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ABSTRACT

The primary elements of Intelligent Transportation Systems (ITSs) have become Vehicular
Ad-hoc NETworks (VANETs), allowing communication between the infrastructure environment
and vehicles. The large amount of data gathered by connected vehicles has simplified how Deep
Learning (DL) techniques are applied in VANETs. DL is a subfield of artificial intelligence that
provides improved learning algorithms able to analyzing and process complex and heterogeneous
data. This study explains the power of DL in VANETs, considering applications like decision-
making, vehicle localization, anomaly detection, traffic prediction and intelligent routing, various
types of DL, including Recurrent Neural Networks (RNNs), and Convolutional Neural Networks
(CNNs) are mentioned for their efficiency in VANET applications. The DL algorithms in VANETs
have garnered attention from academia and industry, leading to the development of architectures
and algorithms tailored for VANETs. The challenges and advantages of DL in VANETs are expected
as future research directions in this field. Moreover, this study explains the operations of Swarm
Intelligence (SI) techniques, such as Ant Colony Optimization (ACO), Stochastic Diffusion Search
(SDS), Particle Swarm Optimization (PSO), and Artificial Swarm Intelligence (ASI) in VANETs.
The techniques of SI offer solutions for improving problems and can be utilized to diagnose and
manage routing protocols and traffic congestion malicious nodes in VANETs. This study offers
a detailed diagnose of how SI and DL help improve the efficiency and performance of VANETs.
This improvement facilitates the development more safer and active transportation systems with
intelligent capabilities.
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Fig. 1. An illustration of vehicular networks [5].

1. Introduction

Vehicular Ad-hoc NETworks (VANETs) are pivotal to enhancing the Intelligent Trans-
portation Systems (ITSs). VANETs authorize cars to contact among themselves and with
many infrastructure components, for instance, traffic signals and road sensors, to promote
road safety, driving experience and traffic adequacy, as shown in Fig. 1. The enormous
information amount that is created via these cars and the deployment of connected cars
have blazed the way for the DL algorithms in VANETs [1].

DL represents the major subfield of Artificial Intelligence (AI), it works on transforma-
tions across multiple fields by proposing algorithms of sophisticated learning capable of
extracting and acquiring complex representations and patterns from enormous data sets.
This robustness makes DL especially appropriate for VANETs, where massive data are
created from roadside infrastructure, cars and other resources [2].

In VANETs, the suitability of DL relies on the accuracy in analyzing and processing
complex and heterogeneous information to derive important insights. VANETs can explore
challenging duties via leveraging Deep Neural Networks (DNN), which involve intelligent
routing, decision-making, anomaly detection, vehicle localization, and traffic prediction.

DL techniques like Recurrent Neural Networks (RNNs) and Convolutional Neural Net-
works (CNNs) have shown elegant performance in many VANET applications. For example,
features of RNNs are dealing with temporal and sequential data, subsequently making
them appropriate for services like the prediction of traffic flow and driving behavior
analysis. CNNs can pull high-level features from visual data, such as pictures taken via
in-vehicle cameras or roadside cameras, allowing services, such as classification of traffic
signs, vehicle detection objects and recognition.

The utilization of DL in VANETs has obtained sturdy attention from industry and
academia. Investigators have offered many DL architectures and algorithms appropriated
for VANETs, concentrating on upgrading the adequacy and performance of diverse VANET
applications. Automotive manufacturers, technology companies and transportation agen-
cies have determined the DL potential in VANETs and are exploiting it in research and
development [3, 4].

The contribution of this study explains the power of DL in VANETs and investigates its
applications in various circumstances, including autonomous driving, safety enhancement
and traffic management. Also, this study presents insights into future research in this field
and the features and challenges of DL in VANETs.

This study is organized as follows: Section 2 presents VANETs and their communication
via 5G and 6G networks. Section 3 presents the background of VANETs and AI. Section 4
explains the DL techniques in VANETs, while Section 5 presents the challenges and oppor-
tunities in VANETs using DL and SI techniques. Finally, Section 6 describes the conclusion.
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Fig. 2. Communications in VANET [6].

2. Vehicular Ad-hoc NETworks and their communications via 5G and 6G
network

VANETs are formed by advancing and integrating wireless communication technologies,
automotive construction technologies and ITSs. VANETs can be classified as a distinct
subset of Mobile Ad-hoc NETworks (MANETs) that possess unique characteristics and
requirements, with vehicular nodes playing a crucial role. VANETs consist of stationary
entities (roadside units) and mobile entities (vehicles) collaborating to swap essential
information regarding the state of roads and other vehicles [6]. Fig. 2 illustrates six types
of communication in VANETs:

• Vehicle-to-Vehicle (V2V): - Communication between vehicles.
• Vehicle-to-Sensor (V2S): - Communication between vehicles and sensors.
• Vehicle-to-Infrastructure (V2I): - Communication between vehicles and Infrastructure.
• Intra-Infrastructure (I2I): - Infrastructures Communication.
• Vehicle-to-Cellular Network infrastructure (V2CN): - Communication between vehicle

and Cellular Network infrastructure.
• Vehicle-to-Personal Device (V2PD): - Communication between vehicles and Personal

Devices

VANETs utilize short-distance wireless communication to facilitate data exchange be-
tween vehicles and roadside infrastructure. This data serves various functions, including:

• Supporting ITSs: VANETs play a vital role in implementing ITSs applications, encom-
passing features such as intelligent traffic lights and automated parking systems.

• Improving Traffic Efficiency: By enabling V2V communication, VANETs allow for co-
ordinated movements among vehicles, ultimately aiding in reduced traffic congestion.

• Enhancing Traffic Safety: VANETs enable the dissemination of crucial information
to vehicles, notifying them about potential dangers like accidents or ongoing road
construction.

5G and 6G networks represent upcoming advancements in cellular networks, providing
several benefits compared to their predecessors:

• Enhanced Capacity: Both 5G and 6G networks offer substantially greater bandwidth
than earlier generations of cellular networks. This expanded capacity enables the
support of various novel applications, including VANETs.
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• Decrease Delay: The 5G and 6G networks latency is seriously reduced compared to gen-
erations of previous cellular. This reduction delay is especially valuable for applications
that rely on real-time communication, like VANETs.

• High Accuracy: The 5G and 6G networks characteristic is the enhanced accuracy
compared to the generations of earlier cellular. This enhancement to accuracy is serious
for applications that need performance with high levels, like VANETs.

These characteristics can develop transportation via rising, safety and efficiency. There
are several ways in which VANETs and (5G or 6G) networks can be successfully combined:

• ITSs: VANETs can employ the capability of 5G or 6G networks to back several ITS
applications, including systems for automated parking and lights of smart traffic. These
applications can advance the adequacy of transportation systems, like using VANETs
to rule smart traffic lights, which leads to enhanced traffic flow.

• Improving Traffic Adequacy: Consolidating 5G or 6G networks with VANETs sup-
ports coordinating vehicle movement, and decreases and improves traffic flow and
congestion. For instance, VANETs can minimizing traffic delays by coordinating car
movements.

• Promoting Traffic Safety: VANETs can swap essential information about hazards such
as road maintenance or accidents using 5G or 6G networks. Cars can utilize this data
to take action to prevent accidents. Such as changing lanes or adjusting speed to avoid
a collision.

3. Vehicular Ad-hoc NETworks and Artificial Intelligence: Background

VANETs have been a key field of study for about a decade. Rapid progress in computing
technologies has extremely eased the integration of AI techniques in diverse domains such
as transportation medicine, healthcare, engineering and manufacturing [7]. The major
target of vehicular networks is to develop the safety and adequacy of transportation
systems by enabling the swap of information among roadside infrastructure, cars, and
pedestrians. Fig. 3 provides an AI tools classification for techniques like Swarm Intelligence
(SI) and DL. AI methods are widely used in practical situations because of their exceptional
problem-solving ability. The impressive growth of AI techniques can be attributed to

Fig. 3. Swarm techniques and deep learning taxonomy [9].
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Table 1. DL techniques and their role with VANET.

DL techniques Properties Role with VANET

CNN Highly efficient, simplified, and
scalable.

– Evaluating multimedia data obtained from
vehicle control cameras or roadside units.

– Anticipating accidents using video analysis.
– Managing 5G/6G resources.
– Security depends on blockchain.

RNN Optimal results are achieved
when working with sequential
and discrete information.

– Enabling the exchange of information across
collaborative fog, cloud computing
platforms, and edge.

– Enhancing mobility prediction.
– Performing efficient handovers.
– Detecting obstacles.
– Decreasing latency.

Generative Adversarial
Network (GAN)

A fixed quantity of iterations is
employed to generate samples.

– Predicting vehicle trajectory.
– Enhancing the efficiency of infotainment

applications by boosting the rate at which
data are delivered and minimizing the delay
in transmission.

Deep Belief Network
(DBNs)

Attributes represented through an
iterative process.

– Ensuring the security of 6G VANETs.
– Predicting driver emotions prediction.
– Preventing 51% of blockchain attacks.
– Predicting traveling time.

the development of computationally efficient algorithms and the abundance of extensive
datasets. DL and machine learning have undergone significant advancements in the past
few years, transitioning from experimental research to practical implementation in critical
applications [8]. The next sub-section provides a concise overview of some prominent AI
techniques and explores their potential applications in key areas of VANETs.

3.1. Deep Learning in Vehicular Ad-hoc NETworks

DL is a subset of AI and a branch of machine learning that focuses on extracting
knowledge automatically from vast amounts of data. The effectiveness of DL has led to
its widespread adoption in various practical applications. The keys of DL techniques have
been outlined, highlighting their benefits and exploring their potential applications in the
context of VANET, as illustrated in Table 1. A summary of prominent and significant DL
techniques is also presented.

3.1.1. Convolutional Neural Network
CNNs are renowned for their ability to scale effectively and their low complexity [10].

As an AI technique, they demonstrate high efficiency, making them particularly useful for
analyzing multimedia data, such as predicting accidents and congestion in videos, with the
help of computer vision CNN-based systems. They prove valuable in tasks like identifying
pedestrians, detecting potential hazards, and recognizing traffic signs through captured
images. Moreover, CNNs can successfully control the allocation of 5G or 6G resources by
hiring network slicing methods and executing blockchain technology security solutions
to guarantee the legitimacy of the vehicular nodes [11]. Fig. 4 describes CNN and GAN
mechanisms [9].

3.1.2. Recurrent Neural Networks
RNNs are suited to dealing with sequential data, especially generating and learning

signals. They handle discrete and sequential data and are highly useful for collaborative
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Fig. 4. Tools of deep learning: Explaining CNNs and GANs [9].

computing across cloud environments, fog, and edge. RNNs can be applied to assess the
likelihood of a vehicle entering a specific region soon based on its current trajectory,
predict mobility patterns, and benefit from insights obtained from analyzing input
data by forecasting the future quality of received signal sequences, also RNNs prove
valuable in detecting optimal handover timings. Also, RNNs can help reserve resources by
extracting resource availability patterns from frequency band utilization data. In addition,
RNN-based methods can be used to analyze captured road images and detect obstacles on
the road [12].

3.1.3. Deep Belief Network
DBN is a powerful tool for enhancing the security of 6G VANET because of its iterative

depiction of attributes. It is also characterized by its depth, which points to the presence
of multiple hidden layers. In VANETs, DBN is considered more secure and plays a critical
role in 6G VANETs. It can also be used to estimate travel time and predict driver emotions.

The process includes gathering traffic information from real road scenarios and decom-
posing it into different intrinsic elements within the input space. Each data segment is then
trained using a DBN, and the resulting predictions are combined to form the ensemble
model output.

In addition, DBN is valuable in mitigating blockchain attacks in vehicular communica-
tions. It considers factors such as the number of trustworthy and malicious nodes within
the vehicular network, message delivery time among vehicles, and the computational time
required for blockchain puzzle-solving [13].

3.1.4. Generative Adversarial Network
GANs are an AI technique used to generate accurate replicas of images or other forms

of data. They utilize a fixed quantity of iterations to produce samples. GANs enhance the
efficiency of infotainment applications and reduce communication latency. By optimizing
resource allocation to align with the requirements of each vehicular application, they
can improve trajectory prediction by making rough approximations of semantic spaces
constructed by projecting contextual information into a semantic space using a DL model.
GANs can catch semantics such as merging and turning by simulating and regulating the
trajectory of each vehicle and the anticipated distribution of vehicles.

3.2. Swarm Intelligence in Vehicular Ad-hoc NETworks

SI points to the combined behavior of independent and decentralized systems. In the
vehicle context, SI involves a group of vehicles communicating with each other and
their environment. Unlike traditional centralized control systems, these vehicles adhere
to fundamental principles such as following road structures, adhering to speed limits, and
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obeying traffic signals. SI draws inspiration from various natural phenomena, such as birds
flocking, bacterial growth, the behavior of ant colonies, the schooling of fish, and microbial
cognition [9].

3.2.1. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a global optimization technique that can be ap-

plied to solve problems involving single-point or multi-dimensional surface solutions. This
technique ensures that each particle chooses the best position it has previously encountered
or moves towards a new position by adjusting its speed if the new position is more favorable
[14]. Several probable solutions are mapped in the solution space using an initial speed
as input [15, 16]. The particles navigates through this space based on fitness parameters,
gradually advancing towards regions with improved fitness characteristics over time.

3.2.2. Ant Colony Optimization
Ant Colony Optimization (ACO) aims to find nearly optimal solutions for different

graph optimization problems. The ACO ants try to navigate the shortest possible route,
as described in reference [17].

3.2.3. Stochastic Diffusion Search
Stochastic Diffusion Search (SDS) was initially presented as a mapping algorithm that

operates on a population level. It utilizes direct interaction patterns to assess the validity
of various paths, including the collaborative movement observed in social insects [18, 19].

3.2.4. Artificial Swarm Intelligence
Artificial Swarm Intelligence (ASI) is a form of SI that brings together interconnected

individuals into a real-time system. It draws inspiration from natural swarms and is
governed by AI algorithms. By utilizing real-time networks and AI algorithms, ASI fosters a
collective intelligence known as a “hive mind” among human participants, enabling teams
to achieve solutions that surpass what individuals could accomplish on their own [20, 21].

Unlike other problem optimization approaches, most SI techniques do not rely on
specific hypotheses. Instead, they combine exploring various paths with utilizing natural
intelligence to uncover high-quality solutions.

SI is also known for its simplicity and ease of implementation compared to other AI meth-
ods. It finds applications in optimizing routing, determining the shortest path, clustering
algorithms, and Geocast routing [22, 23], addressing challenges like traffic congestion
and detecting malicious nodes. Table 2 provides an overview of the main characteristics
of various SI techniques and their potential applications in VANET domains.

Table 2. SL techniques with VANET.

SI technique Properties Role with VANET

PSI No hypotheses are necessary to optimize the
problem.

Enhancing routing Protocols (Geocast,
clustering, shortest path).

SDS It is possible to uncover solutions of exceptional
quality- by integrating the process of discovering
paths with the utilization of human intelligence.

Facilitating traffic jams.

ACO To optimize, there is no need for gradient
information, meaning it can be done without
relying on gradients or being gradient-free.

Identifying nodes that are acting with
malicious intent.

ASI Easy and simple to implement. Assisting in mitigating the risk of
routing attacks.
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4. Practical applications of Vehicular Ad-hoc NETworks-Deep Learning and
Vehicular Ad-hoc NETworks-SI techniques

VANETs have several practical applications where DL and SI techniques can be effec-
tively employed. Here are some examples:

Table 3. VANET Applications for DL and SI Techniques.

VANET Apps Benefit Descriptions

Intrusion Detection
Based on DL in
VANET

This work proposes a DL-based
intrusion detection system for
VANET to detect malicious
activities and attacks.

[24] The proposed model utilizes a
combination of LSTM and CNN networks
to analyze the behavior patterns of
vehicles and identify potential security
threats.

Vehicle Localization
in VANET-Based
DL

This study focuses on accurate
vehicle localization in VANET
using DL techniques.

[25] Proposed a model that exploits DNN to
evaluate the accurate location of cars
based on measurements of received signal
strength.

Traffic Sign
Recognition
Based on DL in
VANET

This research presents traffic sign
recognition based on a DL
approach in VANET.

[26] The proposed model employs an
integration of CNNs and RNNs to classify
and detect traffic signs from captured
pictures.

Energy
Management in
Electric Vehicles
within
VANET-Based DL

This research focuses on
optimizing energy management
in Electric Vehicles (EVs)
within VANET using DL
techniques.

[27] The presented model acquires
knowledge to make energy-influential
decisions for EV charging and discharging
depending on battery and traffic
conditions.

Vehicle-to-Vehicle
Communication
in VANET-Based
DL

This paper concentrates on
improving V2V communication
in VANET using DL techniques.

[28] The proposed model hires DNNs to
detect and decode signals and improve
interference mitigation in V2V
communication, a guide to enhanced
communication activity and reliability.

An ACO Approach
for Traffic Signal
Control in
VANETs

This article explores a method for
traffic signal control in
VANETs using ACO.

[29] Proposed an enhancement to traffic
signal timing and duration using an ACO
algorithm based on the data gathered
from cars in the network. The
characteristic of this design is to reduce
congestion and enhance traffic flow by
dynamically modifying the traffic timing
of signals in response to traffic conditions.

PSO-based
Handover
Decision
Algorithm in
VANETs

This paper proposed an algorithm
for handover decisions for
VANETs depending on PSO.

[30] A PSO is employed to enhance the
process of handover decision when a car
moves between diverse Base Stations (BSs)
or Access Points (APs) in the network.
Components such as channel quality
network congestion and signal strength
enhance the handover decision. The
presented algorithm aims to improve the
performance and connectivity of vehicles
in VANETs during handover scenarios

Vehicle Detection
and Tracking
based on DL in
VANET

This paper presents a DL model
for vehicle tracking and
detection in VANET

[31] Proposed a model that employs the
algorithms of object detection like CNNs
or You Only Look Once (YOLO) to explore
and track vehicles from video or sensor
data, subsequently, helping applications
like traffic analysis and collision
avoidance.
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5. Challenges and opportunities in Vehicular Ad-hoc NETworks using Deep
Learning and Swarm Intelligence techniques

DL has a huge impact on VANETs as shown above. Numerous research challenges and
opportunities remain. The most notable of these challenges and article directions are as
follows:

1. Durability and Security: In VANETs, the durability and security of DL models is an
enormous challenge. Both adversarial strikes and data intoxication can affect the
efficiency and accuracy of these models. Investigators should focus on enhancing
the durability of DL architecture and techniques that can pact with such strikes and
pledge the originality and integrity of the information gathered from cars [32–34].

2. Confidentiality Preservation: DL algorithms need an enormous information amount
for training, which can boost confidentiality problems regarding VANETs. Investiga-
tors should concentrate on developing techniques that allow cars to share information
while protecting the individual driver’s confidentiality, such as federated learning,
secure multi-party computation and differential privacy [35–37].

3. Multi-Modal Data Fusion: VANETs generate diverse data from several sensors, includ-
ing radar, LiDAR and cameras. Investigators should focus on improving the DL models
that can exploit and merge multi-modal data for functions like a prediction of the
behavior, object detection and scene understanding. Multi-modal fusion mechanisms
such as graph neural networks and attention mechanisms can be explained in this
context [38–40].

SI techniques are used in VANETs for proposing research opportunities to address
different challenges. These research challenges and directions are the most notable as
follows:

1. Swarm-based Traffic Control: In VANETs, SI algorithms such as ACO or PSO, can
be used for control of dynamic traffic. Studies should focus on enhancing swarm-
based algorithms to reduce congestion and improve traffic efficiency via enhancing
the coordination of traffic flow, lane assignment timing, and traffic signals [41–43].

2. Swarm-based Network and Routing Management: SI algorithms can be utilized to
improve efficiency and algorithms of self-adaptive routing for VANETs. Studies should
focus on swarm-based routing protocols that consider components such as vehicle
mobility patterns, network congestion and link quality, allowing robust and scalable
communication within VANETs [44–46].

3. Intelligent Routing: SI techniques can enhance routing protocols and VANETs by
considering, network connectivity, real-time traffic conditions and vehicle density
[47–49].

Integrating SL and DL techniques into VANETs can develop several network features,
including localization, routing, data fusion and traffic control, guiding to more active and
intelligent vehicular communication systems [50].

6. Conclusion

This study explains the DL techniques application and SI techniques in VANETs that
can improve the adequacy and performance of ITSs. It highlights the impact of DL in
VANETs for services such as vehicle localization, decision-making, anomaly detection,
intelligent routing, and traffic prediction. Diverse DL technique models, including RNNs
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and CNNs, are discussed for their ability in VANET applications. The DL techniques utilized
in VANETs have earned attention from academia and industry, guiding to the development
of architectures and algorithms appropriated for VANETs. Moreover, this study explains
the SI techniques’ role such as ACO, PSO, ASI, and SDS and proposes solutions to improve
the detection of malicious nodes and routing protocols and traffic congestion management.
The study includes the advantages and challenges of DL and SI in VANETs and proposes
future research directions. Merging DL and SI in VANETs promises to build more safer,
efficient and intelligent transportation systems.
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