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Abstract Abstract 
In cloud environments, task scheduling is essential for improving performance. Nevertheless, the 
existence of several heterogeneous clouds makes scheduling extremely difficult, requiring increasingly 
advanced algorithms to manage these environments' diversity and dynamic nature. To solve this, 
numerous authors have created a variety of task schedulers utilizing heuristic and metaheuristic 
techniques. Nevertheless, it remains dynamic and challenging because task scheduling is an NP-hard 
issue. Furthermore, in many complicated situations, it is still problematic to guarantee security 
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security limitations (risk assessment). Comprehensive simulations are run on two real-world workloads, 
such as High-Performance Computing Center North and NASA Ames iPSC/860, and outperforming all 
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Abstract

In cloud environments, task scheduling is essential for improving performance. Nevertheless, the existence of several
heterogeneous clouds makes scheduling extremely difficult, requiring increasingly advanced algorithms to manage
these environments' diversity and dynamic nature. To solve this, numerous authors have created a variety of task
schedulers utilizing heuristic and metaheuristic techniques. Nevertheless, it remains dynamic and challenging because
task scheduling is an NP-hard issue. Furthermore, in many complicated situations, it is still problematic to guarantee
security throughout the task's execution. Therefore, this paper introduces a multi-objective security-aware task scheduler
using the Crayfish Mud Ring Optimization Algorithm for a multi-cloud environment. This approach combines the Mud
Ring Optimization approach and the Crayfish Optimization Algorithm to improve the results and overcome their
shortcomings. Due to this hybridization, the proposed algorithm can avoid local optima and converge toward globally
optimal solutions. Thus, the suggested scheduling algorithm offers the best work allocation, considering four objectives:
makespan, cost energy, and security limitations (risk assessment). Comprehensive simulations are run on two real-world
workloads, such as High-Performance Computing Center North and NASA Ames iPSC/860, and outperforming all
comparison algorithms with an average improvement of 46 % makespan, 55 % energy, 61 % cost, and 52 % security risk
in all the examined scenarios. The outcomes show that the suggested CMROA performs better and is suitable for a
multi-cloud environment.
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1. Introduction

W ith cloud computing, programs and pro-
cessing power can be made available over

the Internet as services whenever needed. It has
garnered significant attention from both academics
and corporations. It is made possible by virtual
machine technologies' adaptability and affordable
processing power [1e3]. The rapid expansion and
advancement of Internet of Things (IoT) technology
has resulted in a tremendous increase in data vol-
ume, raising the need for computing resources.
However, due to their inherent restrictions,

traditional single-cloud setups are inadequate in
meeting user expectations. Due to these reasons,
Multi-Cloud Environments (MCEs) have attracted
much interest from academics and industry alike
[4e6]. They provide various virtual resources,
enhance service quality, avoid vendor lock-in and
single points of failure, and more. As a result, con-
sumers have many options, and their need for
Quality of Service (QoS) is better met.
However, managing and optimizing jobs across

various clouds can be challenging, as it involves
determining the ideal times and places for executing
tasks to achieve performance goals. Cost,
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performance, data location, and security across
various cloud providers are some variables that
make scheduling in MCE more complex [7e9]. As a
result, the main objective is to allocate work to the
best cloud resources according to resource avail-
ability, workload features, and user-defined policies.
It entails distributing the burden evenly, making the
most use of available resources, cutting expenses
and energy, and enhancing performance across
many clouds. Therefore, choosing a proper task
scheduler to schedule the task is a primary chal-
lenge [10e12]. It assists users in carrying out tasks
using appropriate virtual resources, guaranteeing
SLA adherence and excellent service. An efficient
task scheduler benefits cloud service providers and
customers by improving cloud-based services' gen-
eral effectiveness and dependability.
Previously, various methods have been developed

to address the issue of job scheduling. Initially,
several heuristics-based methods were created to
help with job scheduling issues. Nevertheless, when
the problem size and the number of goals to be
optimized grow, the accuracy of solutions produced
by these heuristic procedures drastically declines.
Furthermore, it is heavily dependent upon a set of
underlying rules, the generation of which comes at a
significant running cost [13e15]. On the other hand,
metaheuristic methods have shown themselves to
be reliable and efficient in resolving a broad range
of challenging optimization issues in the actual
world. It can be explained by the fact that, unlike
heuristic techniques, they can use a set of candidate
solutions to traverse the solution space instead of
only one. While some of these algorithms have
demonstrated encouraging progress in identifying
the globally best solution for the cloud-based task
scheduling problem, most suffer from premature
convergence and have trouble overcoming local
minima, mainly when the solution space is vast
[16e18]. These restrictions frequently result in less-
than-ideal job scheduling strategies, which impair
system performance and go against QoS assurances.
Furthermore, conventional task scheduling algo-

rithms mainly focused on makespan and ignored
the cost and energy consumption. Therefore, this
paper's main objective is to consider makespan,
energy usage, and cost. Security in the cloud is
another crucial factor that must be considered
[19,20]. Because the cloud offers a shared infra-
structure for many users, data security must be
established while scheduling tasks to prevent un-
wanted access to essential data files, and a lack of
data security could result in data tampering or
delay. Most of the existing task scheduling algo-
rithms offer a multi-objective scheduling strategy

that minimizes only execution time and does not
consider security as one of the QoS dimensions.
They are not suitable for use in a risky distributed
system.
Therefore, in this work, an effective hybrid Cray-

fish Mud Ring Optimization Algorithm (CMROA) is
implemented to perform security-aware job sched-
uling in a multi-cloud environment. In this hybrid
algorithm, we combine the exploration phase of the
crayfish optimization algorithm (COA) and the
exploitation phase of the mud ring optimization al-
gorithm (MROA) to overcome the poor convergence
rate and easily trap into local optima. Combining
these two stages, CMROA guarantees a balance
between exploitation (adjusting task assignments
for maximum security and performance) and
exploration (looking for varied job allocations),
which is often challenging when using single
methods. The primary goal of this hybrid CMROA
technique is to effectively balance energy con-
sumption, costs, time, and security while scheduling
tasks in the multi-cloud system. Due to its robust-
ness, CMROA is better suited for settings with
varying workloads and resources. Due to the scal-
able nature of both COA and MROA, CMROA's
modular design enables it to manage more tasks
without declining efficiency. Multiple tasks are
processed concurrently in each step, enabling
CMROA to sustain performance levels even as the
number of tasks rises.
The main contributions of this paper can be

summarized as follows.

� This work suggests a novel hybrid task sched-
uling algorithm, the Crayfish Mud Ring Opti-
mization Algorithm, by combining the
exploration phase of the Crayfish Optimization
Algorithm with the exploitation phase of the
Mud Ring Optimization approach, which suc-
cessfully balances exploration and exploitation
for better task allocation in multi-cloud
circumstances.

� The proposed algorithm introduces a security-
aware scheduling framework, addressing multi-
cloud environments' security requirements
while minimizing the execution cost, energy,
and makespan.

� Using real-world workloads like NASA and
HPC2N, the suggested strategy's effectiveness is
evaluated compared to alternative scheduling
strategies.

The remaining portions are arranged as follows:
the analysis of relevant works is described in Sec-
tion 2, and Section 3 presents the preliminaries. In
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Section 4, we formulate the task scheduling prob-
lem; in Section 5, we present the proposed hybrid
algorithm to solve the scheduling problem. Several
simulated experiments and the results are given in
Section 6, and Implications, Practical Benefits and
real-world applications are given in Section 7. Po-
tential Integration challenges are given in section 8,
and limitations and future directions are given in
section 9. Finally, the conclusion is presented in
section 10.

2. Literature review

This section discusses the various parameters and
development methodologies used to create sched-
ulers for the cloud computing and multi-cloud
computing paradigms.
To schedule the tasks in cloud computing, Abu-

Hashem et al. [21] introduced the black widow
optimization algorithm. One of the significant
drawbacks of the black widow algorithm was the
random selection process. Therefore, the author
introduced several selection methods to solve this
problem, such as Survivor, Truncation, Tourna-
ment, Exponential ranking, linear ranking, stochas-
tic universal selection, etc. It is important to note
that every selection technique has advantages and
disadvantages. Thus, each version's efficiency was
assessed using the CEC 2019 benchmark dataset,
and the results were compared with existing
methods. Furthermore, cloud-specific parameters
like makespan, energy, and cost were used in the
comparisons.
In another work, Mangalampalli et al. [22] pre-

sented an asynchronous advantage actor-critic (a3c)
algorithm based on a multi-objective prioritized task
scheduler in a multi-cloud environment. In this
work, two steps were involved in the scheduling
procedure. Task managers determine the VM pri-
orities for all incoming tasks in the initial phase.
Then, in the second stage, the priorities were fed
into the suggested scheduler, which creates de-
cisions about scheduling to assign tasks to virtual
machines (VMs). During this process, the scheduler
considers the priorities and schedules tasks based
on costs, resource utilization, and makespan in the
available multi-cloud environment. The authors
used NASA and HPC2N datasets for performance
assessment, and the results were compared with
existing techniques.
To address the scheduling issues, three heuristic

algorithms such as PTMin-Max, PTMax-Min, and
Pair-Task Threshold Limit (PTL) were suggested by
Krishnasamy et al. [23]. The suggested heuristics
first compute the task threshold value based on the

task attributes to establish the task scheduling
order. Following this, the tasks were separated into
two groups. In the first group, the tasks are arranged
according to decreasing threshold values, and the
second group contains the remaining tasks ([n/
2] � 1) arranged according to the threshold's
ascending value. After that, depending on the
minimum completion time, tasks from Group 1 are
scheduled first, followed by tasks from Group 2.
In another work, the multi-task, multi-objective

optimization approach was presented by Yi et al.
[24] to optimize scheduling in a multi-cloud envi-
ronment. In this work, the tasks were divided into
CPU-intensive jobs, which require a lot of calcula-
tion and CPU resources, and I/O-intensive tasks,
which frequently require memory access, based on
the various data characteristics of tasks in MCE.
Next, to schedule these two activities concurrently,
the authors implemented a multi-objective and
multi-factor evolutionary algorithm based on
quadratic crossover (I-MOMFEA-II). Finally, the
CEC17-MTMO dataset assessed this method's
scheduling efficiency regarding throughput, cost
and energy.
Huang et al. [25] created a hybrid meta-heuristic

algorithm by integrating the genetic algorithm (GA)
and particle swarm optimization (PSO) for security-
aware task scheduling in hybrid clouds. To get over
GA's slow rate of convergence and PSO's tendency
to become easily stuck in local optima, this hybrid
algorithm uses the self and social cognition for the
evolution framework of PSO and the evolution op-
erators of GA to reach the optimal assignment. To
be more precise, this algorithm represents a
taskeresource assignment using the code (each
chromosome's gene value, particle location) of each
individual (GA's chromosomes, PSO’ particle). It
redistributes jobs with incomplete requirements
from one resource to another to enhance the per-
formance of decoded assignments. It increases the
quantity of accepted tasks, enhancing user
satisfaction.
To guarantee work scheduling and load balancing

in cloud environments, Elsakaan and Amroun [26]
introduced a hybrid method. It contains three pri-
mary phases. In the first phase, servers with com-
parable occupation characteristics were divided into
clusters with a bounded size using a k-means-based
algorithm. Then, the round-robin algorithm was
utilized to select which cluster was executed first.
After that, the genetic algorithm was introduced to
choose which task is executed first in the cluster.
Furthermore, in the last phase, the algorithm de-
termines which machines will be released from
which cluster. The cloudlets were then obtained and
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routed to the global tasks scheduler module for
additional planning. The authors of the algorithm
tested their algorithms under many conditions,
including cluster sizes, cloudlet, and server, to
ensure the accuracy of the results.
By incorporating the security-prioritized mapping

scheme for cloud computing environments, Alam
et al. [27] presented a security-prioritized multiple
workflow allocation (SPMWA) model. To reduce the
likelihood of a cloud system failure, this approach
prioritizes jobs requiring high levels of security
while allocating resources to more reliable virtual
machines. One way to reduce the likelihood of
failure is to assign tasks to reliable virtual machines
with a high enough trust level to reduce the number
of task failures. To compare the SPMWA, the
number of task failures, failure probability, and
makespan have all been calculated.
Gu et al. [28] presented a deep learning-based

technique to enhance resource efficiency and
workload offloading in a mobile edge computing
setting. Deep neural networks and genetic algo-
rithms were used in this work to maximize off-
loaded jobs while minimizing latency and energy
consumption. It initially stores comprehensive in-
formation about each case and employs a Genetic
Algorithm to determine the best offloading options.
A neural network is then trained using these data to
make efficient offloading decisions without rerun-
ning GA.
A Chameleon and Remora Search Optimization

Algorithm was proposed by Pabitha et al. [29] to
achieve an effective scheduling process by investi-
gating the effects of network bandwidth and MIPS.
Additionally, throughout the scheduling process,
the job simultaneously incorporates variables such
as makespan, scheduling cost, load balance, and
task completion rate. The advantages of the
Chameleon Search Algorithm and Remora Search
Optimization Algorithm were combined with the
greedy approach to create a multi-objective cloud
task scheduling optimization model.
To create schedules, Mangalampalli et al. [30]

developed an adaptive task scheduler that divides
all jobs that arrive at the cloud interface into smaller
tasks and feeds them to the scheduler, which is
modelled by the Improved Asynchronous Advan-
tage Actor-Critic Algorithm (ATSIA3C). There were
two steps involved in this scheduling procedure. In
the initial phase, every task that came in was
divided into smaller assignments. Following seg-
mentation, all of these smaller jobs were grouped
and fed into the ATSIA3C scheduler based on fac-
tors including size, completion time, and interaction
time. In the second step, it looks for the

aforementioned constraints and distributes them
across the datacenter-based VMs with the appro-
priate processing capability.
In another work, an Efficient Multiverse Electro

Search optimization was developed by Ravi and
Pillai [31] to enhance work scheduling behaviour.
This optimization worked based on cosmological
concepts and electron transport close to the nucleus.
To find the best option from a vast number of viable
options, this approach combines local search,
exploitation, and exploration. It utilized the idea of a
multiverse to explore a wide search area and find
the best solutions for job scheduling and resource
allocation. Finally, the authors evaluated the effec-
tiveness of the suggested technique using Inspiral,
SIPHT, Montage, and CyberShake workloads and
compared it with existing methods.
Lwin [32] used a multi-stage optimization strategy

to increase scheduling and allocation performance.
There are three phases in this work. During the
initial phase, the system determined four critical
metrics: Total Task Length, Earliest Finished Time of
a specific VM, Communication Cost, and Compu-
tation Cost. During the second phase, the K-Means
clustering technique was used to group tasks. In the
last phase, the authors developed a resource allo-
cation method that assigns the grouped jobs to the
relevant virtual machines. By assigning the tasks to
the most appropriate resources, this stage optimizes
system efficiency and resource usage.
Table 1 summarises the literature review and the

drawbacks of existing methods. By combining the
exploration and exploitation stages of MROA and
COA, our suggested CMROA approach overcomes
these difficulties. By simulating various search tac-
tics, COA's exploration improves global search ca-
pabilities and encourages deeper solution space
investigation. The exploitation phase of MROA, on
the other hand, effectively manages multi-objective
optimization by classifying solutions according to
Pareto dominance, which enables our approach to
find the best trade-offs between competing goals.
Compared with existing techniques, this hybrid
CMROA methodology guarantees faster and more
reliable convergence. Additionally, our approach is
flexible and scalable, making it ideal for complicated,
high-dimensional optimization tasks and big data-
sets. Additionally, it provides an effective way to get
around the drawbacks of conventional optimization
techniques, resulting in better performance.

3. Preliminary

This section covers the basic principles of the
COA and MROA algorithms. In the proposed study,
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Table 1. Summary of literature review.

Paper Technique Tool used to
simulate

Environment Dataset Makespan Energy Cost Security
risk

Limitations

Hashem et al. [21] Black widow
optimization
algorithm

MATLAB Cloud CEC 2019
benchmark
dataset

✓ � ✓ � It is limited to local optima
because of its early convergence.

Mangalampalli
et al. [22]

MOPTSA3C Cloudsim Multi-cloud HPC2N, NASA ✓ � ✓ � This work proposed a two-stage
scheduling strategy, which
resulted in significant overhead.
Additionally, the algorithm
requires a lot of computing power.

Krishnasamy
et al. [23]

PTMin-Max,
PTMax-Min,
and Pair-Task
Threshold
Limit (PTL)

Not mentioned Multi-cloud 12 different
types of task

✓ � � � The use of numerous methods,
including PTL, PTMin-Max, and
PTMax-Min, results in increased
resource use and computational
overhead.

Yi et al. [24] MTMO Not mentioned Multi-cloud CEC17 dataset � ✓ ✓ � Before scheduling, classifying jobs
as CPU or I/O-based may cause
delays and increased overhead.

Huang et al. [25] Hybrid GA
and PSO

MATLAB Hybrid cloud Randomly
generated task

� ✓ ✓ � Evaluation takes only a small
number of tasks.

Elsakaan et al. [26] k-means and
round-robin

Cloudsim Cloud Group of tasks ✓ � � � Makepan is the only main
criterion taken for evaluation

Alam et al. [27] SPMWA MATLAB Cloud Montage,
CyberShake,
and LIGO

✓ � � ✓ For task execution, it only
prioritizes high-security virtual
machines, which could result in
increased running costs.

Gu et al. [28] DNN-GA Not mentioned Mobile edge
computing

Own dataset � ✓ ✓ � Increased computational cost

Pabitha et al. [29] Chameleon and
Remora Search
Optimization
Algorithm

CloudSim Cloud Group of tasks ✓ ✓ ✓ � A greedy approach utilized in
this work might result in
inefficient outcomes because it
can become trapped in local
optima, particularly in a
dynamic environment.

Mangalampalli [30] ATSIA3C CloudSim Multi-cloud HPC2N, NASA ✓ ✓ ✓ � Task division into smaller
components may result in more
complexity, particularly for tasks
with complex relationships, which
may cause performance inefficiency.

Ravi and Pillai [31] Multiverse
Electro Search
optimization

Python-based
simulation
environment

Multi-cloud Inspiral, SIPHT,
Montage, and
CyberShake

✓ � ✓ � The approach is computationally
demanding due to the usage of
intricate ideas such as the
multiverse and electrostatic forces.

Lwin [32] K-Means
clustering

CloudSim Cloud Randomly
generated task

✓ � � � K-Means clustering may not be
appropriate for dynamic workloads
since it demands a predetermined
number of clusters.

Proposed CMROA CloudSim Multi-cloud HPC2N, NASA ✓ ✓ ✓ ✓ e
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a combination of these algorithms provides the
backbone for handling intricate scheduling tasks in
a multi-cloud environment.

3.1. Overview of crayfish optimization algorithm

The COA is a novel metaheuristic algorithm that
draws inspiration from the natural foraging habits of
crayfish. Fundamentally, COA is organized around
three different behavioural phases that each replicate
a different facet of the crayfish life cycle: the compe-
tition stage for resource distribution, the foraging
stage for exploitation, and the summer resort period
for exploration. The summer resort stage directs the
algorithm to investigate various areas of the solution
space to avoid premature convergence, symbolizing
the search for a more astonishing residence. The al-
gorithm's capacity to amplify the search in attractive
locations is demonstrated by the competition stage
when crayfish compete for resources. Lastly, the
foraging stagedcomparable to crayfish searching for
fooddrepresents the algorithm's solution develop-
ment. The COA is unique because its temperature-
based mechanism regulates the changes between
these phases.

3.2. Overview of mud ring optimization algorithm

Tursiops truncates, or bottlenose dolphins, are one
of 76 marine mammals called cetaceans. Their diving
depth is around 260 m into the ocean's surface.
Bottlenose dolphins collaborate by maximizing their
hunting effort as a team to obtain food. Dolphins
employed a variety of hunting techniques. The prey
items and ambient factors (habitat) influence these
tactics. Mud Ring feeding, or mud plume shing, is a
unique foraging. In this method of foraging, a single
dolphin from the crowd swims around the target
(fish group) in a circle along the ocean floor, moving
its tail up and down near the sand to form a ring or
plume of mud. It causes the fish to become confused
and jump out of the water to the mouths of the
dolphins waiting along the outer edge of the mud
ring. Bottlenose dolphins' foraging behaviour is
simulated by MROA, which begins with the swarm
of dolphins utilizing echolocation to find prey and
ends with the formation of a mud ring for feeding.
Prior to mathematically replicating the MRA algo-
rithm, the following points must be described:
The K parameter illustrates how the dolphin

swarm consistently approaches the prey at the initial
stage of the hunting process. The transition between
the mud ring (exploitation) and prey-searching
(exploration) processes is controlled by this param-
eter, which is the decreased sound volume each time

the swarm approaches the prey. The MROA algo-
rithm looks everywhere during the exploration
phase and looks for superior solutions during the
exploitation phase. The exploration process occurs in
the search space if this parameter is high; when it is
low, it shifts to the exploitation phase.

4. System model and problem formulation

The system model and workflow of the proposed
framework are shown in Figs. 1 and 2. Within the
MCE, several clouds work together to deliver inte-
grated services to clients via the Internet. Through
various cloud service providers, users can carry out
the tasks they have submitted. Under a single SLA,
these clouds provide the services. Every cloud has a
‘manager’ server that is aware of its computational
resource status. Using virtual machines (VMs) in
data centres can make resources available to clients.
Every VM has unique features regarding energy
usage, storage space, and processing capability. The
manager server of a cloud verifies the SLA level of

Fig. 1. System model.

Fig. 2. Workflow of the proposed approach.
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each request that comes from a customer. With the
assistance of other parties, the server must ascertain
the client task's execution time, cost, and energy
consumption across all accessible clouds. If the SLA
level is met in its own cloud, the job is queued and
carried out when the resource is available. The work
is moved to another cloud if the SLA is not met.
However, the requirements for each work vary
because of the different data properties of tasks in
the multi-cloud context. The amount of time,
money, and energy needed to complete each work
varies. Disregarding these variations can lead to an
imbalance between the resources allotted to as-
signments and the resources those activities truly
require, particularly in cases where there are
notable variations in the data attributes. This
discrepancy may result in wasted resources and
poor system performance. Therefore, an efficient
task-scheduling model is needed to assign user re-
quests to the relevant VMs. Furthermore, inte-
grating risk probability into work scheduling might
improve overall reliability and protection in a multi-
cloud system. As a result, tasks can be allocated to
resources that reduce any security risks and meet
their performance needs, guaranteeing a more
resistant and robust system.
Let us assume a group of clouds C ¼ {C1, C2, C3,

…, Cm}, where each cloud Ck, 1 � k � m contains a
cloud service provider (CSP). Regarding computa-
tional resources, each cloud Ck, 1 � k � m is distinct
from other clouds Ct, tsk, 1 � k � m. Also, take into
consideration a group of tasks T ¼ {T1, T2, T3, …,
Tl}, where every job Ti, 1 � i � l is distinct from
another job Tj, i s j, 1 � j � l. Every task Ti is one
that a consumer requests from a CSP. It has millions
of instructions (MI). In order to complete these
tasks, take a look at a set of VMs V ¼ {V1, V2, V3, …,
Vn} where jVnj is the total number of VMs in cloud
Ck and a Vj 2 Vn, 1 � i � n. Note that N ¼Pn

j¼1

��Vj
��

where n is the total number of VMs in all the clouds.
To allocate the task set T to the virtual machine set

V (f: T / V) of cloud set C in a way that satisfies the
subsequent goals. (1) There is a reduction in the
total processing time (makespan). (2) Reduced en-
ergy usage; (3) Reduced execution cost; and (4)
Reduced possibility of security risk. These goals'
explanations are provided below.

4.1. Makespan

Makespan is the amount of time that the multi-
cloud network needs to run through all of the input
tasks. Let M[k] be a specific cloud's makespan, k,
1 � k � m, and let F [i, k], 1 � i � l, be a Boolean
variable with the following definition:

F½i;k�¼
�
1 if the task Ti is assigned to cloud Ck

0; otherwise ð1Þ

Then, the following is the mathematical expres-
sion for the makespan of a specific cloud Ck:

M½k�¼
Xl

i¼1

ETC½i;k��F½i;k� ð2Þ

Here, the expected time to compute matrix is
denoted by ETC, which denotes the task's execution
time on the cloud. It is represented in the following
Equation.

ETC¼

C1 C2 … Cm

T1

T2

/

Tl

8>>>>>>><
>>>>>>>:

ETC11 ETC12 … ETC1m

ETC21 ETC22 … ETC2m

/

ETCl1

/

ETCl2

…

…

/

ETClm

9>>>>>>>=
>>>>>>>;

ð3Þ

Here, the execution time required to complete
task Ti on cloud Ck is indicated by ETCik, 1 � i � l,
and 1 � k � m. A cloud's processing speed (Ck)
measured in a million instructions per second
(MIPS) divided by the task Ti's instruction length
(MI) is called an element ETCik.
As a result, the overall makespan is shown as

follows,

Mkspan¼maxðM½k�Þ;1� k�m ð4Þ

4.2. Cost

Storage, transport, and Computation costs are all
included in the task completion cost. Task Ti on
virtual machine Vj has a computational cost that
depends on task size (TCi) and task computation
unit cost (Pj). The transfer cost is connected to the
data size (TLi) that needs to be transmitted to
complete the job and the per-unit transfer cost (Qj)
on the Vj. After the data necessary for the task has
been transferred, storage expenses arise because the
data needs to be stored. Storage expenses depend
on the amount of data that has to be delivered to
complete the task (TLi) and the cost per unit for
storing data on the virtual machine (Vj) (Sj). As a
result, the following represents the task Ti's execu-
tion cost on the Vj:

Cost
�
Ti;Vjk

�¼TCi�PjkþTLi�QjkþTLi � Sjk ð5Þ
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Where TCi � Pjk represents the computational cost
needed to complete task Ti on the jth virtual ma-
chine in the kth cloud, TLi � Qjk represents the
transfer cost needed to complete task Ti on the jth
virtual machine in the kth cloud, and TLi � Sjk
represents the storage cost needed to complete task
Ti on the jth virtual machine in the kth cloud, The
task execution cost should be less than the budgeted
cost TMi, or cost � TMi, subject to the cost budget.
Thus, the following is an expression for the overall
job completion cost:

T cos t¼
Xm
k¼1

Xn
j¼1

Xl

i¼1

Cost
�
Ti;Vjk

� ð6Þ

4.3. Energy consumption

The energy utilization approach is essential in a
multi-cloud context because it shows how cloud ser-
vice energy consumption impacts overall operational
expenses and environmental issues like energy con-
servation and reducing emissions from cloud plat-
forms. The task execution time, task size (TCi) and
CPU computing power (Cj) generated per unit time
are related to the energy consumption of task Ti when
it is executed on the resource Vj. The energy con-
sumption of the task Ti running on resource Vj in the
kth cloud is thus expressed as follows:

EC
�
Ti;Vjk

�¼TCi

Cj
�Vjk ð7Þ

After that, the overall energy usage can be stated
as

TEC¼
Xl

i¼1

Xn
j¼1

Xm
k¼1

EC
�
Ti;Vjk

� ð8Þ

4.4. Security risk probability

Another crucial concern is security, which is
considered to be the biggest obstacle facing cloud
computing. The scheduler attempts to provide se-
curity and save energy costs simultaneously. This
setting balances the virtual machine's security level
and the likelihood of task danger. Three security
services are employed to protect the tasks: confi-
dentiality, integrity, and authentication. Users who
dynamically integrate these security services can
attain adequate protection against various hazards
and attacks. A distinct set of security levels falls
under each of these categories, and each one is
linked to a normalized performance rating that
ranges from 0.1 to 1.0. Each service category's

greatest performance value is 1.0, and its lowest
normalized performance value is 0.1. The suggested
model states that a typical activity will include three
distinct security services with various user-defined
security rates. The risk probability calculated for a
specific task is determined using Equation (9). It aids
in determining each task-VM pairing's security
compatibility, ensuring that tasks requiring a high
level of security are not allocated to VMs that cannot
meet these requirements.

P
�
Tq
i ;V

q
j

�
¼

8><
>:

0 if SDq
i � SSq

j

1� e
�
�
SDq

i �SSqj

�
otherwise q2a;b; c

ð9Þ
Here, a, b, and c denote the authentication,

integrity and confidentiality, respectively, SSqj
denote the security services virtual machine Vj, and
SDq

i denote the security demand of task Ti.

In this, the probability of a security risk for a task
on a VM is zero if the task's security demand (SDq

i ) is
less than or equal to the VM's security capability
(SSqj ). It suggests that no perceived danger exists
because the VM can manage the task's security re-
quirements. However, if the security need of the job
is greater than the security service provided by the
VM, the probability of risk is 1� e�ðSDq

i �SSqj Þ, which
indicates that risk increases exponentially when the
variance between security demand and VM capacity
increases.
The total risk probability for each activity across

all virtual machines was calculated by

P
�
Ti;Vj

�¼1�
Y

i2T;j2n

�
1�P

�
Tq
i ;V

q
j

��
ð10Þ

In a multi-cloud scenario, the total risk probability
is calculated by

ORP¼1�
Y

i2T;j2n;k2m

�
1�P

�
Ti;Vjk

�� ð11Þ

This constraint maximizes the system's capacity to
reduce security flaws while tasks are being executed
by allowing for a thorough and detailed evaluation
of security risks in task scheduling.

4.5. Main objective function

This section contains the work's primary goal. The
following Equation represents the single objective
we created by combining the previously mentioned
four multi-objectives. It is employed to determine
the job scheduling strategy's fitness function.
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F¼min
��
W1�Mkspan

�þðW2�TCostÞ
þðW3�TECÞþðW4�ORPÞ� ð12Þ

The variables Mkspan, TCost, TEC, and ORP are
makespan, task utilization cost, energy consump-
tion, and probability of security risk. The fuzzy
triangular membership function calculates W1, W2,
W3, and W4 weights. In Eq. (13), the weight
computation is explained.

W¼

8>>>>>>>>><
>>>>>>>>>:

0 if r< f

r� f
p� f

if f � r � f

q� r
q� p

if p� r � q

0 if r � q

9>>>>>>>>>=
>>>>>>>>>;

ð13Þ

Here, the vertices of the triangle membership
function T (f) are denoted by p, q, and r. There are
three boundaries: r is the upper boundary with a
membership value of 0, q is the medium border
with a membership value of 1, and p is the lower
boundary.

5. Proposed hybrid scheduling algorithm

The new hybrid multi-objective task scheduling
method known as CMROA in a multi-cloud context
is presented in this section. Energy consumption,
makespan, cost-effectiveness, and security risk
probability are all considered as its objectives. This
hybrid algorithm integrates the exploration phase of
the Crayfish Optimization Algorithm (COA) and the
Exploitation phase of the Mud Ring Optimization
Algorithm (MROA) to overcome the drawbacks of
the conventional COA approach, such as the un-
equal capacity for exploration and exploitation,
vulnerability to premature optimization, and a ten-
dency toward stagnation. To improve the exploitive
behaviours of COA, we integrate the exploitation
operators from the MROA to overcome these
flaws. MROA simulates the feeding behaviour of
bottlenose dolphins. Applying MROA movement
patterns can aid in local search and solution
optimization.
Consequently, the CMROA algorithm combines

the advantages of COA's exploring capability with
MROA's exploitation procedure and finds the best
solution. In order to increase diversity, COA first uses
its exploration behaviour to examine the solution
space thoroughly. After identifying possible solu-
tions, MROA evaluates them using its exploitation
behaviour to determine the Pareto-optimal answers.

5.1. Initialization

To establish an appropriate foundation for the
ensuing optimization process, the population-based
algorithm CMROA begins with population initiali-
zation. Each crayfish's position in the CMROA
modelling indicates a possible answer to an issue
with a D dimension, and the population location of
N crayfish indicates a collection of potential solu-
tions X, which is displayed as Equation (14).

Х ¼

2
66664
Х 1

«
Х i

«
Х N

3
77775¼

2
66664
Х 1;1 / Х 1;j / Х 1;D

« 1 « 1 «
Х i;1 / Х i;j / Х i;D

« 1 « 1 «
Х N;1 / ХN;j / Х N;D

3
77775

N�D

ð14Þ

Here, the problem dimension is denoted by D, the
number of crayfish population is denoted by N, and
the initial location of the ith crayfish in the jth
dimension is denoted by Xi, j. It is generated
randomly in the problem's search space; Equation
(15) illustrates the specific expression of Xi, j.

Х i;j¼ lbjþ
�
ubj� lbj

�
:r; i¼1;2;/;N; j¼1;2;/;D

ð15Þ
Here, r indicates the uniformly distributed

random number belonging to [0, 1]; the upper and
lower bound is denoted by ubj and lbj.
Crayfish go through distinct stages depending on

the surrounding temperature. Temperature has an
impact on their food intake as well, and it varies
roughly with temperature. The definition of tem-
perature in this algorithm is given by equation (16).

Temp¼20þ r:15 ð16Þ

Here, Temp denotes the outside temperature.
Equation (17) provides the mathematical represen-
tation of the crayfish's food intake, or p.

p¼C1$

 
1ffiffiffiffiffiffiffiffiffiffi
2p:s

p $ exp

 
�
�
Temp� m

�2
2s2

!!
ð17Þ

Here, C1 and s are used to regulate the amount of
food that crayfish consume at various ambient
temperatures, and m is the ideal temperature.

5.2. Exploration

A crayfish will select the heat escape stagedth
Xshade cavedwhen the temperature rises above
30 �C. Equation (18) illustrates the definition of cave
in mathematics.
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Х shade¼0:5$ðХGþХ LÞ ð18Þ
Here, XL is the ideal spot for the present crayfish

population, and XG is the ideal location reached by
the algorithm iteration thus far. There can be con-
flict among crawfish when entering the heated area.
If there are numerous crayfish and insufficient
holes, they will fight for the same spot to hide from
the heat. If there are more caverns, this will not be
the case. The algorithm used a random number
between 0 and 1 called rand to figure out whether a
competition has occurred. There is no competition
for the cave, and crayfish can enter immediately to
cool off when the random number rand<0.5. Equa-
tion (19) displays this process's mathematical
expression.

Х tþ1
i;j ¼Х t

i;jþC2 $ r$
�
Х shade�Х t

i;j

�
ð19Þ

In this case, the random number between 0 and 1
is denoted by r, the current number of iterations is
denoted by t, and tþ1 denotes the number of itera-
tions of the subsequent generation. Moreover, the
current position of the ith crayfish in the jth
dimension is denoted by Х t

i;j, and the value of C2
decreased when the number of iterations is
increased, which is expressed as,

C2¼2�
	
t
T



; t¼1;2;/;T ð20Þ

Here, the maximum and current iteration is
denoted by T and t correspondingly, the shaded
cave's position is denoted by Xshade, which is
computed as the mean of optimum within the cur-
rent crayfish swarm XL and the current best solution
XG. When the temperature rises above 30 �C, and
the random number rand is more significant than
0.5, several crayfish will fight for a cave and move on
to the competition stage. At this point, Equation (21)
displays the revised position of the crayfish.

Х tþ1
i;j ¼Х t

i;j �Х t
z;j þХ shade ð21Þ

Here, the random crayfish in the population is
denoted by z, defined in the Equation below.

z¼ roundðr:ðN�1ÞÞ þ 1 ð22Þ
Here, round is the integer function, and the

random number from 1 to 0 is denoted as r.

5.3. Exploitation

Once out of the heat, the crayfish will search for
food. To find the best answers during this exploi-
tation phase, we use MROA's exploitation behav-
iour. In this section, dolphins can find and encircle
the prey after spotting it. Since the location of the
optimal design in the search space is unknown be-
forehand, the MRA technique regards the target
prey (optimal or close to it) as the best solution
available. Once the best search agent has been
identified, the other dolphins will try to adjust their
locations based on the best dolphin position. The
following equations explain this behaviour:

A
!¼

���C!D
!*t�1 � D

!t�1��� ð23Þ

D
!¼ D

!*t�1
$ sinð2p lÞ� K

!
$A
! ð24Þ

Here, D
!*

is the position vector of the best dolphin
position to date, D

!
is the dolphin position vector,

and t denotes the current time step, l is a random
number. Also ;K

�!
and C

!
are coefficient vectors. If

there is an improved position, the monitoring D
�!

should be changed at each time step. As the other
dolphins surround the prey, we will notice that the
best dolphin circles around the object while quickly
sweeping its tail across the beach to form a sine
wave and make a plume.
The calculation of the vector C

!
is as follows:

C
!¼2$ r!

Any place within the search area can be reached
by figuring out the random vector r!. As a result, Eq.
(24) mimics the surrounding prey and aids any
dolphin in defending a place near the optimal one.
The revised valuedthe optimal fitness valuedis
used to assign the tasks. The Flowchart of the pro-
posed CMROA algorithm is given in Fig. 3, and
pseudocode is given in Algorithm 1.
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Algorithm 1

Start

Initialize swarm size (number of tasks), maximum 

iterations T, each task with a random assignment to 

available cloud resources (VMs), and other algorithm-

specific parameters.

While t<T

Defining temperature temp by Eq.(16).

If `temp > 30` then

Execute the exploitation phase of MROA.

Create a "mud ring" by collecting tasks to 

investigate locally optimal allocations.

Update the task allocation based on Equation 

(24).

Else

Execute the exploration phase of COA.

If `rand > 0.5` then

Use Equation (21) to simulate competition 

among tasks, aiming to find a suitable VM.

Else

Use Equation (19) to enter new VMs and 

explore alternative allocations.

End if

End if

Update the fitness of each task

t=t+1

End While

Deliver the optimal scheduling solution

End

6. Simulation and results

The simulation and the suggested scheduler's
outcomes are covered in this section. All trials were
conducted on a Windows 10 machine with an Intel
Core i5 processor running at 2.40 GHz, 4 GB of
RAM, and the CloudSim 3.0.3 toolkit. For perfor-
mance evaluation, the suggested method used a
variety of real-time supercomputing workloads,
including HPC2N and NASA. There were 100
iterations throughout the entire simulation. Based
on several parameters, such as makespan, cost,
energy consumption, and risk assessment, the sug-
gested approach was finally compared to current
approaches like the conventional COA [33], con-
ventional MROA [34], MOPTSA3c [22], and
MOTSWAO [35] algorithms. Table 2 displays the
simulation and configuration settings utilized in the
suggested scheduler. Three distinct clouds, which
varied mainly in execution speed and cost, were
used in the simulations to represent multi-cloud
features. Although it operates more slowly, Cloud 1
is more cost-effective for simple operations. Cloud 2
offers moderate pricing and speed. Cloud 3 is more
expensive but speedier; it works well for bigger jobs.
Moreover, the suggested CMROA algorithm's fine-
tuned parameters are shown in Table 3.

Fig. 3. Flowchart of the CMROA algorithm.
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6.1. Workloads

In the studies, two real datasets were used to
evaluate the efficacy of the proposed CMROA al-
gorithm. They are High-Performance Computing
Center North (HPC2N) and NASA Ames iPSC/860
workloads. These parallel workloads are supplied to
the educational sector in the conventional workload
style. The cleaned versions of the NASA iPSC and
HPC2N logs were used in this experiment. Ake
Sandgren, Bill Nitzberg, and Victor Hazlewood are
the providers of these workload archives, available
in the standard workload format (.swf) that the
CloudSim program can detect. NASA has statistics
on 42,264 tasks, while HPC2N has statistics on
527,371 tasks. The characteristics of these workloads
are given in Table 4. These workloads are selected
because they closely resemble a variety of complex,
resource-intensive jobs that are frequently managed
in multi-cloud settings. These workloads are perfect
for evaluating task scheduling algorithms like
CMROA because they are dynamic, providing a
range of computing tasks, data processing re-
quirements, and network bandwidth requirements.
Task diversity aids in evaluating CMROA's resil-
ience to handling the varied and homogeneous
workloads typical in real cloud settings.

6.2. Performance metrics

In the multi-cloud computing context, the sug-
gested job scheduling method was evaluated using

four performance criteria. The performance pa-
rameters determined are makespan, energy con-
sumption, cost, and possibility of security risk.
These criteria, the most commonly used assessment
metrics, can be used to compare and analyze the
efficacy of work scheduling strategies in cloud
computing. Equations (4), (6), (8) and (11) are used to
calculate the values of these performance metrics, as
mentioned in Section 3.

6.3. Analysis results for HPC2N workloads

The evaluation of makespan for the suggested
scheduling technique on HPC2N workloads is
covered in this subsection. Makespan should be
evaluated since it directly impacts the cloud para-
digm's scheduling mechanism. An ineffective task
scheduler lengthens the makespan, which affects
the cloud service provider's QoS. It encourages us to
use various real-time workloads to assess the
makespan of the CMROA scheduler in a multi-
cloud scenario. The estimated makespan for
CMROA utilizing the HPC2N workload is shown in
Fig. 4 and Table 5. In order to assess the effective-
ness of CMROA in light of makespan, the results of
our suggested CMROA are compared to those of
other algorithms, including COA, MROA, MOPT-
SA3c, and MOTSWAO. We examined between 200
and 1200 tasks to determine makespan. With 200,
400, 600, 800, 1000, and 1200 tasks, the best make-
span that was generated for CMROA is 687.92,
834.71, 1037.86, 1275.39, 1421.56, and 1612.92, in that
order. It demonstrates that CMROA learns the
policies the scheduler gives even when the number
of tasks is increased from 200 to 12000, out-
performing all other methods by minimizing
makespan for HPC2N workloads.

Table 4. Characteristics of the workloads.

Workload Period Months Users Tasks CPUs

HPC2N Jul 02eJan 06 42 257 527370 240
NASA Oct 93eDec 93 3 69 42264 128

Fig. 4. Analysis of Makespan (best) on HPC2N workload.

Table 2. Simulation parameters.

Entity Quantity

Cloud 3
VMs 1000
PM's Memory 32e64 GB
PM's bandwidth 1200 Mbps
Storage of PM 4-8 TB
Memory of VM 4e8 GB
Storage of VM 32e64 GB
VM's Bandwidth 10e30 Mbps
Data centers 70

Table 3. The proposed algorithm's parameters.

Parameter Value

C1 0.2
m 25
s 3
r! [0,1]

V.K.S.K.S. Vadapalli et al. / Karbala International Journal of Modern Science 11 (2025) 178e198 189



The suggested CMROA performed better than the
others, with a Makespan of just 687.92 ms for 200
tasks, compared to 956.34 ms for COA, 832.55 ms for
MROA, 1014.78 ms for MOPTSA3c, and 1012.43 ms
for MOTSWAO. CMROA consistently performed
better than the other models when the number of
tasks was increased. CMROA's unique approach to
task schedulingdcombining COA and MROAdis
the cause for its exceptional performance in make-
span. These bioinspired algorithms successfully
handle challenging optimization issues and effec-
tively schedule jobs by mimicking natural processes.
Following the computation of makespan, we

computed energy consumption for our CMROA
scheduler. It is a necessary step in the scheduler
design process because energy consumption is a
crucial metric from the standpoints of the service
provider and cloud consumer. Energy consumption
reduction helps the cloud provider by resulting in
significant power bills, helps cloud users by
enabling them to use cloud services at a lower cost,
and helps the environment overall. For this reason,
we simulated 100 iterations and determined Energy
Consumption by assigning 200e1200 jobs. The out-
comes are shown in Fig. 5. It demonstrates that, for
the HPC2N dataset, the suggested CMROA method
achieves the lowest energy consumption compared
to other peer algorithms. Furthermore, the results
showed that the suggested method leads to near-
optimal solutions by offering improved quality and
variety.
Next, using the HPC2N dataset, we assess the cost

performance indicator. Cost is the total amount
generated according to resource usage or utilization
that cloud users pay to cloud providers. The main

goal is to lower cloud users' costs while increasing
cloud providers' profits and revenue growth
through efficiently utilizing resources. The cost of
scheduling algorithms rises as the number of ac-
tivities increases, as seen in Fig. 6. When the tasks
rise, the CMROA algorithm's computation cost is
less than that of the other four algorithms. This
result is achieved due to its ability to transition be-
tween the phases of exploration and exploitation
adaptively; it guarantees a well-balanced search
process that prevents early convergence and pre-
serves a high degree of solution variety. As a result,
the suggested CMROA algorithm would assist cloud
providers in boosting revenue and profit while uti-
lizing the cloud computing environment, as well as
cloud users in lowering costs.
Subsequently, we assess the security risk proba-

bility measure, which characterizes the security
risk of approaches by considering the risk of task
scheduling on virtual machines. The chance of risk

Table 5. Makespan analysis on HPC2N workload.

Number of Tasks Statistics COA [33] MROA [34] MOPTSA3c [22] MOTSWAO [35] Proposed CMROA

200 Best 956.34 832.55 1014.78 1012.43 687.92
Average 983.39 869.29 1093.39 1167.45 693.67
Worst 998.17 882.81 1112.77 1217.08 707.81

400 Best 1156.29 1067.42 1201.56 1306.39 834.71
Average 1193.36 1086.23 1279.22 1337.23 856.68
Worst 1204.61 1106.39 1302.37 1397.29 893.67

600 Best 1312.34 1221.92 1401.81 1581.67 1037.86
Average 1345.19 1244.55 1428.19 1604.45 1079.66
Worst 1376.91 1251.65 1449.63 1618.34 1102.82

800 Best 1469.12 1329.44 1534.69 1719.92 1275.39
Average 1483.44 1331.77 1559.27 1736.76 1289.71
Worst 1491.03 1393.64 1600.06 1778.90 1296.41

1000 Best 1595.39 1502.67 1678.19 1923.21 1421.56
Average 1616.52 1586.12 1695.28 1977.23 1448.44
Worst 1662.21 1591.69 1713.44 2003.56 1489.04

1200 Best 1788.31 1717.47 1891.23 2106.58 1612.92
Average 1802.98 1769.53 1936.03 2259.53 1662.61
Worst 1836.35 1812.64 1982.19 2306.49 1669.25

Fig. 5. Analysis of energy consumption on HPC2N workload.
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is zero when all security requirements for a task are
met. During the comparative analysis process, we
identified that the security risk when utilizing the
proposed approach is minimal compared to other
approaches, as stated in Fig. 7. In the proposed
CMROAmethod, the COA's exploration capabilities
guarantee that a wide range of viable alternatives
are considered, and the MROA exploitation phase
further refines these solutions. This process lowers
the probability of security threats resulting from
inconsistent or inefficient job scheduling and gua-
rantees that the chosen schedules not only maxi-
mize efficiency but also reduce security threats.
In contrast, MOPTSA3C and MOTSWAO are

64.29 % and 61.54 % less effective because they lack
a straightforward risk-reduction approach. It is also
evident that the CMROA algorithm outperforms
MORA by 60.78 %. It is so that the task's security

level and the assigned virtual machine's capabilities
are in line. CMROA ensures that tasks with high-
security requirements are assigned to virtual ma-
chines that provide enhanced security services.
Fig. 8 displays the convergence study of the sug-

gested CMROA-based task scheduling in a multi-
cloud context compared to the traditional methods.
In the seventy-eighth iteration, the proposed
CMROA converges first, with a minor deviation, to
the MROA. MROA, COA, MOTSWAO, and
MOPTSA3C followed. In determining the best so-
lution for case 1, the suggested CMROA improved
by 63.32 % compared to MOPTSA3C, 52.43 %
compared to MOTSWAO, 34.21 % compared to
MROA, and 45.17 % compared to COA during the
50th iteration. Based on the comprehensive exami-
nation, it can be inferred that the suggested
CMROA finds the optimal solution and effectively
schedules the task more quickly than other tradi-
tional algorithms.

6.4. Evaluation results for NASA workloads

The evaluation of the results and the discussion of
the proposed CMROA job scheduling strategy for
NASA workload are presented in this section. As
seen in Fig. 9, we generated the graph for the best
solution (i.e., best makespan) versus the number of
tasks for the NASA dataset to illustrate the perfor-
mance of CMROA against COA, MROA, MOPT-
SA3c, and MOTSWAO algorithms. According to
Table 6's reported results for this performance in-
dicator, CMROA typically finds a better average
makespan than the other scheduling algorithms
under evaluation. It indicates that the CMROA
operates faster than all other scheduling algorithms
in every test case and requires a shorter period to
complete the submitted tasks.

Fig. 7. Security risk analysis on HPC2N workload. Fig. 8. Convergence analysis on HPC2N workload.

Fig. 6. Analysis of cost on HPC2N workload.
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To be more precise, the outcomes show that the
MROA comes in second. Additionally, we discover
that MOTSWAO generally outperforms MOPT-
SA3c, yet both algorithms lag behind the CMROA
algorithm. It demonstrates that the average make-
span values obtained by applying CMROA are more
competitive than those obtained by the other
scheduling strategies that were assessed. It means
that the suggested CMROA algorithm would help
cloud customers save more money while utilizing
the multi-cloud environment. Additionally, it mini-
mizes service interruptions and increases user
satisfaction because jobs are consistently done on
time. In addition, timely completion of tasks is
essential for applications with stringent time con-
straints, like money transactions or real-time data
processing. CMROA is an excellent option for
various cloud-based applications because of its
consistent ability to attain low makespan values,

which enhances cloud computing's overall reli-
ability and QoS.
The results of the suggested approach and alter-

native methods' energy consumption (kWh) are
displayed in Fig. 10 (NASA iPSC dataset). As
demonstrated in Fig. 10, the suggested approach
(CMROA) releases less CO2 and uses less energy to
do the necessary tasks than alternative methods
(COA, MROA, MOPTSA3c, and MOTSWAO). It
shows that COA, MROA, MOPTSA3c, MOTSWAO,
and CMROA use more energy when the number of
jobs increases from 200 to 1200. However, the sug-
gested algorithm uses less energy for all work sizes
than previous methods. Since it efficiently distrib-
utes the workload across the available VMs, guar-
anteeing the best possible use of resources. It avoids
overloading some VMs while underutilizing others,

Table 6. Makespan evaluation on NASA workload.

Number of Tasks Statistics COA [33] MROAv [34] MOPTSA3c [22] MOTSWAO [35] CMROA

200 Best 615.72 511.92 756.28 712.21 302.76
Average 651.55 537.39 788.01 722.89 326.85
Worst 670.42 549.65 803.56 745.80 394.11

400 Best 795.82 615.21 913.94 835.82 514.31
Average 826.00 625.84 926.61 846.72 533.87
Worst 839.28 638.90 941.27 862.91 554.93

600 Best 837.75 784.52 1012.53 912.56 638.47
Average 841.03 796.42 1047.74 935.13 647.62
Worst 850.33 803.78 1073.97 939.62 651.48

800 Best 956.72 891.22 1206.65 1046.89 725.65
Average 973.04 908.45 1227.40 1067.31 746.27
Worst 989.94 912.67 1243.67 1084.55 753.06

1000 Best 1083.47 1008.34 1347.22 1112.20 912.42
Average 1104.83 1024.67 1374.46 1159.83 948.35
Worst 1125.73 1035.78 1383.22 1169.71 969.35

1200 Best 1278.56 1212.12 1532.77 1315.69 1116.67
Average 1291.23 1243.76 1569.07 1357.03 1157.73
Worst 1306.21 1257.81 1581.96 1382.31 1193.12

Fig. 9. Analysis of Makespan (best values) on NASA workload.

Fig. 10. Analysis of energy consumption on NASA workload.
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resulting in more energy-efficient utilization.
CMROA keeps a close eye on the workload of VMs
and allocates jobs to those that can effectively do
more work or have the least amount of idle time.
This efficient allocation reduces the system's overall
energy usage by ensuring VMs do not stay active
without aiding in job execution.
Following the energy usage, we discussed the

evaluation of resource costs using our suggested
CMROA. An efficient scheduler selects appropriate
virtual machines (VMs) to build optimized sched-
ules when reducing resource costs. It is the rationale
behind assessing resource cost in scheduling in a
multi-cloud context. Inefficient scheduling raises
resource costs, which is expensive for cloud users
and CSPs alike. It encourages us to use CMROA to
reduce the cost in multi-cloud environments. Using
various real-time workloads, the proposed method
is compared to baseline methodologies that are
currently in use. Fig. 11 compares the cost for each
scheduling strategy using the NASA workload. As
we can see from the figure, the suggested method
outperformed the other algorithms in terms of cost.
For NASA workloads with sizes between 200 and

1200, the suggested CMROA achieves 69.04 %,
66.78 %, 63.53 %, and 46.01 % better cost reduction
than the MOPTSA3c, MOTSWAO, COA, and
MROA algorithms. As was previously said,
CMROA's task scheduling reduces energy usage.
Decreased energy consumption leads directly to
lower operating expenses because energy prices
account for a large amount of the total cost of
operating cloud data centres. Through equitable
load distribution, CMROA shields individual virtual
machines from extreme pressure, possibly
increasing their lifespan and lowering the need for
expensive hardware repairs or exchanges.

Fig. 12 shows the security analysis of the proposed
and the current methods. The results show that the
CMROA balances superior security and lower risk.
With 200 tasks in the NASA workload, the CMROA
achieves 0.15. The current model values are
COA ¼ 0.42, MROA ¼ 0.35, MOPTSA3c ¼ 0.59, and
MOTSWAO ¼ 0.51. The recommended method
exhibits a lower risk probability than the previous
scheduling models when all other tasks are
observed. The analysis demonstrates that the pro-
posed model can securely handle task scheduling
and execution. The algorithm dynamically modifies
work scheduling decisions based on real-time se-
curity risk evaluations to ensure the final schedule is
resilient against possible threats.
The convergence curves for the different iterations

of the NASA workload are shown in Fig. 13. All al-
gorithms have an increasing fitness graph, as can be
seen. In other words, every work scheduling scheme
raises the baseline population's fitness. Primarily,
the convergence curves highlight the highly faster

Fig. 12. Security risk evaluation on NASA workload.

Fig. 13. Convergence analysis on NASA workload.Fig. 11. Analysis of cost on NASA workload.
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tendency of the suggested method (CMROA).
Because CMROA strongly emphasizes local search,
the convergence to the best solution at the end of
the iteration is greatly accelerated. Moreover, the
tasks are first mapped to the regions to facilitate
their fastest possible access to the necessary files for
execution. Next, VMs are assigned jobs based on
cost, energy, makespan, and security risk. As shown
in Fig. 13, the suggested approach outperforms
COA, MROA, MOPTSA3c and MOTSWAO by
44.3 %, 33.3 %, 66.3 % and 57.2 %, respectively, and
increases fitness.
As a result of the simulation results, we deter-

mined that our CMROA solution outperforms the
other four approaches regarding job scheduling in a
multi-cloud ecosystem. In multi-cloud environ-
ments, CMROA is an effective solution for handling
job scheduling problems. Its rapid mobility between
the exploration and exploitation stages and its
ability to achieve a fair balance between them ac-
counts for CMROA's exceptional performance in
both domains. Because of its enormous power dur-
ing the exploitation phase, it may thus acquire the
best possible global response and more effectively
explore the whole search space. Thus, CMROA is an
excellent technique for resolving task-scheduling
issues because of all these beneficial characteristics.

6.5. Statistical analysis

Statistical analysis was performed to verify the
significance of the resulting data. The results have
been validated using the ANOVA approach. A two-
way ANOVA test was conducted to determine if
task load influences makespan across both datasets.
A null hypothesis (H0) states that all groups' means
are equal, while an alternative hypothesis (H1)
states that they are not. The two-way ANOVA test
results are shown in Table 7, where a is set at 0.05.
The findings indicate that the null hypothesis for
both factors is rejected because the p-values for A
(rows) and B (columns) are both less than a. As a
result, the alternative theories are proven, confirm-
ing the significance of the findings. However, for the
interaction between Factors A and B, the p-value is
greater than a (0.6719), so the null hypothesis for the
interaction is not rejected, indicating that the

interaction effect is not statistically significant. It
indicates that the two datasets have no influence on
the other's individual effects on the outcome and are
independent of one another regarding the factors'
combined effect.

6.6. Discussion

This section examines the advantages of the sug-
gested approach over competing approaches con-
cerning various performance indicators. The trial's
results demonstrate how well the suggested sched-
uler can lower the energy, cost, makespan, and se-
curity risk while allocating the jobs to the
appropriate VM. This result is the harmonious
result of a few essential elements, such as the
exploration of COA and the exploitation of MROA.
In order to help the algorithm avoid local optima
and find various scheduling solutions, the COA-
based exploration module in CMROA allows for
extensive searches throughout the solution space.
On the other hand, the MROA-based exploitation
module is developed to target potential areas found
during the exploration stage to fine-tune solutions.
This feature guarantees that CMROA can refine job
assignments to reduce energy and operating costs
and converge towards optimal or nearly optimal
solutions. CMROA lowers task completion time
(makespan) by carefully balancing exploration and
exploitation, guaranteeing quicker and more
responsive operations, which are necessary for real-
time applications. For 200 tasks, it achieved
687.92 ms and 302.76 ms for HPC2N and NASA
workloads, which is lower than existing methods. It
is perfect for businesses that require cost-effective
resource allocation in multi-cloud setups because it
also produces significant cost reductions compared
to alternative models in both workloads. Environ-
mental objectives are met by CMROA's energy ef-
ficiency, which lowers energy costs and
environmental effects.
Additionally, its security-aware scheduling in-

creases data protection and minimizes vulnerabil-
ities, a crucial advantage in industries with strict
security requirements. Additionally, the statistical
analysis with a two-way ANOVA validates the sta-
tistical significance of the reported improvements in

Table 7. ANOVA test.

Source df Sum of Square (SS) Mean Square (MS) F Statistic (df1, df2) P-value

Rows (A) 1 3121626.056 3121626.056 104.6747 (1,48) 1.192e-13
Columns (B) 5 4380694.986 876138.9972 29.3788 (5,48) 1.58e-13
Interaction AB 5 95098.5676 19019.7135 0.6378 (5,48) 0.6719
Error 48 1431463.95 29822.1656
Total 59 9028883.56 153031.9247
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security risk, cost, makespan, and energy usage.
Finally, these results indicate that the proposed
approach is an effective tool for scheduling tasks in
a dynamic multi-cloud environment.

6.7. Ablation study

This subsection includes ablation studies that
illustrate the effect of our proposed method.
MROA-based exploitation and COA-based explo-
ration are two primary modules that comprise the
suggested structure. The test results above showed
that the recommended method can produce positive
results on the NASA and HPC2N workloads. In this
section, we carried out the ablation experiment to
investigate the effects of each component in the
suggested structure in more detail. For the ablation
study, we take the overall result of 200e1200 tasks.
Table 8 displays the results of the ablation
experiment.
Table 8 demonstrates the comparatively consid-

erable significance of MROA-based exploitation and
COA-based exploration. All performance indicators
significantly decrease if we remove one of those
modules because eliminating COA-based explora-
tion could make the algorithm less capable of
examining many options and may restrict its ca-
pacity to break out from local optima. Furthermore,
the algorithm's output may become more erratic
when we remove MROA's exploitation. Without it,
the algorithm might be investigated widely, but it
might be challenging to get accurate, superior re-
sults. It might result in less effective job distribution
and decreased scheduling effectiveness overall.
Finally, it is evident from the ablation tests that each
component of the suggested system is essential to
achieving the optimal outcome.

7. Implications, practical benefits for
practitioners and real-world applications

The results obtained from the task scheduling
model based on CMROA have important practical

implications. By lowering execution costs, the algo-
rithm lowers operating costs and increases the
viability of multi-cloud solutions. Due to this cost
reduction, organizations can distribute resources
effectively while staying within budgetary limits. By
lowering the makespan, CMROA also increases task
completion efficiency. It boosts operational speed
and responsiveness, which is essential for real-time
applications like online business, statistical analysis,
and monetary transactions. Through resource allo-
cation optimization, the approach also reduces en-
ergy usage, which benefits cloud providers and
massive data centres by lessening their environ-
mental effects and lowering energy prices over time.
Additionally, CMROA integrates security-aware
scheduling to handle security concerns. It helps to
reduce the risks of data breaches and illegal access
in multi-cloud systems. While handling sensitive
data, this guarantees safer operations.
CMROA helps practitioners optimize resource

consumption and achieve higher throughput
without putting undue strain on individual systems
by making the best use of virtual machines and
other resources. Its adaptability to diverse service
providers and specialized workloads is made
possible by its flexibility across different cloud
providers and configurations, which is especially
useful in hybrid and multi-cloud settings. Through
multi-criteria optimization, the approach also facil-
itates improved decision-making by enabling prac-
titioners to prioritize cost, energy efficiency,
makespan, or security, all of which align with
corporate objectives.
Due to its scalability, CMROA is perfect for large-

scale and enterprise applications, effectively man-
aging virtual machines and huge task volumes. In
practical applications, it is particularly advanta-
geous for data-intensive sectors such as e-com-
merce, healthcare, and finance, where it maximizes
resource distribution among cloud nodes. Further-
more, it facilitates high-performance computing
(HPC) jobs in research and development, where safe
data handling and processing power are essential.

Table 8. Ablation study.

COA based
exploration

MROA based
exploitation

Makespan Cost Energy Security
risk

HPC2N workload
✔ 1960.12 98.34 167.89 0.832

✔ 1815.86 85.19 154.73 0.787
✔ ✔ 1145.06 42.60 70.32 0.230
NASA workload
✔ 1318.11 10.16 68.77 0.623

✔ 1267.82 9.05 57.05 0.548
✔ ✔ 701.71 6.16 38.55 0.216
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Organizations can attain operational efficiency and
meet industry demands for cost-effectiveness, sus-
tainability, and improved security in multi-cloud
task scheduling by putting CMROA into practice.

8. Potential integration challenges in a real
multi-cloud environment

This section discusses the potential integration
challenges of the proposed approach in a real multi-
cloud environment. First, it is crucial to ensure
compatibility with various cloud platforms because
every cloud provider has different architectures,
APIs, and frameworks that may influence interop-
erability. Furthermore, it is critical to resolve any
possible problems with data consistency and make
sure that data synchronization is dependable across
various cloud settings. In a real multi-cloud envi-
ronment, the third significant problem is putting in
place secure access and data management mecha-
nisms that comply with the security criteria of each
provider. Although the majority of cloud providers
provide auto-scaling capabilities to modify re-
sources in response to demand dynamically, con-
trolling this process can be challenging because
different providers have different auto-scaling pol-
icies and configurations. For some applications, one
cloud might offer smooth auto-scaling, but another
might have restrictions or need human assistance
when scaling resources. It could cause irregularities
in the allocation of resources and cause delays in the
completion of tasks. Cloud providers could store
data in many jurisdictions, which could cause
problems with compliance when managing sensi-
tive data across borders. Tasks requiring private
data must be assigned to particular clouds with
extra caution to comply with legal requirements
(such as GDPR and HIPAA). Moreover, Task
scheduling performance may be impacted by the
regional differences in network latency and band-
width between different clouds, particularly for jobs
requiring inter-cloud communication. We will
examine these integration issues in our upcoming
work and create methods to improve the suggested
methodology, guaranteeing its efficient imple-
mentation and functionality in a real multi-cloud
environment.

9. Limitations and future directions

Even if our proposed framework successfully
schedules tasks in a multi-cloud context, some is-
sues still need to be fixed. Although CMROA covers
the fundamentals of security-aware scheduling, it
could not go far enough in meeting compliance re-
quirements in many regulatory contexts. In our

future work, we will incorporate any further pro-
cedures or customizations required to meet specific
compliance or data protection requirements.
Furthermore, the current assessment only includes
initial real-world testing and is mainly simulation-
based. In our future work, we will apply the sug-
gested work in a real-world setting.
Furthermore, the suggested method is only used

in multi-cloud environments. In our future work, we
will try to implement it in other fog SDN environ-
ments. When resources fail during the execution of
tasks, the suggested model does not adequately
handle fault tolerance or recovery procedures. To
guarantee dependable task execution even in the
case of resource or network failures, we will use
strong fault-tolerance and recovery techniques in
our upcoming work. Although makespan and en-
ergy consumption are taken into consideration by
the algorithm, the environmental impact of the
employed cloud resources is not entirely addressed.
Future research can focus on creating carbon-aware
scheduling techniques that prioritize greener op-
tions when scheduling tasks and consider the
ecological consequences of cloud providers. Lastly,
when jobs are moved between geographically
dispersed cloud centres, task migration and dy-
namic resource allocation may result in higher delay
or communication overhead among cloud pro-
viders. Future developments might concentrate on
edge computing integration, which would lessen
reliance on frequent cloud migrations by executing
latency-sensitive jobs closer to the user. It is feasible
to maximize response time and system effectiveness
by incorporating edge resources into the scheduling
algorithm.

10. Conclusion

This paper proposes the CMROA technique-
based multi-objective scheduling approach in a
multi-cloud environment. The suggested framework
contains significant contributions that optimize
important aspects like makespan, cost, security, and
energy usage. The creation of a new hybrid model
that combines MROA and COA algorithms to
improve task scheduling efficiency is one of the
main contributions. Another is security, cost, energy
and makespan-aware scheduling mechanism to
safeguard sensitive data across multi-cloud plat-
forms, minimize operating expenses, lower overall
energy consumption without compromising per-
formance, and scalability and adaptability to handle
a variety of workloads across different cloud envi-
ronments. Two real-world workloads are utilized to
evaluate the performance of this suggested
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approach. The results of the experiments show that
the proposed CMROA technique performed well in
terms of makespan, cost, security, and total energy
consumption. More precisely, the gathered data
demonstrated that the CMROA outperforms tradi-
tional COA and MROA approaches and out-
performs all comparison algorithms with an average
improvement of 46 % makespan, 55 % energy, 61 %
cost, and 52 % security risk in all the examined
scenarios. In the future, task scheduling in an edge
cloud or fog cloud environment may present
with other meta-heuristic algorithms. Furthermore,
the performance of the CMROA approach can be
evaluated further by testing it in a real-world
environment.
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