTM model that can perform well
on sequence learning tasks, unlike other recurrent neural networks. LSTM structure is
composed of a block of interconnected cells [16]. In plain Recurrent Neural Networks
(RNNs), the vanishing gradients can occur in two ways: the error gradient could show
exponential growth over time, or it could diminish significantly. LSTM was firmly aimed
at surpassing this problem by equipping both long-term and short-term memories. Specifi-
cally, LSTM consists of a memory cell that can retain information for a long time, ensuring
the algorithm performs well in long-term dependencies and non-linear data profiles.
Using gating mechanisms, LSTM manages the information flow inside the network, which
helps disclose key issues and block noise [17, 18]. This encompasses voice identification,
online handwriting recognition, voice synthesis, language translation, emotion detection,
acoustic modeling, and speech synthesis, among other capabilities. These networks are
advantageous in areas including language modeling, protein structure prediction, video
and audio analysis, and human behavior analysis, as referenced in sources [19–21]. These
are just a few of their numerous practical uses. Several factors impact the performance
of networks, including the network structure, the learning approach employed, and the
activation function utilized at each node. Nevertheless, the primary focus of neural network
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research is the study of learning algorithms and designs, with less attention given to
investigating activation functions [21]. The activation function’s value establishes the
boundaries for decision-making and the overall intensity of the node’s input and output
signals. The activation functions may also impact the intricacy and efficacy of the networks,
as well as the convergence of the algorithms [22, 23]. The careful selection of activation
functions significantly impacts the network’s performance.

3. The proposed approach for service level agreement negotiation

When combining LSTM with meta-heuristic optimization techniques, as shown in Fig. 1,
one can solve the problem of allocating resources in cloud computing and reduce negoti-
ation times. The main objectives of the proposed approach are to address its large scope,
scalable nature, and adaptability nature in cloud environments, as shown in Algorithm 1.

Due to the dynamic nature of the cloud environment and its handling of time-series data,
the LSTM network, with its feedback connections, can process entire data sequences rather
than just individual data points. This makes LSTM an ideal choice for effectively handling
time-series data. The proposed approach incorporated two types of LSTM architectures,
unidirectional and bidirectional, to compare their performance and determine the optimal
structure for the proposed approach.

First, unidirectional Long Short-Term Memory (Uni-LSTM) and Bidirectional Long Short-
Term Memory (Bi-LSTM) layers are implemented. Dropout layers are then added to prevent
overfitting by randomly setting a fraction of the input units to 0 during each update
in training sessions. Multiple LSTM layers with decreasing units are then integrated to
facilitate hierarchical feature learning, whereby higher layers can capture more abstract
and complex representations.

The final layer of the proposed approach architecture consists of a dense layer with a soft-
max function. The softmax function gives a series of probability values, which is beneficial

Fig. 1. General architecture of the proposed approach.
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Algorithm 1. SLA negotiation.

Input: Task characteristic, Datacenter (Dc) characteristic
Output: mapping (Task, Dc)
1. Training the LSTM network on the generated dataset
2. For all Tasks in the Task list

a. Dc-ID = production-STM (Task, Dcs) //mapping Tasks to the optimal Dc
b. If (Dc−ID != null) //available resource for this Task

i. Update mapping (Task, Dc-ID)
ii. Transmit the task to the selected Dc

c. Else
Update the task status to (failed) //Tasks failed because no resource is

available
d. End If

3. End For
4. Update the Task list
5. Repeat step 2 until the Task list is empty
6. End

Fig. 2. Uni-LSTM vs. Bi-STM architecture.

for solving multi-class classification tasks. Adam Optimizer was chosen to compile the
approach due to its computational efficiency and low memory requirements, making it
well-suited for the proposed approach. During the training phase, early stopping was
included to improve the performance of the proposed approach. This feature monitors a
specified metric, specifically the validation loss, over several epochs to prevent overfitting.
Fig. 2 illustrates the difference between Uni-LSTM and Bi-LSTM architectures. Fig. 3 shows
the proposed approach of the LSTM network architecture for SLA algorithms.

3.1. Creating a dataset for training multi-objective methods

The multi-objective LSTM model is designed to deal with a series of complicated cases
where more than three objectives are involved. The new approach has been developed
to allocate tasks based on task requirements while at the same time aiming to balance
loads between various data centers concerning four factors, which include the Cost of
Executing a Task (CET), the Network Delay (DelayN), the Data Center Workload (DCload)
and geographical location. To train the proposed network for improving service level
agreements (SLA), developing a specific dataset that aligns with the system’s requirements
based on multitasking operations is essential. After deploying and configuring the virtual
environment data centers and virtual devices, mathematical modeling was used to build
these datasets. It was then used to build a dataset for the service level agreement (SLA)
improvement phase. This process went through several training iterations where features
were removed one by one to find the most closely linked attributes that were related to task
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Fig. 3. The LSTM network architecture for the SLA algorithm.

distribution across the data centers. During each of the training stages the evaluation was
made depending on the system accuracy. This approach aimed to reduce task execution
time and enhance the service level agreement (SLA). The dataset consists of boundless
attributes, contains 19 columns, and is utilized as the input source while training the
proposed approaches. This number is directly connected to the number of rows in the
dataset and reaches 4000, reflecting the complexity of the resource allocation model as
well.

3.2. Mathematical model for dataset configuration

Equations (1) to (5) are used to model the tasks mathematically. The objective function
shown in Equation (6) seeks to determine the data center with the least load, the least
amount of network delay, and the lowest execution cost.

The proposed approaches’ data centers differ in terms of processing, memory, storage,
transferring data, and power costs.

The entire task completion in the data center refers to the CET, as shown in Equation (1)
[24]:

CET(m, n) = (Exe(m, n)× CPUcost(n)+ (R(m)× RAMcost(n))

+ (Storage(m)× Storagecost(n))+ (F(m)× Bcost(n))) (1)
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where: CPUcost is the cost in dollars per second for CPU usage, R(m) is the RAM required
for the task m in megabytes (MB), RAMcost is the cost in dollars per megabyte (MB) of
RAM, Storage(m) is the storage required for task m in megabytes (MB), Storagecost is the
cost in dollars per megabyte (MB) of storage, F(m) is the size of task m’s file in kilobytes
(KB), and Bcost(m) is the price per megabyte (MB) for data transport.

The delay in the network is computed based on the data center bandwidth and task data
length, as shown in Equation (2):

DelayN(m, n) =
LT(m)
Bv(n)

(2)

where: DelayN (m, n) represents the delay during the transmission of the task m to data
center n, IT(a) is the task length measured in million instructions (MI), and Bv(n) is the
bandwidth of virtual machine n in megabits per second (Mbps).

The load of the data center is computed in Equation (3):

DCload =
m∑

l=0

Hload(l) (3)

Hload(l) =

( n∑
i=0

MIPSused(i)
MIPSTotal(l)

)/
100 (4)

where: DCload is the data center utilization representing the overall load on the data
center, Hload(l) measures the frequency of use of the host l, MIPSused(i) represents the
total number of Millions of Instructions Per Second (MIPS) used by all tasks running in a
virtual machine i, MIPSTotal(l) is the total MIPS capacity available in virtual machine l, m
is the number of hosts in the data center, and n is the number of virtual machines in host j.

The distance between Cloudlet and the data center is shown in Equation (5):

Distance =
√

[DCx − CLx]2 + [DCy − CLy]2 (5)

where: DCx, DCy represents the coordinates (x, y) of the data center, CLx,CLy represents
the coordinates (x, y) of the Cloudlet.

The objective function shown in Equation (6) aims to determine the data center with the
least load, the least amount of network delay, and the lowest execution cost:

Min F(xi) = 0.4× CET(i)+ 0.3× NDelay+ 0.3× DCload+ 0.5× Distance (6)

3.3. The genetic algorithms algorithm strategy for hyperparameter search

The Genetic Algorithm, known as GA, offers a unique approach to fine-tuning the
hyperparameters of LSTM networks by drawing inspiration from natural selection and
evolution. This method mirrors the concept of natural selection, where individuals with
higher fitness levels are more likely to pass on their traits to future generations. As the
population undergoes repeated selection, crossover, and mutation processes, it gradually
moves towards hyperparameter configurations that yield optimal results for the LSTM
network’s specific task.
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Algorithm 2. LSTM-GA optimizer.

Input: Current Hyperparameters
Output: Best Hyperparameters
1. Create population

Population = Population (indv_template, size = 50)
2. Define GA operators

a. selection = Roulette Wheel Selection
b. crossover = Uniform Crossover (pc = 0.8, pe = 0.5)
c. mutation = Flip Bit Mutation (pm = 0.1)

3. best-accuracy = 0
4. Create GA Engine

a. For each iteration in range (10)
i. Engine = GA Engine (population = population, selection = selection, crossover = crossover,

mutation = mutation)
ii. engine.fitness_register

def fitness (indv)
iii. Use hyperparameters from individual

hyperparameters = indv
iv. Train the model with the hyperparameters

1. history = train Model (hyperparameters) //call your train model function
2. accuracy = max (hist.history [accuracy]) //extract validation accuracy
3. If accuracy > best-accuracy

best-accuracy = accuracy
b. End For

5. Access the best individual
a. best_individual = engine.best_individual ()
b. best_hyperparameters = best_individual.solution

6. End

Algorithm 2 outlines termination criteria, such as reaching a specified number of gener-
ations or observing minimal improvements in fitness scores over multiple iterations, which
halt the optimization procedure.

3.4. Snake movements and strategy for hyperparameter search

The number of LSTM units, dropout rates, learning rates, and batch sizes are the hyper-
parameters for the LSTM network. To navigate the search space effectively, the SO needs
a suitable representation of these hyperparameters, where each parameter represents a
dimension in the search space. The snake’s location at any given time represents a unique
combination of these hyperparameters.

A real snake adjusts its movements based on its prey’s location. This movement is really
important in the search space for the success of the SO. Just as a real snake adjusts its
movements based on fitness scores, a virtual snake adjusts its path. It employs both greedy
exploitation and random exploration, as shown in Algorithm 3.

3.5. Methodology of training and optimization

Training a model goes beyond just feeding it data; it involves skillfully ensuring that
the model grasps the data’s essence. The model’s learning uses fresh and unseen data by
dividing the data into distinct training and validation sets. The training procedure entails
cycling through numerous epochs with specified batch sizes. Each epoch represents a full
cycle of both forward and backward passes across all training instances. The training stops
when the model reaches its learning limit or starts to overfit. Algorithm 4 illustrates the
training model.
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Algorithm 3. LSTM-SOA optimizer.

Input: current-hyperparameters
Output: Best Hyperparameters
1. For iteration in range (10):

a. history = train-model (current-hyperparameters)
b. accuracy = train-model (current-hyperparameters)
c. Update best hyperparameters if better ones are found

i. If accuracy > best-accuracy:
1. best-accuracy = accuracy
2. best-hyperparameters = current-hyperparameters
3. Greedy Exploitation: Refine search around the best hyperparameters
4. perturbing the hyperparameters slightly

Current-hyperparameters
a. Lstm-unit = max (32, best-hyperparameters[lstm-unit] + random ([−16, 16])
b. dropout-rate = min (0.3, max (0.1, best-hyperparameters [dropout-rate] +

random ([−0.1,0.1]))
c. learning-rate = min (0.005, max (0.001, best-hyperparameters [learning-rate]
× random ([0.5, 1.5]))

d. batch-size = max (32, best-hyperparameters [batch-size] + random ([−16, 16]))
ii. Else

Random Exploration
Current-hyperparameters
a. Lstm-unit = random (lstm-units)
b. dropout-rate = random (dropout-rates)
c. learning-rate = random (learning-rates)
d. batch-size = random (batch-sizes)

2. End For
3. return (Best Hyperparameters)

Algorithm 4. Training model (dataset).

Input: dataset
Output: model-history
Function to train a model with given hyperparameters
1. model = Sequential ()
2. model.add (Bidirectional (LSTM (hyperparameters [lstm-unit]), activation = "tanh"))
3. model.add (Dropout (hyperparameters [dropout-rate]))
4. model.add (Bidirectional (LSTM (int (hyperparameters [lstm-unit]/2), activation = "tanh"))
5. model.add (Dropout (hyperparameters ["dropout-rate"]))
6. model.add (Bidirectional (LSTM (int (hyperparameters [lstm-unit]/4), activation = "tanh"))
7. model.add (Dropout (hyperparameters [dropout-rate]))
8. model.add (Dense (1, activation = "Softmax"))
9. opt = Adam (lr = hyperparameters [learning-rate])
10. model.compile (loss = "binary-cross-entropy", optimizer = opt, metrics = [accuracy]) early stopping =

Early Stopping (monitor = "val-loss", patience = 3, restore-best-weights = True) #loss =
"sparse-categorical-cross-entropy", For SLA

11. history = model.fit (X-train, y-train, epochs = 5, batch-size = hyperparameters ["batch-size"],
12. validation-data = (X-test, y-test), callbacks = [early-stopping])
13. return model-history
End

4. Experimental results

The approach was implemented using CloudSim 3.0.3, which supports simulations
involving multiple data centers and users. The specifications of each data center influence
the generation of virtual machines and the creation of various tasks within the simulation.
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Table 2. Distribution of workloads within a cloud environment using CloudSim simulator received Cloudlets size =
100.

Output

Cloudlet Data Start Finish Distance
ID center ID VM ID Time time time (km) DcLoad Status

3 5 11 0.48 0.1 0.58 12553.0 45.0 Success
50 5 12 0.59 0.1 0.69 13601.0 45.0 Success
14 5 13 0.59 0.1 0.69 10975.0 45.0 Success
2 4 10 0.83 0.1 0.93 14021.0 51.0 Success
13 4 8 0.94 0.1 1.04 1518.0 51.0 Success
20 5 13 0.41 0.69 1.1 9333.0 45.0 Success
35 4 9 1.17 0.1 1.27 11378.0 51.0 Success
64 3 4 1.27 0.1 1.37 6009.0 42.0 Success
– – – – – – – – –
5 4 7 1.28 0.1 1.38 15509.0 51.0 Success
86 5 13 0.38 1.1 1.48 2063.0 45.0 Success

Table 3. Comparison between the genetic model and the snake model.

Genetic model summary Snake model summary

Layer (type) Output shape Param Output shape Param

LSTM (None, 1, 70) 21280 (None, 1, 128) 68608
Dropout (None, 1, 70) 0 (None, 1, 128) 0
LSTM (None, 35) 14840 (None, 64) 49408
Dense (None, 3) 108 (None, 3) 195
Total params 36228 (141.52 KB) 118211 (461.76 KB)
Trainable params 36228 (141.52 KB) 118211 (461.76 KB)

Specific modifications were made to the classes of the CloudSim simulator to accommodate
the implementation of the approach and assess the approach’s performance.

Table 2 illustrates the configuration of cloud infrastructure using the CloudSim simula-
tor. It outlines the setup of three data centers, each with a different number of hosts. The
table demonstrates how 100 requests are evenly distributed among these data centers in
a simulated scenario. This example showcases the allocation of workloads within a cloud
environment, emphasizing the effective utilization of resources.

Table 3 compares the genetic model and the snake model. The table reveals that the snake
model surpasses the genetic model in terms of complexity, as it contains multiple LSTM
layers and a total of 118,211 trainable parameters, whereas the genetic model contains
only 36,228 trainable parameters. Both models include a dropout layer, which serves to
reduce over-learning and does not contain trainable parameters. They, both, also utilize
the dense layer for final classification with few trainable parameters.

Consequently, the snake model exhibits greater complexity than the genetic model,
characterized by its multiple LSTM layers and higher parameter count. Moreover, based on
the provided data, the snake model demonstrates superior prediction accuracy relative to
the genetic model. Fig. 4 also shows the difference in prediction accuracy and loss between
the genetic and snake models. It shows that, based on the given data, the snake model is
more accurate than the genetic model, and the difference in loss shows that the snake
model performs better than the genetic model.

The Bi-LSTM model architecture is more efficient at allocating resources compared to the
Uni-LSTM model architecture. In both types of models, the LSTM-SOA model outperforms
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Fig. 4. Comparison of prediction accuracy and loss between genetic model and snake model.

Table 4. The Uni-LSTM-SOTA algorithm performance compared with the Uni-LSTM-GA algorithm.

Simulation time Average Average
(in seconds) waiting time completed time Throughput SLA violation rate

LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM-
Task SOA GA SOA GA SOA GA SOA GA SOA GA

50 0.87 0.97 0.28 0.29 0.11 0.14 57.47 51.34 3.6 7.4
100 1.52 1.63 0.58 0.67 0.11 0.12 65.62 61.2 4.5 6.8
150 2.18 2.41 0.86 0.99 0.11 0.13 68.68 62.24 2.8 4.7
200 2.73 3.07 1.87 1.51 0.11 0.15 73.15 65.15 2.16 8.6
250 3.29 3.84 1.97 2.52 0.11 0.16 75.99 65.1 2.9 6.2
300 4.05 4.5 2.08 2.82 0.11 0.13 74 66.67 2.6 4.6
350 4.71 5.16 2.12 2.13 0.11 0.13 74.25 67.83 2.8 3.4
400 5.37 5.71 2.19 2.48 0.11 0.15 74.43 70.05 3.2 2.3

the LSTM-GA method, as shown in Tables 4 and 5. It has lower SLA violation rates, faster
performance, higher throughput, and less waiting time.

When comparing the two approaches in terms of speed, it was found that the LSTM-SOA
approach in both models achieved a speed of 3.95. However, the LSTM-GA approach did
not exceed a speed of 2.9 when executing 300 requests. This indicates that using the
LSTM-SOA approach will lead to an increase of 30%. As for waiting time, the LSTM-SOA
approach proved its ability to quickly and effectively distribute tasks to the closest and
least loaded data centers, which led to faster work completion and reduced waiting
time, thus increasing productivity by 20% more than the LSTM-GA. Fig. 5 illustrates the
average waiting durations between the LSTM-SOA and LSTM-GA prediction approaches
and assesses the throughput discrepancy between the LSTM-SOA and LSTM-GA prediction
approaches.
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Table 5. The Bi-LTSM-SOA algorithm performance compared with the Bi-LSTM-GA algorithm.

Total simulation Average Average
time (in seconds) waiting time completed time Throughput SLA violation rate

LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM- LSTM-
Task SOA GA SOA GA SOA GA SOA GA SOA GA

50 0.75 0.85 0.2 0.27 0.1 0.11 77.47 48.9 0 0
100 1.02 1.42 0.48 0.57 0.04 0.12 85.62 61.05 0 0.02
150 1.99 2.10 0.76 0.89 0.07 0.12 88.68 62.2 0.09 0.08
200 2.10 2.13 1.17 1.2 0.07 0.15 88.15 65.45 0.02 0.05
250 2.21 2.41 1.47 1.52 0.09 0.14 94.99 66.5 0 0.1
300 2.85 3.95 1.68 1.82 0.09 0.15 94 68.35 0.04 0.05
350 2.91 3.91 2 2.13 0.09 0.15 94.25 70.3 0.09 0.1
400 3.99 4.99 2.09 2.43 0.09 0.15 94.43 72.2 0.01 0.08

Fig. 5. Comparison of average waiting time and throughput between LSTM-SOA and LSTM-GA.

The lowest SLA violation rates illustrate the superior capability of LSTM-SOA to meet
QoS standards, demonstrating its remarkable performance in this regard. Fewer violations
occur because the objective function uses the deadline element as a constraint. With
fewer tasks, the difference between the approaches may be small, but the difference in
performance between the two approaches increases with the number of tasks performed.
Fig. 6 shows the average SLA violation rate between two prediction approaches, LSTM-SOA
and LSTM-GA.

5. Conclusion

Utilizing artificial intelligence to assign tasks across data centers in cloud computing
enhances operational efficiency, elevates performance and QoS, and allows organizations
to swiftly adapt to fluctuating workload dynamics, thereby providing a more adaptable
and responsive cloud infrastructure.

Due to its bidirectional nature, Bi-LSTM model has higher capacity to understand
complex patterns and dependencies in resource allocation data than unidirectional LSTM
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Fig. 6. The average SLA violation rate between the LSTM-SOA and LSTM-GA.

models. This improves the accuracy of predicting future resource needs and refining
allocation strategies. Furthermore, Bi-LSTM minimizes the risk of information loss, which
helps in making accurate decisions about resource allocation and improves the efficiency
of the cloud computing environment.

The dataset created in the CloudSIM environment has proven efficiency in allocating
resources in a cloud environment, taking into account multiple goals. The study identified
that the geographic locations of data centers and customers play a critical role in task
distribution and execution performance. Proper data center selection can reduce response
times and improve overall system efficiency.
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