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ABSTRACT

In robotics, efficient path planning makes robots work independently and move through
changing environments over time. This study combines the Rapidly-exploring Random Tree
(RRT) architecture with the Firefly Algorithm (FA) to make robot’s path-planning better. The
proposed ERRT-FA, which stands for “Enhanced RRT with Firefly Algorithm”, generates better
routes using Firefly social habits. Plan routes using Firefly social habits can effectively aid in
exploring configuration space. The role of the FA is to enhance the RRT algorithm by providing
an optimized exploration of the search space, ultimately leading to optimizing the path found by
the RRT algorithm and better paths in complex environments. The basic idea of the FA is to refine
the resulting path by the RRT algorithm through optimizing the positions of Fireflies based on
their intensity. Various tests show that ERRT-FA works better than the RRT algorithm in many
robotic situations. It indicates a significant reduction in computation time, exploration efficiency,
and route length, with statistical analysis showing a mean decrease. Such a result denotes that
the proposed ERRT-FA is an alternative solution for optimizing ERRT-FA as a perfect path
plan.
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1. Introduction

Robots have the ability to navigate through dynamic and complex environments by
strategically devising their routes. For this to be successful, all possible and best ways must
be carefully considered, taking into account time, distance, and safety. Rapidly-exploring
Random Tree (RRT) algorithms are famous for how quickly and correctly they can move
through configuration spaces and develop appropriate paths [1]. Even though they have
many benefits, earlier versions of RRT algorithms have issues in complicated situations
changing variables, limited paths, and obstacles. Most stochastic roadmaps for the RRT
method examine the configuration space using a progressive tree structure [2]. As the tree
grows closer to an arbitrary configuration point, a study is being carried out. It is possible
that unpredictability will cause the convergence time to slow down and the steps’ quality
to worsen in scenarios where time and accuracy are very important [3]. This study solves
these problems with a new approach by integrating the RRT algorithm with the Firefly
Algorithm (FA), a metaheuristic optimization method based on the flickering behavior
of fireflies. The FA was proposed by [4], who got the idea from the bioluminescence that
fireflies show. The fluctuating patterns exhibited by fireflies are linked to the attractiveness
of their mates. The FA performs exceptionally well with robots and other optimization
problems due to its adaptability [5]. It encourages teamwork among Fireflies to find
optimal solutions. The suggested method fixes the problems with the basic RRT algorithm
and makes the most of the findings about the RRT framework and the FA. An increase in the
firefly’s intensity results in a more precise response. The potential integration of the RRT
and FA can enhance the efficiency, robustness, and adaptability of path planning. It enables
the establishment of a foundation for enhanced autonomous guidance by integrating the
most advantageous aspects of both algorithms. This would increase the apparatus’s speed
and precision during navigation in challenging conditions. The current study aims to
enhance the RRT algorithm through its integration with the FA. The objective is to improve
the velocity and precision of trajectory determination for point-mass robot model robotic
systems functioning in various surroundings.

The contributions of this study can be summarized as follows:

1. A new proposed algorithm: A new enhanced RRT algorithm based on the meta-
heuristic FA has been proposed and named Enhanced RRT with Firefly Algorithm
(ERRT-FA).

2. Reduced computational effort: This is accomplished through overcoming many nodes,
path length, and more time-consuming issues found in RR. Here, ERRT-FA generates
better path planning than the basic RRT algorithm.

3. Evaluation of ERRT-FA: The purpose of this study is to evaluate the efficacy and
effectiveness of robotic system path planning by integrating numerical analyses and
simulations.

This study is organized as follows: Section 2 presents a detailed discussion of studies in-
volving the research that has been done on robotic versions of the FA and RRT algorithms.
Section 3 illustrates how the theoretically-driven RRT. Section 5 explains the basic idea of
FA. Section 5 goes into more detail about the possible benefits of the proposed ERRT-FA
improved RRT-Firefly algorithm while details of the evaluation are included in Section 6.
Lastly, Section 7 concludes the main findings of the study.

2. Theoretical background

The focus on improving FA-based mobile robot path planning has been shown recently
in [6]. During iteration, the authors found a discrepancy between Fireflies and barriers.
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The authors solved this with a Firefly algorithm that self-adjusts population size. They
corrected with nonlinear functions and evaluated collision degree to determine population
size. Fireflies were added or eliminated to prioritize workable alternatives. The authors
included a coefficient to control the distance between unfeasible and workable paths.
Results showed better solution stability, faster convergence, and shorter running time than
the Firefly algorithm with a secure population size.

An adaptive dynamic FA was proposed for mobile robot path planning in [7]. The
authors overcame the FA inaccuracy and slow convergence to local optima since route
planning is crucial for mobile robot studies. They carefully optimized adaptive parameters
to construct an adaptive FA for path planning. Both theoretical and experimental validation
showed that the optimized strategy significantly increased the mobile robot’s processing
and reaction speed. Their investigation revealed that the suggested algorithm for mobile
robot path planning was the most efficient and effective.

Path planning algorithms that help self-driving cars were proposed in [8] and named
Unmanned Aerial Vehicles (UAVs). The mobile robots find safe and quick ways without
causing any accidents. This study shows how important it is to select methods that work
with the system’s constraints and geometry, which makes it useful for beginners. This
study observes many different algorithms and provides valuable comparisons and use
case examples to assist individuals in selecting the appropriate algorithms. This survey
discusses path planning methods in detail, making them reliable for robotics engineers
and embedded system developers.

In a recent study [9], the authors illustrated how to use a robotic limb to navigate
problem nodes by adding a gravitational potential function and using B-spline curves to
smooth out the trajectory. This study improved the RRT algorithm that was first created.
Other algorithms are better than RRT in both two-dimensional and three-dimensional tests.
The new RRT algorithm works better than the previous version of the algorithm one, as
shown by execution times of 0.39 seconds and average path lengths of 147.63 millimeters.
This study proves that the updated algorithm can easily find the best paths for robotic
arms. This study demonstrates the criticality of devising innovative approaches to enhance
algorithms, thereby improving the performance of computer arms across diverse scenarios.

Recently, FA step-kinematic has been evaluated in [10] as a potentially practical method
for controlling and planning mixed motion. The study consists of kinetic equations and
stepping ahead Firefly. The authors use robotic navigation to handle crowded areas. When
obstacles are detected, the system instantly switches between equation-based mobility and
Firefly stepping. This will lead to self-driving ways that are safer and work better. Path
length improved by 5.79 %, 0.37 %, and 9.22 %, showing that it works better than Ant
Colony Optimization (ACO)-kinematic. In this way, the method becomes useful and more
valuable.

In [11], the authors came up with a new way of kinematics in planar robots. The
extended Jacobian and FA are used to make it work. The PUMA 560 robotic arm is used
as an example. This study uses inverse kinematics to show how defect tolerance can be
raised in places where maintenance is expected. The Firefly and Jacobian algorithms are
combined to make this possible. This study shows how fabrication processes could be
improved through operational flexibility and advanced robotic design options. Increasing
understanding of how to improve the performance and durability of planar bots enables
their application in a broader range of environments.

The authors in [12] explained the inverse kinematics problem of a 7-Degree of Freedom
(7-DOF) redundant robot manipulator using the Firefly method, a swarm optimization
methodology. The FA was tested on a redundant robotic arm with unsatisfactory in-
verse kinematic solutions using traditional methods. It was compared to artificial bee
colony and particle swarm optimization in speed and accuracy. The FA minimized joint
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angle identification error; forward kinematic calculation determined the end effector’s
workspace location, and the manipulator position equations were derived. The FA per-
formed complex robotic manipulation problems efficiently and accurately.

This study combined the FA with the RRT for several reasons. The FA’s simplicity and
flexibility allow it to handle multimodal optimization problems. It is ideal for increasing
local optimization in path planning algorithms like RRT because Fireflies generate optimal
solutions. Even though the Genetic Algorithm (GA) [13], ACO [14], and Particle Swarm
Optimization (PSO) [15] have been widely deployed in the literature, each of these
alternatives has its downsides. Hence, making the FA the better optimization algorithm.
GA’s computational overhead is not necessarily proportionate to its strength because it
sometimes requires intricate mutation and crossover procedures. In discrete contexts like
RRT-based path planning, PSO may not be as effective as in continuous search spaces. ACO
is useful in some pathfinding applications, despite its intensive computations and the need
for substantial parameter modifications.

FA is a versatile, easy-to-use, and low-computing approach. When paired with RRT, the
enhancement in exploration and exploitation lead to an improve in path planning. The FA
may dynamically change firefly brightness and appeal to improve computing efficiency and
path optimality by fine-tuning RRT paths. FA being hybridized with RRT emphasizes the
goal of producing a powerful and efficient path-planning algorithm for complex real-time
environments.

3. Rapidly exploring random tree path planning

Many point-mass robot models use the RRT algorithm to plan their routes because it
quickly and accurately builds paths and explores configuration space. This is the robot’s
first configuration, which is where its RRT technique story starts [16]. The process then
creates a tree structure by growing the value over and over to any point in the configuration
space. The algorithm steps are as follows:

Algorithm 1. RRT

1. Set up the tree T from scratch using the default settings q_init
2. K = number of samples in random
3. For k = 1 to K Do

4. Within the configuration space, generate a random configuration q_rand
5. Find the nearest node q_near in the tree T to q_rand using the Euclidean distance formula shown in Eq. (1):

d(qnear′qrand ) =

√√√√ K∑
k=1

(qnear′k
qrandk )2 (1)

6. Cover the tree from q_near towards q_rand with a step size δ, generating a new node q_new
7. If the path from q_near to q_new is collision-free then enhance q_new to the tree T

8. End for
9. Return the tree T

Due to the use of random sampling, the basic RRT method can quickly cover a large area
and provide useful paths. Routes might not work as well in very small places or with many
obstacles. For areas with many dimensions, it may take a long time for the algorithm to
find the best results because it works with a high degree of randomness [17, 18].
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Fig. 1. Firefly in nature [20].

4. Firefly algorithm

Metaheuristic optimization, inspired by how Firefly wings flap, as shown in Fig. 1, was
used in the first versions of the FA. Firefly social ties are being modeled to solve efficiency
problems. The technique shows possible results for optimization problems involving Fire-
flies. The quality of the results is demonstrated by how bright or intense the Fireflies
are [19]. The main concepts about the method are its appeal and randomness. Because
of stochasticity, Fireflies can explore the solution space by moving around randomly
during the trial. Every time the algorithm runs, Fireflies move based on a random factor
and the draw of other Fireflies in the area. Along with looking for more busy partners,
Fireflies also cause random changes in motion. When an end condition is met, a process is
stopped and started again. It could be the number of attempts or the quality of the result.
FA is characterized by several positive qualities, including simplicity, effectiveness, and
durability. Setting up and handling problems with discrete, combinatorial, and continuous
optimization is easy [20, 21]. The method can handle a wide range of issue aspects and
levels of complexity, and it is very responsive to changes in parameter values. A known
tool for improving the FA is based on how Fireflies interact with each other as shown in
Pseudo-code 1. The goal of this tool is to make it easier to explore the solution area and
find the best option [4, 22]. The light intensity is calculated in Eq. (2), where I0 is the light

Pseudo-code 1. FA.

1. Objective function f(x), x = (x1, . . ., xd)T

2. Generate initial population of Fireflies xi (i = 1, 2, . . ., n)
3. Light intensity Ii at xi is determined by f(xi)
4. Define light absorption coefficient
5. while (t < Max Generation)
6. for i = 1: n (all n Fireflies)
7. for j = 1: i (all n Fireflies)
8. if (Ij > Ii), Move Firefly i towards j in d-dimension by Eq. (5).
9. End if
10. Attractiveness varies with distance r via exp[−γ r2]
11. Evaluate new solutions and update light intensity
12. end for j
13. end for i
14. Rank the Fireflies and find the current best
15. end while
16. Postprocess results and visualization
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intensity at the beginning:

Ir = I0e−γ r2
i j (2)

The brightness (attraction) of Fireflies is calculated in Eq. (3)

βi = β0e−γ r2
i j (3)

where ri j is the Euclidian distance between two Fireflies xi and x j, and β0 signifies the
initial attraction factor, which is typically 1. Parameter γ is the fixed value of the light
absorption coefficient, which is generally also 1. For 2 Fireflies xi and x j randomly chosen
in the identical search space, the distance ri j among them is considered as Eq. (4):

ri j =

√√√√ n∑
s=1

(xi − x j)2 (4)

where n expresses the dimension of the problem, and s denotes the s-th dimension of the
position vector of the Firefly. Throughout the search, Firefly xi is involved with the brighter
Firefly xi and moves towards xi. The location of Firefly is calculated according to Eq. (5):

xi(t + 1) = xi(t )+ βi(x j(t )− xi(t ))+ α. (rand − 0.5) (5)

where xi(t ) and x j(t ) represent the positions of Fireflies i and j at time t , respectively,
the term βi(xi(t )− xi(t )) models the attraction of Fireflyi to Firefly j, which is based on
the relative brightness and the distance between them. The coefficient α controls the
randomness of the movement and (rand- 0.5) is a random number drawn from a uniform
distribution. t signifies the number of iterations of the algorithm, α is the step size
parameter, which is typically a random number with the value of [0,1].

5. An enhanced rapidly-exploring random tree

Point-mass robot models plan their routes using many algorithms to navigate compli-
cated environments, avoid obstacles, and finish already-set jobs. They often use the RRT
method to plan paths because it can quickly search configuration spaces and identify
feasible paths. However, the environment can get hard and change quickly, so the basic
RRT method might have issues like poor path quality and slow convergence.

The RRT method incorporates the FA to increase robotic system path planning efficiency
and dependability, as shown in Pseudo-code 2. This integration involves the following
steps:

1. Initialization
Start and goal nodes should be set up in the supplied environment to initialize the
RRT. Firefly spots are randomly set in the search space. A diagram shows a map
with the start and goal nodes marked, along with several Fireflies (points) scattered
randomly within the map.

2. Random Node Generation
The algorithm randomly generates nodes in the search space. These nodes serve as
potential waypoints for constructing the path from the start to the goal. A map with
a few randomly placed nodes (potential waypoints) was highlighted.
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Pseudo-code 2. ERRT- FA.

Input:
qstart starting point
qgoal target point
l step length
C all frontier point locations in all obstacles (known)
R number of samples in random
Output:
S resulting path
Initialization:
T Null tree<node, edge>
F List of fireflies
Begin
1 T← Add root<qstart>
2 For r = 1 To R Do
3 Create r-th sample in random
4 qrand node← position of the r-th sample in random
5 qnear node← position of the closest node in T from qrand node
6 If not within (qnear node, qrand node, l) Then
7 qnew node← juncture point between line segment linking qrand node and qnear n node, and circle

which radius is l centered at qnear node
8 Else qnew node← qrand node
9 If not strapped (qnew node, qnear node, C) Then
10 T← Add node<qnew node> & edge<qnew node, qnear node>
11 End if
12 End if
13 If within (qnew node, qgoal, l) Then
14 T← Add node<qgoal> & edge<qnew node, qgoal>
15 P← path from last added node{qgoal} to root node{qstart} in T
16 End if
17 If [length of S] > [length of P], Then S← P
18 Remove node<qgoal> & edge<qnew node, qgoal> from T
19 End if
20 Find the optimize solution (S) by call FA (Pseudo code 1)
21 If is within (solution for firefly, qgoal, l) Then
22 T← Add node <solution for firefly> & edge <solution for firefly, qgoal>
23 P← path from last added node <qgoal> to root node <qstart> in T
24 End if
25 If length of S > length of P, Then S← P
26 Remove node <solution for firefly> & edge <solution for firefly, qgoal> from T
27 Return S
28 End if
29 End for
End

3. Nearest Neighbour Search
The algorithm identifies the nearest existing node in the RRT for each newly generated
node. This step is crucial for extending the tree towards the new node. A zoomed-in
section of the map shows the freshly generated node and the nearest existing node
connected by a dashed line, indicating the search process.

4. Tree Expansion
The tree is expanded by connecting the nearest node to the new node if the path
between them is collision-free. This iterative method continues until the tree is close
to the goal node. The map shows the growing tree structure, with branches extending
from the start node towards the goal, highlighting collision-free paths.
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5. Firefly Attraction Mechanism
The FA is employed to optimize the path. Fireflies are attracted to brighter (better)
solutions, guiding the path optimization process. The brightness of a Firefly is resolute
by the quality of the solution (path) it represents. A sequence of images shows Fireflies
moving towards brighter Fireflies, with the brightness being indicated by varying
sizes or colours of the Fireflies.

6. Path Optimization
The positions of the Fireflies are updated iteratively based on the attraction mecha-
nism, resulting in an optimized path that minimizes distance and avoids obstacles. A
comparison diagram shows the initial unoptimized path and the final optimized path,
highlighting the improvements in path quality.

7. Convergence Check
The algorithm checks if the tree has reached the goal node. The process terminates
if the goal is reached or a satisfactory path is found. Otherwise, it continues with
further iterations.

The FA is called under conditions that ensure the computational effort leads to sub-
stantial improvements. This approach avoids redundant calculations and ensures that
computational resources are utilized efficiently. ERRT-FA leverages the strengths of FA
while mitigating its computational cost through strategic implementation and optimization
techniques. The research demonstrates that ERRT-FA offers improved performance in
practical scenarios, showing that the benefits outweigh the theoretical computational costs.
This strategic implementation of ERRT-FA reassures the audience about its effectiveness.

6. Result and discussion

Regarding the point-mass robot model, Table 1 shows how the RRT and the ERRT-FA
stack up against each other. Each method indicates the path, the time it takes to calculate,
and the tree nodes. ERRT-FA always finds a way that is faster than an RRT route. When
the FA is used, it finds faster and more direct routes between the starting and the finishing
points. This helps the RRT framework to plan optimal paths. In contrast to the RRT method,
the ERRT-FA method is able to find the best paths more quickly due to its shorter average
path length. Small hallways and barriers that are hard to get around require critical
attention. ERRT-FA often makes trees with fewer nodes than RRT. For this reason, fewer
nodes are needed to look into the configuration space and find suitable ways. ERRT-FA
finds the best lines with fewer iterations and less computer work, showing that it is a
better exploration method. Because fewer points need to be observed, the vast majority
of the time ERRT-FA does calculations faster than RRT. This shows that ERRT-FA may
be able to keep a higher number of nodes and a longer path while using less computing
power. This reduction is significant for ERRT-FA as it is necessary to decrease computation
time for real-time apps that need to plan paths quickly. It improves the planning systems’
performance by optimizing their actions and paths.

The differences between ERRT-FA and RRT are shown in Fig. 2. The path starts and ends
between point (2,5) and point (6,9). The path ERRT-FA makes is shorter and straighter
than that of the RRT. The configuration space ERRT-FA has searched is shown by a tree
with fewer nodes. Given that it takes less time to compute, the ERRT-FA method seems to
work better than the RRT technique. Fig. 3 shows that the RRT and ERRT-FA methods are
different using the starting point (8,2) and ending point (2,6) values. The ERRT-FA method
has a shorter path and fewer tree branches than the RRT method; because it takes less time
to compute than the RRT method, the ERRT-FA algorithm could speed up path planning.
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Table 1. Comparison between RRT and ERRT-FA.

RRT ERRT-FA

Starting and goal points Path length Number of nodes Time Path length Number of nodes Time

(2, 5) 101 1333 1.48 50 357 0.11
(6, 9) 87 901 0.7 44 346 0.1

97 1515 1.96 41 238 0.4
106 1358 1.54 41 488 0.3
97 1213 1.2 44 325 0.1

Average 98 1264 1.37 44 351 0.2
(8, 2) Path length Number of nodes Time Path length Number of nodes Time
(2, 6) 95 1644 2.13 50 370 0.1

92 969 0.8 43 375 0.1
100 746 0.6 54 301 0.3
99 798 0.5 43 384 0.2
104 762 0.5 51 180 0.03

Average 98 984 0.9 48 322 0.1
(6, 4) Path length Number of nodes Time Path length Number of nodes Time
(7, 7) 56 942 0.7 43 589 0.2

81 832 0.7 28 190 0.04
67 1316 1.3 28 130 0.02
64 752 0.5 27 301 0.08
82 1399 1.6 30 394 0.1

Average 70 1048 0.96 31 321 0.08
(8, 3) Path length Number of nodes Time Path length Number of nodes Time
(4, 9) 113 747 0.5 55 352 0.1

115 1213 1.2 50 445 0.1
102 1805 2.75 68 459 0.1
102 1690 2.31 64 629 0.3
92 1778 2.57 69 470 0.1

Average 105 1447 1.86 61 471 0.1
(9, 1) Path length Number of nodes Time Path length Number of nodes Time
(2, 9) 144 1085 1.03 75 943 0.7

144 1079 0.97 70 481 0.2
176 1139 1.09 68 464 0.1
136 1257 1.29 68 485 0.2
145 1486 1.81 66 351 0.1

Average 149 1209 1.23 69 545 0.3

Fig. 2. The RRT algorithm vs. ERRT-FA algorithm for points (2,5) and (6,9).
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Fig. 3. The RRT algorithm vs. ERRT-FA algorithm for points (8, 2) and (2, 6).

Fig. 4. The RRT algorithm vs. ERRT-FA algorithm for points (6, 4) and (7, 7).

In Fig. 4, the RRT method and the ERRT-FA algorithm can be tested at the starting point
(6,4) and ending point (7,7). If the ERRT-FA method is compared with the RRT algorithm,
it is shown that the ERRT-FA algorithm makes shorter and more direct routes. ERRT-FA
tries to make the best use of setup space by reducing the number of nodes in the tree. The
ERRT-FA algorithm performs calculations much faster than the RRT algorithm.

Fig. 5 shows how ERRT-FA and RRT are different. The line on the picture goes from point
(8,3) to point (4,9). Regarding path length and tree nodes, ERRT-FA is better than RRT.
Less time is spent on ERRT-FA computations, which speeds up path planning. In Fig. 6,
both the starting point (9,1) and ending point (2,9), it is possible to compare the RRT
method to the ERRT-FA algorithm. The graphs show that ERRT-FA has a shorter path and
uses fewer tree nodes than RRT. Creating ERRT-FA took less time than other algorithms,
so it is a better path-planning algorithm.

The ERRT-FA was evaluated in several conditions, including tight passages and obsta-
cles. Figs. 2, 4 and 5, where the narrow passage between two obstacles, the ERRT-FA’s
confined-space navigation in an efficient way. The ERRT-FA proved to be reliable in tight
locations with complex barrier layouts. Incorporating the RRT framework, the FA improves
navigation and path optimization in complex environments.

The results of this study show that adding the FA to the RRT structure can make it
work much better. Comprehensive simulations showed that the ERRT-FA algorithm, an
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Fig. 5. The RRT algorithm vs. ERRT-FA algorithm for points (8, 3) and (4, 9).

Fig. 6. The RRT algorithm vs. ERRT-FA algorithm for points (9, 1) and (2, 9).

improved version of the standard RRT algorithm, worked better in a wide range of robotic
usages. In many cases, ERRT-FA found more direct and effective paths while using less
computing power at different starting and ending places. This is evident as processing
time and tree nodes are reduced because ERRT-FA is more efficient and effective; it has
promising potential for robotic uses, especially in complicated environments that change
quickly and need accurate path planning. By making these changes, situations like these
would get better. ERRT-FA can find the best routes by using the appeal and randomness
of Firefly movements. Exploration variety is kept up so that convergence does not happen
too soon. The simulation results (Figs. 2 to 6) illustrate that the paths generated by the
ERRT-FA exhibit some zigzag patterns. While these may initially suggest suboptimality, it
is crucially essential to recognize the context in which “better” path planning is evaluated.

The ERRT-FA has been developed to streamline real-time path building and flexibility.
Despite their disadvantages, zigzag routes benefit real-time applications because they allow
rapid re-planning and obstacle avoidance. These routes prioritize avoiding obstacles and
maintaining path length to ensure accurate navigation without the burden of processing.
Local optimization reduces FA zigzagging compared to RRT. More direct routes would save
time and energy, but ERRT-FA’s robustness in dynamically changing settings allows it to
preserve viable paths, improving path planning.
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Future development will improve route quality without hurting ERRT-FA’s real-time
performance, which may require post-processing to smooth pathways. When the environ-
ment changes, ERRT-FA can instantly adjust its search using the FA. It will last longer
and perform better. Scalability difficulties in complex contexts may be examined. The FA
simplifies robot path calculation in the RRT framework. Multipurpose tools may be useful,
beneficial, adaptable, and efficient.

The RRT and ERRT-FA depend on the random nodes, and the distance between these
nodes at each step is calculated, not the Euclidean distance between the start and end-
points.

Given the substantial disparity, what generated these results must be determined. Instead
of computing the Euclidean distance from start to finish, methods like ERRT-FA and RRT
create random nodes and iteratively calculate distances. This variation in approach shows
how the algorithm relies on iterative path refining and node selection. The stochasticity
of ERRT-FA explains the vast disparity between computed and tabular values. Due to
node selection and local path alterations, this approach can report substantial path length
changes. Given this disparity, ERRT-FA’s accuracy in depicting optimal path solutions
in the given scenario shows the intricate interaction between algorithmic design, node
selection strategies, and path quality.

The study found that the ERRT-FA less rapidly explored random trees and used fewer
nodes than RRT. The reduction in nodes directly affects path planning computation effi-
ciency and performance, making it a crucial component that must be explained.

The RRT and FA reduce ERRT-FA’s node count. The classic RRT approach incrementally
builds a search tree from a starting point to a goal point, generating many nodes to analyze
the entire configuration space. This method is computationally demanding due to the large
number of nodes, yet it is excellent for complex investigations.

In contrast, ERRT-FA integrates FA’s optimization into RRT. Similar to Firefly attraction,
the FA converges on the best replies. FA is used by the ERRT-FA algorithm expansion
to direct tree expansion to direct tree expansion intelligently. To clarify, FA expands
trees by selecting more promising nodes, reducing the need for exploratory nodes. Tar-
geting specific nodes ensures that the tree uses fewer nodes to get there faster without
compromising path quality. Thus, reducing the number of nodes leads to a reduction
in the computational cost. The computing costs of path planning algorithms depend on
the number of nodes generated and analyzed. The method evaluates and stores each
node, representing a configuration space state. By reducing node count, ERRT-FA reduces
computational overhead from node formation, assessment, and storage.

FA optimization boosts efficiency. The FA can avoid repeated expansions by picking
nodes with promising pathways using an attraction mechanism. This improves path plan-
ning and computational resource use. ERRT-FA’s node reduction benefits are shown by
comparing it to RRT. The traditional RRT uses random sampling to study various config-
urations. This random sampling can produce many nodes in complex or high-dimensional
spaces, but it helps find plausible pathways. Random node selection adds processing over-
head and duplicate expansions. FA combines RRT’s exploration with FA’s optimization.
The FA’s attraction mechanism favors nearby or optimum nodes. This tailored development
reduces repetition therefore the tree grows well in complex environments. Because it uses
fewer nodes to generate the same or better path quality, ERRT-FA has lower computational
costs than RRT.

The study supports these theoretical benefits empirically. The simulation results show
that ERRT-FA uses fewer nodes than the standard RRT while maintaining or improving
path quality. This reduces the number of nodes, the processing time and resources, proving
the efficiency benefits of FA hybridization. Lower nodes do not impair the algorithm’s
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resilience. ERRT-FA can adapt to changing conditions. Even with FA’s optimization, the
paths are practical and efficient, meeting safe and effective robot navigation standards.
The FA intelligent node selection and optimization approaches minimize ERRT-FA’s node
count compared to standard RRT. This boosts computational efficiency since fewer nodes
mean lower computing costs.

This study used the RRT algorithm and does not use RRT* because of its simplicity
and high-dimensional configuration space exploration. The main goal was to increase
RRT’s path quality and computing efficiency with the FA. RRT* has asymptotic optimality,
ensuring that the path converges to an optimal solution as computing resources increase.
RRT was used to balance computational overhead and path development speed. RRT*
may be too computationally intensive in environments with various obstacles for real-time
applications that need quick decisions. The FA has been used to fix inefficient paths
and other RRT issues without increasing RRT* computing demand. The ERRT-FA creates
optimal paths faster than RRT alone and on par with more computationally intensive
algorithms like RRT*, outperforming past hybrid studies. Because it balances efficiency
and optimality, ERRT-FA is suitable for real-time path-planning applications with limited
computational resources.

7. Conclusions and future work

This study tackled the integration of the FA into the RRT framework to improve the path
planning for robots. The ERRT-FA outperforms RRT in many robotic settings. Even with
limited computational capabilities, ERRT-FA delivers faster and more direct paths during
high flux and pressure. Its production and efficiency are indicated. ERRT-FA improves
by adapting its search method to changing environmental and mission conditions. This
is achieved using the FA flexibility and robustness. Effective and reliable path planning is
crucial for robotic applications, and ERRT-FA shows its usefulness. Knowing how ERRT-FA
works in real life would help it perform better in simulations. RRT architecture with the
FA improves artificial path planning systems. Thus, robots will be more efficient, effective,
and versatile everywhere.

Future studies could investigate the efficacy and scalability of the ERRT-FA algorithm
in handling big, complicated situations. More studies could also be done to fine-tune the
parameters of the FA so that it works best on various robot platforms. Further investigation
on how ERRT-FA can be combined with other metaheuristic algorithms could focus on
improving path planning in terms of efficiency and resilience.
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