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Abstract:

In high-dimensional data, classification performance is a crucial consideration. One
method of interest is the penalized binary logistic regression. However, (Least Absolute
Shrinkage and Selection Operator) Lasso method may face problems when the appropriate
penalty for each coefficient is not determined. For this reason, different weights are used in
weighted Lasso estimates to address this issue and improve classification performance. To
overcome this limitation, we employ various Weighted Lasso Estimates, each with unique
weight assignments, and compare their performance with our fifth proposed weight
configuration. This application of Lasso weighting schemes aims to uncover the most effective
approach for high-dimensional classification tasks while considering the optimal set of variables.

The evaluation criteria for these methods include the number of selected variables,
classification accuracy, and mean squared error. We then apply these techniques to real-world
data to identify the most effective classification mode and select the optimal set of variables.
This rigorous and precise investigation aims to provide a robust and reliable classification
approach for high-dimensional systems.

Paper type: Research paper.
Keywords: Classification, Penalized, Binary, Weighted, Lasso, High-dimensional;, Weighted
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1.Introduction:

In recent years, the rapid advancements in modern science and technology have led to the
prevalence of high-throughput and non-parametric complex data in various scientific fields such
as gene-biology, chemometrics, and neuroscience. This has resulted in challenges like the "large
p, small n" paradigm, where the number of covariates (p) exceeds the sample size (n), making it
difficult classify data and select optimal explanatory variables effectively. Researchers have
been exploring various regularization techniques to address these challenges.

This paper focuses on regression cases involving binary responses (or dichotomous
responses). The responses {y;} can take only two values: "1, 0", "1, -1" or some other codes
representing dichotomous responses such as: good and bad, big and small, win and lose, alive
and dead, or healthy and sick. The challenge arises when classifying this type of data, as the
number of explanatory variables (p) exceeds the sample size (n), leading to increased model
complexity. This increased in complexity makes it difficult to effectively classify the data and
select the optimal set of explanatory variables.

1.1 Literature review:

Many studies discussed the Least Absolute Shrinkage and Selection Operator (Lasso).
Tibshirani (1996) used Lasso for variable selection and estimation in high-dimensional data.
Subsequent advancements, such as the Adaptive Lasso proposed by Zou and Hastie (2005)
improved the accuracy of variable by using data-driven weights. Sun and Wang (2012)
developed a penalized logistic regression model specifically for high-dimensional DNA
methylation data, outperforming existing regularization techniques.

El Anbari and Mkhadri (2014) introduced the (lasso-Correlation Based Penalty) L1CP
method, which combined the L1 criteria and correlation-based penalty criteria to improve
variable selection and estimation in partial regression models.

Algamal and Lee (2015) proposed the Adjusted Adaptive Elastic Net penalty for gene
selection in high-dimensional cancer classification, demonstrating competitive results in
classification accuracy and gene selection consistency. Saleh (2016) employed semi-parametric
methods, such as (Least Absolute Shrinkage and Selection Operator -Minimum average variance
estimation) LASSO-MAVE, to enhance estimation accuracy and flexibility in single-index
models.

Sur (2019) developed inferential tools for determining the correct number of principal
components under a general noisy latent variable model, including the noisy independent
component model as a special case. The problem is approached using hypothesis testing.

Araveeporn (2021) presented an interesting exploration of Lasso and elastic net
methods, as well as their higher-order adaptive counterparts, in the context of high dimensional
data classification using logistic regression models. The author conducts a series of simulations
with varying numbers of independent variables and sample sizes smaller than the number of
independent variables to study the performance of these methods.

The main problem in this research is the challenge of dealing with high-dimensional
data, where an extensive number of variables are present, making it difficult to identify the most
relevant variables for model building. And choose the best set of variables for the classification
of the observation.

This research aims to reduce the high dimensions of the data and choose the optimal set
of explanatory variables by using the latest penal methods to impose a different penalty on the
transactions. In addition, the main objective is to classify the binary response variable (y) into
two categories (0 or 1).
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2.Material and Methods:
2.1 Data set:

The data set used in the study is a binary cancer classification data set which contains
100 samples, 53 of which are prostate tumor samples and 47 are non-tumor tissues (Ghaddar and
Naoum-Sawaya, 2018).

The dataset was used to evaluate the effectiveness of penalty methods for the binary
logistic model for classification purposes, where multicollinearity and overfitting were observed
as major problems. Each sample in the data set contains information on 12600 genes. The
prostate cancer data set is commonly used in research on cancer classification due to its large
number of genes and its suitability for evaluating classification models.

The small sample consisted of 40 women with breast cancer at the Oncology Hospital.
The researcher collected the sample at the Cancer Oncology Hospital in (Thi Qar) Governorate,
and it was found that the sample included 27 females with breast cancer and 13 females who
were not infected. The sample was subjected to a total of 49 medical examinations (variables).

2.2 Penalized logistic regression model:

Penalized logistic regression imposes a penalty on the logistic model for having too
many variables. This results in shrinking the coefficients from the less contributive variables
toward zero. We will select an optimal subset of explanatory variables in order to improve the
classification accuracy and to make the model’s interpretation easier is the main objective of the
variable selection in high dimensional data (James, 2013).

Although logistic regression is one of the most popular classification methods, it does
not choose variables (Huang, 2016).

A procedure called penalization, which is always used in variable selection in high
dimensional data, attaches a penalty term P,(B) to the log-likelihood function to get a better
estimate of the prediction error by avoiding overfitting for parameters. Lately, there is growing
interest in applying the penalization method in the logistic regression model (Sun and Wang,
2012).

In order to extract the most important explanatory variables in classification problems, a
series of penalized logistic regression many methods have been proposed. and There are
varieties of different forms of the penalty term, depending on the application requirement for the
main target Penalized logistic regression adds a nonnegative regularization term to the negative
log-likelihood function, £(B), such that (Algamal, 2015).

The size of variables coefficients in high-dimension can be controlled. Because there are
many more variables than observations, conventional logistic regression does not apply to high
dimensions. Also, there Multicollinearity and overfitting are specific issues. Because of this, we
have used penalized logistic regression. When attempting to forecast whether or not an event has
a place, such as when determining whether a person was sick, healthy, or failed, logistic
regression analysis is utilized. From the vector of probability estimates after logistic
transformation (Algamal and Lee, 2015).

The general formula of logistic regression is written by:
Yi:n(Xi)+8i s i:1’29""9n (1)

Where y ; denotes the value of a dichotomous outcome variable, p(x;) denotes the

probability of the Bernoulli distribution dependent or independent variable, X;, and €; is called
the error and follows a normal distribution with mean zero and variance equal to

p(xi) [1- p(x)], )
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the logistic regression model is considered as the probability by:

P (X& Bo, Ba--- B)=p (Vi=1|Xi; Bo, B1... By)=
exp (Bo+X B))

PO e (v B @
_ _ _exp (Bo+Xi B))

p(y =1[Xi) = Tr e (BotXC B 4
p(x;)= p(yi=1[x;) is modeled by a linear function, logit transformation:

Ln (2501 = o+ 37_, By Xy =120, 5)
Bo: the intercept terms
pB; : p*1 vector of unknown coefficients.
The log-likelihood function:
L (Bo, B) = Xizalyi Inp(x)) + (1 —y)In(1 — p(x;))} (6)
Where:
p(x)=p(y i=1[X) )
(1 =p(x)) = p(y :=0[X3) (8)

The probability of classifying (i=1, 2,.n) for the sample in class 1 is estimated by
p(x;) = exp(Bo + XE_, B XE)/1+ exp (Bo + XP_, B X )

and the predicted class is then obtained by | (p(x;) > 0.5), where I(.) is an indicator function.
The penalized method for the logistic regression is obtained by adding the penalty term
to the negative log-likelihood function:

PLR =- Yo {yi In(p(x)) + (1 —y)In(1 — p(x;))} + AP(B) (10)

P(pB) is the penalty term that penalizes the estimates. The penalty term depends on the positive
tuning parameter, A the tuning parameter should find the right balance between the bias and the
variance to minimize the misclassification error (Sun and Wang, 2012).

The estimation of the vector f is obtained by minimizing:

Brir=arg ming [X- {y; In(p(x)) + (1 —y)In(1 — p(x))} + AP(B) ] (11)

The tradeoff between fitting the data to the model and the penalty's effect is controlled by the
positive tuning parameter.
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2.3 Tuning parameter :

The tuning parameter is a crucial component in selecting the best-fitting model. It is a
non-negative parameter, and the penalty limit depends on the value of A and a control quantity
that influences the degree of shrinkage of the parameters. When A = 0, the tuning parameter
reduces to the maximum likelihood estimation (MLE) estimator, while as A approaches 1, the
regularization term forces all variable coefficients to be zero.

In classification problems, the tuning parameter's role is to find the right balance
between bias and variance to minimize misclassification errors. To determine the optimal value,
cross-validation is employed. In this thesis, 10-fold cross-validation was conducted based on the
training set to find the optimal value of A (Algamal, 2015).

Cross-validation involves dividing the dataset into multiple smaller subsets or "folds."
The model is then trained on the majority of these folds and tested on the remaining fold. This
process is repeated, each fold is used as a test set once, resulting in a collection of performance
metrics that can be averaged to estimate the model's performance.

By varying the value of the tuning parameter A, different models can be compared and
evaluated using cross-validation. The optimal value of A is the one that yields the lowest average
misclassification error or another appropriate performance metric. This optimal A value will
balance the trade-off between model complexity and prediction accuracy, resulting in a model
that performs well on new (Sun and Wang, 2012).

2.4 Weighted Lasso Estimates:

The limitations of the Lasso (Least Absolute Shrinkage and Selection Operator) method
for variable selection and regularization in linear regression models. Lasso can have difficulties
when the penalties of different coefficients are the same and not related to the data. This can lead
to suboptimal performance in certain cases, particularly with high-dimensional data.

To address these shortcomings, researchers have proposed various improvements and
extensions to the Lasso method. One such improvement is the weighted Lasso, which involves
assigning different weights to the penalties of the coefficients. These weights can be data-
dependent, and they typically consist of an unknown constant and a tuning parameter. The
weighted Lasso aims to provide better convergence rates and more accurate variable selection
compared to the ordinary Lasso (Algamal, 2017).

However, it's essential to note that the weighted Lasso is not a perfect solution either.
Like any other method, it comes with its own set of assumptions and limitations. For instance,
selecting appropriate weights can be challenging, and the method's performance can be sensitive
to the choice of weights. Moreover, the weighted Lasso still may not be suitable for all types of
data or problems, and researchers should consider alternative regularization methods or model
selection techniques depending on the specific context.

In summary, the weighted Lasso improves the ordinary Lasso, aiming to provide better
convergence rates and more accurate variable selection. However, it has its limitations, and
researchers should consider the appropriateness of this method depending on the specific
problem and data at hand (Huang, 2021).

In high-dimensional settings, where the number of variables (p) is much larger than the
number of observations (n), the Lasso and its variants, including the weighted Lasso, can be
quite useful. These methods help in variable selection, shrinkage, and regularization, leading to
more interpretable and accurate models.in high-dimensional data, the ordinary Lasso may
struggle to identify the correct set of variables due to the equal penalty assigned to all
coefficients. This issue can be mitigated by using the weighted Lasso, as it allows for data-
dependent weights on the penalties of the coefficients. This flexibility can lead to better
performance in variable selection and prediction in high-dimensional settings.
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However, it is crucial to remember that the performance of the weighted Lasso depends
on the choice of weights, which can be challenging to determine in practice. Additionally, high-
dimensional data can present other challenges, such as multicollinearity, sparsity, or noise,
which may require alternative methods or additional preprocessing steps.

Weighted lasso:
2.4.1 The first Weighted :[Adaptive LASSO]

Lasso is one of the most popular penalization terms. where gained popularity and
became a basis for other penalized methods because of its ability to simultaneously perform
continuous shrinkages of the descriptor coefficient and descriptor selection. This method
appeared to overcome the shortcomings and his idea is to multiply the penalty function by a
certain weight.

As we observe, Zou and Zhang pointed out that the adaptive LASSO outperforms LASSO in
terms of achieving the oracle property, even though the grouping effect problem for adaptive
LASSO remains (Algamal, 2017).

The value of this weight is the reciprocal of the absolute value of the parameters
estimated in an elementary way appeared Lasso from (Tibshirani, 1996) is a method for
estimation parameters in the linear model by minimizing the residual sum of the square to the
sum of the absolute values of the coefficients. (Lin, 2009)

The Lasso estimate  is defined by:

ﬁLAssozargBmin i1 — Bo— Z?:l BiXij) ? +7‘Z?=1|ﬁ]'|]' (12)

where A $¥_,|8j| is the penalty function.
For the binary dependent variable, the Lasso estimate [} is regularized from:

~

B asso= argming [ =X {(y;In(p(x)) + (1 — y) In(1 —p(xy))) A Z?=1|ﬁj| ]
(13)

The Adaptive LASSO proposed weights are used for penalizing different coefficients in
the L1-penalty. The main idea behind the Adaptive LASSO is that by assigning inga higher
weight to the small coefficients and a lower weight to the large coefficients it is possible to
reduce the bias.

The Adaptive LASSO is defined as:

B apir= argming [— X1, ((y; In(p(x) + (1 — y,)In(1 — p(x;)))}
XS wilBil] (14)
P (1B 1)=A%5_ wil B | (15)

w;: represents the weights dependent on the data and is calculated as follows:
1

wW; = ———
J | B lasso |” '

¥ >0 positive constant.

¥ : shrinkage parameter
sz(Wl, Wz,....,Wp)T is p*l
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Since there is no presented information about model parameters, we cannot directly
compare the selection and prediction accuracy. The comparison will be done by model size and
prediction error, formerly lots of coefficients estimated by weighted Lasso methods, four are
very small but not zero (Algamal, 2017; Huang, 2021).

2.4.2 The second Weighted:

W maxi=1wn|xij| \/%(rlog p+log2), r=1 (16)

i=1,...n i=1,....p
(Where r > 0 is a constant.)
2.4.3The third Weighted:

Wj \/% Z?leizj .\/%(rlogp +log2), r=1
17)

(Where r > 0 is a constant.)

i=l,...n j=1,....p

2.4.4 The fourth Weighted:

w; ={ %Z?=1(Xij —X)° Y

(18)

w;= [sd;]” i=1,...n i=1,2,3,..p
where §&dj is the standard deviation for each variable.

¥ >0 positive constant. (Huang, 2021)

2.4.5 The fifth weighted: based mean (suggestion method)

Despite the ongoing issue of the aggregation effect of weighted averages, we have yet
to find a weight that relies on the arithmetic mean of each column in the data. Therefore, we
propose this weight to assess its performance compared to other weights.
W = (max(X;j )—(Xij))

7 (max(X;j )-min(X;)))
max( X;; ): max value in col.
min (X;; ): min value in col.

(19)

All of the above weights (w1, w2, w3, w4, w5) are substituted into the following equation (14):

Brerr=argming[— 21, ((y; In(p(x) + (1 — y)in(l — p(x))FAE o1 wjlBjl]
2.5 Evaluation criteria of classification performance:

The classification performance of the model, classification accuracy (CA), sensitivity (Sen),
and specificity (SP):

TP+TN

TP
Sen = TP+FN @D

TN
~ FP+TN

(22)
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FP
FP rate = PIEN (23)
.. TP
Precision = TPTFD (24)

TP (True Positive), FP (False Positive), TN (True Negative), FN (False Negative).

3. Discussion of Results:

In this section, we apply weights estimates and we propose to analyze prostate data, our target is
to select useful genes for specifying 0 and 1.

Table (1) presents the results of applying different Lasso weights (Type 1 to 5) to a dataset to
select a subset of important genes (variables) and evaluate the important genes (variables) and
evaluating the performance of each method. The performance is measured using classification
accuracy (CA), sensitivity (Sen.), and specificity (Sep.). Let's go through each method and
explain the results.

1. The Type First Weight method selects 23 genes and achieves the highest classification
accuracy of 0.9. The sensitivity and specificity are also high at 0.93 and 0.85, respectively. This
method strikes a balance between the number of selected genes and performance metrics.

2. The Type Two Weight method selects 142 genes and achieves a classification accuracy of 0.5
The sensitivity and specificity are 0.6 and 0.47, respectively. This method identifies many genes
but has relatively low performance metrics compared to other methods.

3. The Type third Weight method selects 53 genes and achieves a classification accuracy of
0.7The sensitivity is quite high at 0.63, but the specificity is 0.90. This method identifies fewer
genes and performs better than Type two Weight.

4. The Type Fourth Weight method selects only 8 genes and achieves a classification accuracy
of 0.7 The sensitivity and specificity are 0.71 and 0.77, respectively. This method identifies the
fewest genes and has a balanced performance in terms of sensitivity and specificity.

5. Type Fifth Weight method selects 24 genes and achieves the highest classification accuracy of
0.9 this method is outstanding for classification. The sensitivity and specificity are also high at
0.93 and 0.86,

In summary, the tables show that different Lasso weight types result in different
numbers of selected genes and performance metrics. Type IV Weight appears to be the best-
performing method, with a balanced number of selected genes and the highest classification
accuracy, sensitivity, and specificity. These results highlight the importance of selecting
appropriate weights in the weighted Lasso method to achieve the best performance in a given
application.

Table 1: The number of variables and accuracy for all weights for big sample

Statistics
Methods Selected genes | C.A | sensitivity specificity
Adaptive Lassol 23 0.9 0.93 0.85
Weighted Lasso 2 142 0.5 0.6 0.47
Weighted Lasso 3 53 0.7 0.63 0.90
Weighted Lasso 4 8 0.7 0.71 0.77
Weighted Lasso 5 24 0.9 0.93 0.86

Table 2 provides performance metrics for different methods using Lasso weights. The
table includes the precision, false positive (FP) rate, false negative (FN), true negative (TN),
false positive (FP), and true positive (TP) values for each method.
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In summary, the table shows the performance of several variations of weighted Lasso
methods, along with an adaptive Lasso method. The precision values range from 0. 5 to 0.9,
indicating the proportion of correctly identified positive cases. The FP rates vary from 0.6 to 1,
representing the proportion of falsely identified negative cases. The FN values range from 0 to 7,
indicating the number of incorrectly identified positive cases. The TN values range from 7 to 13,
representing the number of correctly identified negative cases. The FP values range from 1 to 3,
only Lasso 2 has 9 false negatives representing the number of falsely identified negative cases.
The TP values range from 12 to 15, indicating the number of correctly identified positive cases.

In general, the methods achieve relatively high precision values, ranging from 0.8 to 0.9,
indicating a high proportion of correctly identified positive cases. However, the FP rates vary,
suggesting differences in the proportion of falsely identified negative cases among the methods.
The FN values also differ, indicating variations in the number of incorrectly identified positive
cases. The TN, FP, and TP values show variations in the number of correctly and falsely
identified negative and positive cases among the methods.

Table 2: Performance Metrics for Lasso Weights

Statistics
Methods TP | FP | TN FN | FP rate | Precision
Adaptive Lassol 15 2 | 12 1 0.6 0.8
Weighted Lasso 2 9 91| 8 4 0.6 0.5
Weighted Lasso 3 12 1] 10 7 0.12 0.9
Weighted Lasso 4 15 2 7 6 0.25 0.8
Weighted Lasso 5 15 2 | 13 0 1 0.8

* Tables and results from the researcher's work on the R program.

The following Tables 2 and 1 represent the number of variables and accuracy and the
confusion matrix for classification, which is used as evaluation metrics for the model calculated
from 30% of the data. The matrix elements were calculated for 30 samples out of a total of 100,
where it included 17 within Class 1 and 13 within Class 0, where the actual model was built
using 70% of the data. This is indicated by all the weights that were chosen, including our
suggested weight, which proves the efficiency, quality and accuracy of the proposed weight (Liu
and Wong, 2019).

Applying all methods with breast cancer (small sample n=40, p=49):

Table 3: The number of variables and accuracy for all weights for a small sample

Statistics
Methods Selected genes | C.A | sensitivity Specificity
Adaptive Lassol 4 83.3 100 77
Weighted Lasso 2 5 83.3 100 77
Weighted Lasso 3 6 83.3 100 77
Weighted Lasso 4 2 83.3 100 60
Weighted Lasso 5 5 91 100 87
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Table 4: Performance Metrics for Lasso Weights for small sample
Statistics
Methods TP | FP | TN FN | FP rate | Precision
Adaptive Lassol 7 1| 4 0 1 0.8
Weighted Lasso 2 7 2| 3 0 0.7 0.7
Weighted Lasso 3 7 2 | 3 0 1 0.7
Weighted Lasso 4 7 2 | 3 0 1 0.7
Weighted Lasso 5 7 0| 4 1 1 1

Tables and results from the researcher's work on the R program. The results of a
proposed method in a small sample application. In The tables (3) and ( 4 ), we notice that
proposed method had a high classification accuracy in the third table.

And the proposed method also gave results similar to the previous weights in the table (3). These
observations indicate the quality and strength of the method in classification.

The following tables 3 and 4 represent the number of variables and accuracy and the
confusion matrix for classification, which is used as evaluation metrics for the model calculated
from 30% of the data. The matrix elements were calculated for 12 samples out of a total of 40,
where it included 7 within Class 1 and 5 within Class 0, where the actual model was built using
70% of the data. This is indicated by all the weights that were chosen, including our suggested
weight, which proves the efficiency, quality and accuracy of the proposed weight.

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)  True Negative (TN)

In this context, "Positive" and "Negative" refer to the predicted classification of the
model, while "True" and "False" indicate the accuracy of the predictions compared to the actual
values. The confusion matrix assess the model’s performance by measuring quantities such as
true positives, false negatives, false positives, and true negatives.
3.Conclusion:
1.The performance of various Lasso weight types on this particular task demonstrates the
importance of selecting the appropriate weight type based on classification with penalized
logistic regression.
2.Both Type first and Type fifth weights exhibit strong performance in terms of classification
accuracy.
3.The choice of the ideal Lasso weight type should be determined by considering the trade-offs
between classification accuracy and number variables, and any other relevant factors or metrics
that are crucial to the particular problem.
4.The fifth weight method, proposed by us, exhibits remarkable performance when dealing with
high-dimensional data in both big data and small data scenarios. with penalized logistic
regression model for classification tasks.

The effectiveness and success of our method are clearly evident in the results obtained.
With a good classification matrix, high classification accuracy, and the fulfillment of criteria
such as sensitivity, specificity, and other classification metrics, our method establishes its
reliability and demonstrates immense potential for practical applications.
4.Further Work:

Applying this weighted with other models and using our proposal in multi-response model.
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