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Abstract:
Copula modeling is widely used in modern statistics. The boundary bias problem is one
of the problems faced when estimating by nonparametric methods, as kernel estimators are the

most common in nonparametric estimation. In this paper, the copula density function was
estimated using the probit transformation nonparametric method to eliminate of the boundary
bias problem that suffers kernel estimators. Simulation was also employed for the for three
nonparametric methods to estimate the copula density function and we proposed a new method
that is better than the rest of the methods by five types of copulas with different sample sizes and
different levels of correlation between the copula variables and the different parameters for the
function. The results showed that the best method is to combine probit transformation and mirror
reflection kernel estimator (PTMRKE) and followed by the (IPE) method when using all copula
functions and for all sample sizes. If the correlation is strong (positive or negative). However, in
the case of using weak and medium correlations, it turns out that the (IPE) method is the best,
followed by the proposed method (PTMRKE), depending on (RMSE, LOGL, Akaike) criteria.
The results also indicated weak mirror kernel reflection method when using the five copulas.

Paper type: Research paper.
Keywords: Copula function, probit transformation, Kernel copula function, Improved probit
transformation, Mirror reflection, Boundary bias.
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1. Introduction:

The nonparametric estimation technigque is a common and flexible tool for analyzing
data and modeling relationships between variables. The nonparametric estimation is different
from the parametric estimation in that it does not take a fixed form or a specific form.
Nevertheless, it is obtained according to the information derived from the data. All information
regarding the phenomena under research is assumed to be regularly distributed in parametric
models. Under tight assumptions and circumstances, we cannot use standard correlation
measurements like Kendall's or Spearman’s if the random variables are not normally distributed.
Separating random variables' effects is extremely challenging, especially when evaluating the
degree of positive and negative dependence. As a result, researchers use nonparametric
approaches such as the kernel density function to detect dependencies, especially in multivariate
distributions.

The problem in the modeling of multivariate functions is the presence of dependency
between the observations of the variables of the examined phenomena, which can lead to various
of issues, including boundary effects. In this situation, it is impossible to get the exact estimation
for these functions. A suitable statistical tool must be used to characterize the dependence
structure between the variables of the examined phenomenon, particularly when the effect
extends over a long or medium period of time and the data distribution is unknown.
Nonparametric approaches are employed to estimate the copula functions in this research.

Many studies have been published by researchers to help develop ideas for modeling
dependency measures in many fields, especially the challenges encountered during the analysis,
such as problems of association between study variables and problems of boundary effects.

Deheuvels (1979) developed the theory of nonparametric estimation of the copula function
of a random variable based on the empirical copula and measured the sample dependency by
employing of the empirical copula, and obtained a consistent empirical copula function.

Hmood (2005) clarified and reviewed some parametric, nonparametric, and semi-
parametric methods and suggested methods for estimating the probability density function and
choosing the appropriate method for estimating smoothing parameter and comparing the
mentioned methods in determining the best estimator for the probability density function using
the simulation method.

Dawod (2006) used the copula theory in modelling the survival function of the bivariate
variable Weibull distribution and bivariate standard normal distribution cut off at zero point and
using simulation experiments for comparison between the estimation of the survival function by
using six different copula.

Genest and Favier (2007) presented a paper for inference copula models, based on the rank
method. Working in detail on a small imaginary numeric example, illustrate the different steps
for checking the dependence between two random variables and modeling it using copulas. It
also introduces simple graphical tools and numerical techniques for selecting a suitable model,
estimating its parameters, and checking its suitability. An application of the methodology to
hydrological data is then presented.

Omelka et al. (2009) investigated kernel methods for obtaining smooth and flexible
estimates of the bivariate correlation cumulative distribution function, and also discussed the
selection of bandwidth parameters.

Chloob (2011) presented a proposal for a new copula by applying the Plackett copula
through a mathematical modification that was made on that copula and comparing the Plackett
copula with the proposed copula using simulations.

Geenens (2014) introduced the probit transformation of estimating the density of the
kernel on the unit interval and he proposed a correct and simple method by combining the
concept of transformation with estimating the local likelihood density, resulting in workable
density estimations that are free of boundary issues in most cases.
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Geenens et al. (2017) investigated the probit transformation of the nonparametric kernel
estimation of the copula density. He proposed a kernel type copula density based on the idea of
transforming the margin of copula density to normal distributions using the probit function and
estimating the density in the transformed domain without boundary bias problems. Thus,
obtaining an estimation of the copula density via the back-transformation, and it was then
demonstrated that when this method is combined with methods of estimating the local
polynomial density.

Hmood and Hamza (2019) presented a method for estimating the copula density using
different kernel density methods, including the mirror reflection method, beta kernel method and
kernel transformation method, and then comparing the three methods using simulation
experiments, the results showed that The transformation kernel estimator is the best among the
three methods, and it is proved that the copulas are highly explicitly for high dependency,
especially of the Gaussian type.

Nagler (2021) presented a R package called Kdevine to estimate the density of the
multivariate kernel with vine copulas.

Dawod (2022) studied reliability structural analysis methods with multidimensional
correlation and when conducting a structural reliability analysis and calculating the probability
of structural failure. The techniques that helped analyze structural reliability in light of the
correlation problem, include the third-moment, fourth-moment, and D-Vine copula techniques.
These techniques were based on the first-order reliability method in its basic techniques when
transforming the studied random variables into independent standard normal random variables,
and iterative algorithms were used to find the probability point of most failures.

These studies were confined to nonparametric kernel functions using a fixed-value
smoothing coefficient or a symmetric diagonal matrix.

This research aims to estimate the copula density by nonparametric methods through
probit transformation depending on the Kernel copula function to correct the boundary bias.
Probit transformation is one of the methods used in boundary correction, and it is the most
commonly used method, and because of what this method suffers from biases at boundary
points, we used a smoothing coefficient in the form of a full positive matrix.

2. Materials and Methods:
2.1 Copula definition:

A copula is a function that illustrates modeling the dependency of random variables. Sklar
created and initially utilized the copula in 1959.

This function has several advantages for modeling dependencies in multivariate data. First,
consider the joint distribution's separation into the dependency structure (copula) and the basic
marginal distributions.

And which can be viewed as a mathematical tool that is used to represent the relationship
structure between two or more random variables. Many articles and studies have been written
about the nonparametric estimation of copulas. Nonparametric methods are more flexible than
standard parametric methods, as no assumptions are required.

According to Sklar theorem 1959, every joint cumulative distribution function F of
continuous random quantities (X,Y) can be written as F(x,y) = C(Fx(x), Fy (y)), for all
(x,y) € R?, where Fy and F, are continuous marginal distributions and C: [0,1]? - [0,1] is a
unique corresponding to this joint distribution. Therefore, the copula is the joint cumulative
distribution function with uniformly distributed marginal distributions on [0, 1] (Cherubini et al.,
(2004); Nelsen, (2006)).

Therefore, every multivariate CDFs with standard uniform marginal that show the dependence
structure of random variables X and Y, and their marginal cumulative distribution functions are
described by
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U=Fe(X)andV = Fy(Y), (1)

where U and V are uniformly distributed variables and(U,V) € [0,1]. The probability of
two random variables, X <xandY <y, is described by the joint CDF Fxy(X,Y) = P(X <
xY <y).

Clu,v) =Pr(U <u,V <v), 2)

where C(u, v) is called a copula and can be uniquely determined when u and v are continuous
(Alsina et al., (2006)).
The following is the formula for a Gaussian copula: (Zeng et al., (2014))

@ (uz) s2 — 20st + t2

ca 1 o~ (uy)
C ) = ————————|dtd
0 ) =5 f_oo f_oo Py U
@ Represents the standard normal distribution function, while @~ represents the inverse of

standard normal distribution function.
A Frank copula is given by (Chen and Guo, (2019))

1 (e —1)(e%2 — 1)
C(ul,uz)zglog(1+ e >
Joe copula is provided by

C,uuv)=1-[1—-w)*+1—-v)* -1 —-w*(1 - v)“]é as well as its density
1
-2

) 0 € (—OO, +OO)

(U, v) = W% + 2% —wz%¥]a “wz Ha — 1+ w% + z% — wz%)] ,a € [1, ).

Where w=1—-uandz=1-—v . It is distinguished by upper tail dependency. moreover,
1

Ay = 2 — 2a . (André, (2019)).

Tawn copula is

_ log(u,)
C =exp {(log(ul) + log(uz))A (W>},where

[

0 (4
A@) = (1 -a)x+ - a1 -0 + (1 - 1) + (@0)°)
and (8, ay,a;) € (1,0) x [0,1]? , for a; = a, = 1, we recover the Gumbel copula.
At any time a, # a,, it will be asymmetric in its components.

2.2 Kernel and probit estimation:

Numerous nonparametric methods exist for estimating the dependence structure between
two random variables, such as polynomial approximation copulas and kernel smoothing copulas
(Geenenes et al., (2017)).

2.2.1 Kernel density function estimation:
The d-dimensional multivariate kernel density estimator in its general form demonstrated
by Hmood as bellow (Hmood et al., (2008); Gramacki (2018)).
n n

) 1 L 1
— [2(% — X.)) = — _x.

[, H) = NPIA i; KMH 72(x—Xy)) = - 21 Ky (x — Xp). 3)

Ky(x) = |H| 2K (H_l/zx) (4)

Where H is a positive and symmetric definite bandwidth matrix and K is a kernel function, and
|[H| - 0,n|H| > 0asn - o
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There are several nonparametric techniques to estimate the dependence structure
between two random variables, such as empirical. (Deheuvels, (1979)), polynomial
approximation copula (Cherubini et al., (2004)) and kernel smoothing copulas (Charpentier et
al., (2006); Cherubini et al., (2004)).

In the classical statistics texts, a kernel is a nonparametric method for estimating the
probability density function (pdf) of a continuous random variable. Any probability density can
be used for the kernel (Scott, (2009)).

In this study, we use kernel type copula estimators because this method is the most
commonly used in the nonparametric estimation of copulas. Although its flexible
(Geenenes,(2014)), But is not appropriate for the unit squared copula densities, essentially
because it is heavily influenced by boundary bias issues for estimation function. In addition,
most common copulas permit unbounded densities, and kernel methods are inconsistent in that
case. Therefore, many researchers study and provide solutions to the boundary bias, including
(Gijbels and Mielniczuk,(1990 )} ;Charpentier et al., (2006) ; Geenens ,(2017)).

The standard kernel estimator for ¢, denoted by ¢*

n

- 1 Yy (u—Ui
) =— gD K (b (23 ) ®

i=1

where (u, v) € [0,1]and k: R? - R . Hyy is bandwidth matrix

Using of kernel techniques to estimate an unknown bivariate copula density we will
see that the boundedness of a copula density's support necessitates using of more advanced
techniques than the one considered. U, V ~U[0, 1] are random variables with the joint
distribution C and the corresponding density c: [0, 1]> —R. We assume that the copula C has
i.i.d variables {U; = Fx(X;),V; = F,(Y;),i =1,..,n}, and we aim to estimate the density
c.(Genenes, ( 2014))

2.3 Probit Transformation Estimation Method (PTE):

Data transformations are commonplace and widely used to enhance the application and
performance of classical estimating methods, this procedure deals with almost skewed data,
heavy tails, or bounded support.

Several studies have investigated the transformation density estimation technique in the
context of kernel density estimation, and they have presented several transformation families and
transformation selection criteria. These studies created parametric families of transformations
that approximate normality in a range of non-normal distributions. Although our essential goal
of simple density estimation does not necessitate normality, Transformations can serve a variety
of purposes in statistical analysis (Bean, (2017)).

To solve the problems that caused boundary bias by transforming the data to support its
distribution on the full R2.In other words, this method can be correct the boundaries in naturally,
and this method is characterized by dealing with boundary copula densities (Charpentier et al.,
(2006)).

The difficulty in the copula density estimation of (U, V) is primarily due to the constrained
nature of its support = [0,1]% . Now define

S=o7Y(U) and T =& LV). (6)

Where @ is the standard normal cumulative distribution function and @~tits quantile
function or the probit transformation. (Genenes, (2014) p5) Given that both U and V are uniform
distributions [0,1], S and T have standard normal distributions, but this does not imply that the
vector (S, T) is bivariate normal. If the joint CDF of (S,T) is the Gaussian, then Fgr is the
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Gaussian copula because copulas are invariant for increasing transformations. (Nelsen, (2006),
Theorem 2.4.3) (S, T) has unconstrained support R? and estimating its density fs; cannot be
affected by boundary problems. Furthermore, due to its normal margins, one can expect fgr to be
well-behaved and easy to estimate. Under mild assumptions, for and its partial derivatives up to
the second order are found to be bounded on R In this case copula density is unbounded. If
Fst refer to copula C, and the variables (S,T) are standard normal distribution, then we can write
Sklar's theorem as the equation below :

Fgr(s,t) = C(®(s), @(D)). (7)

When differentiating Fsr with respect to s and t, we get the joint density of (s,t),

fsr(s,8) = c(2(s), 2(1) )p () (1), )

where ¢ is standard normal density. Inverting this equation yields.

_ for(@71(w), @1 (v))
P(@ 1 (W)@ ()

c(u,v) 9

For any (u, v) € [0,1]?, therefore, any estimator fgr on R? automatically generates a Copula
density estimate on the interior of .
for(@ T (W), 71 (v))

(@ T W)@ (v)’

where the symbol (1) refers to the transformation idea. When appropriate, ¢(® can
alternatively be defined by continuity at the limits of 1. This transformation-based estimator has
a number of appealing qualities. Because (@~ 1(u), ®~1(v)) is not defined for (u,v) &1
cannot allocate any probability outside I. Also, if fsr is a true density function, in the sense that
fsr (s,t) =0 for all (s,t)and

ff for(s,)dsdt = 1
RZ
Then, through transformation in variables u = @(s) and v = @(t),
@O w,v) =0 forall uuvel ; ffé(f)(u, v)dudv =1
1

c@(u,v) = (10)

According to the bivariate kernel density estimator, which we shall denote by fsr. When
apply to the copula:

fsr (7' W), 271 (@)
o(27*W)p( 27 @)

for all u,v € [0,1]?
The first basic idea is that we should use the standard kernel density estimator such as fer.
Specifically, we use the estimate as:

£ x _ 1 N _1/2 S_Si
fir(s, ) ——n|H5T|1/22K<HST (t—Ti)>' (12)

i=1

c(u,v) =

(11)

Where K is a bivariate kernel function and Hgis symmetric positive—definite matrix, and

{S;=07'U),T,=071(V); i=1,..,n} (13)
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is the transform domain sample. But (U;, V;) not available, and (S;, T;) as well. Instead, one
must make use of

{(SAL = (D—l(ﬁi),fi = q)—l([?i)) =1, ’n} (14)

That pseudo-transformed sample, as a result, the feasible form £ (s, t) is

N 1 = —1/2 S — SAL

fsr(s,t) = —12 k| Hyp AR (15)
n|Hgr| /2 =1 t—T;

Based on equation (11), this leads to a "probit transform kernel copula density estimator".
(Genenes,G (2014) p5)
¢O(u,v)

_ 1 (s <¢-1(u) - <b-1(z7i)>>
= K| H ~ . 16
n|HST|1/2go(q>-1<u>)cp(q>-1(v>)Z ( st \omrwy — 01y ) O

i=1

As a result, the asymptotic equation for the parameter of probit transformation is also obtained.
The bias and variance of this method for copula density estimator are in the following form,
respectively.

Bias[¢*(u,v)] = %mz(l() {hll [Cuu(u, V)% (7 (W) — 3¢, (w, v)p(@7 1 (w)d 1 (w) +
c(u,v) (((P‘l(u))z - 1)] + hy, [cw(u, V)P WP (v) — 3¢, (w, v)p(@ (W) P () +
cwv) (@71 )" = 1)] + 2hya e, )0 WD (v) — ¢ (w V) (D7 (W) D~ (v) -
e, ) We(e7 ()]} +

of{tr(H)}. a7

Where m,(K) = [ z? K(z)dz
The variance is

var (f(s, t)) = n‘1|H|_1/2R(K)f(s, t)+o (n‘llHI_l/Z). (18)

Where R(K) = [ K(z)?dz
Then the variance of probit transformation copula density as below

R(K) o c(u,v)
n|H|Y2 "~ @@ W)@~ (V)

var(é"(u,v)) = +o((n|HD™. (19)

When we use standard normal distribution of kernel density and normal distribution for density
function then,

my(K) =1 and R(k) = (4n)_d/2 . Where d represents a number of variables
Observe that

2

[t JEms
T 20
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2.4 Improved probit transformation method (IPT):

An extension of transformation method is proposed by (Geenens, (2014)) fitting local
polynomial to the log-density for the sample transformation and by quadratic polynomials.

The purpose and the advantages of estimating fsr by the local likelihood methods as an
alternative to standard kernel density estimation is related to the boundary behavior of the
estimator of ¢ on I and the tail behavior of the estimator of fgr on R?. But, standard kernel
estimators are well-known to work unsuccessfully in the tails of densities, with repeated
occurrences of ‘spurious bumps’. These fluctuations are greatly magnified by back
transformation (11), the so- yielded estimator of c illustrations a very irregular behavior at the
boundaries.

The local likelihood technique (Loader, (1996)) assumes that the log-density log f (s, t)
of the random vector (s,t) = (@71 (U),® 1 (V)) may be approximated locally by a
polynomial P, (s, t) of order p. The coefficient vector of the polynomial is denoted as a(s,t) €
R(p+1)(p+2)/2, where (p + 1)(p + 2)/2 is simply the number of terms (including a
constant) of a two- dimensional polynomial of order P. Then we can write local likelihood
estimator as follows in this context of estimating for from the pseudo-sample ($;,T;),i =
1,...,n. logfsr is assumed to be well approximated by a polynomial of order p about (s,t) €
R?. Only local log-linear (p = 1) and local log-quadratic (p = 2) estimators are studied
classically. In particular, in the first order (p = 1), it is assumed that, given (3,%) 'converge'to (s,
0,

Local log linear (p=1) it is follow:
logfsr(3,8) = aso(s,t) + ag1(s,6)(E —5) + a (s, )(E —t) = P, (8 — s, — ¢). 21

In the second order (p = 2),

logfsr(3,1) = azo(s,t) + az (5 —s) + ay (F—t) + aps(s, ) (5 — )% + azy(s, t)(E — t)?
+ a3 —s)(E—t) =P, (§—s,T—10). (22)

The vectors
a;(s,t) = (a10 (s,t),a11(s,t), a12(s, t)) and a,(s,t) = (az(s,t), ..., azs(s, 0). (23)

By solving a weighted maximum likelihood problem. For either p=1or P=2

(s, t) =
argmax{ K (HS_TI/2 (i : g)) P,3-s)E-t)-n[[K <Hs_rl/2 (i _ ;)) exp(Fy,, (8§ —
- t)d§df}. (24)

Where K is a bivariate kernel function and Hgp is a symmetric positive-definite
bandwidth matrix, as previously stated.

The improved probit transformation estimation for kernel copula density. In the case of
the local log-linear (p = 1)

exp(dy,o (‘p_l(u): ‘1’_1(”)))
(@71 W)p(271(v))

¢V, v) =

(25)

133



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30 (139), pp. 126-148 E-ISSN 2227-703X

And in the case of the local log-quadratic (p=2) approximation
&(®2) (w,v) = eXp(dz,o(CD_l(u), (D_l(v)))
) §0(¢"1(u))<p(¢‘1(v))

(26)

We get for all (s,t) € R2where f ¢r(s,t) is positive and continuous second-order partial

derivatives are admissible approximation estimator fS(Tl) to calculate the joint density
fsr. (Loarder, (1996))
Define the optimum local log-linear probit-transformation kernel copula density estimator.

. far (s, )

+(7,1) _ ST

T G @e(e ) @
Using (9), (11) and (19) in (27), one obtains.

\Jnh? (5*(T'1) (u,v) — c(u,v) — h2bW(w, v)) Ly (0,0(1)2(% v)). (28)

Then the bias local linear probit transformation equals the equation

IB(c®V(u,v)) =

2
|20t @) ~ 5207w (o(071 W) ~ s [ 0@ 00| -
c(u,v)}

2hy {[Zoea) (071 () (071 (0)) = o ( 2 (07 ) ) (22 (02 ) )|} +

c(u,v)
oo {52 o (7)) (@ () -
(289 (071 ) (222 p@r )]}, 29)

c(u,v)

And the variance

c(u,v)

4mt|H| 2@ (w)p(P~1(v))

Ivar(c®V (u,v)) = (30)

Local log-quadratic probit-transformation kernel copula density estimator ¢ for all (u, v) €
(0,1)? is such that

Jnh? (5*(1,2) (w,v) — c(u,v) — h*b@ (v, v)) 5N (0, s@%(y, v)). (31)

Where

5 c(u,v
@2 (y,v) = : (w,v)

4rc|H|2(071 (W) (01 (v))

(32)

And b@ (u, v) is a similar equation to (probit transformation), except it involves partial
derivatives of c up to the fourth order.
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2.5 Mirror Reflection Kernel Estimation Method (MRKE):

Kernel estimation for copula is famous for suffering from boundary bias. One technique of
removing this difficulty is by reflecting all data points with regard to each corner and edge of the
unit square (Charpentier et al., 2006; Nagler, 2014). This idea was presented by (Gijbels and
Mielniczuk, 199). And the method is known as mirror reflection. This procedure aims to add
some "missing mass" to the sample by reflecting it with regard to the boundaries. They
concentrate on the scenario where the variables are positive and have support as [0, ).

The mirror reflection kernel takes the form (Gijbels and Mielniczuk,(1990)).

e SSRGS o

i=1 1=

with {(Ty), (V)} ={. (0, %), (20,2 - V,),(2 = U;, £V;), (2 — U;,2 — V;)} (Charpentier
etzlr;’ezs(t)i%?;.ted formula for the rAeerction density function of thAe copula mi[ror can bf written as
{00 = B2 o () (57 (50 () () (1)
(0 (55 e (0K (2 e (20 (520 (20K (5
K () (5 +

(0 (22, @

When we use full bandwidth matrix H the mirror reflection copula estimator as

n

9 —~
_ -0,
PR LCR @)

i=1k=1

é(MR) (u’ v) —

Then the bias is the following formula

Bias (c“wR) (u, v)) = 1m2 (K)tr{HH (u,v)} + o{tr(H)}

hy, h
here H = [ 2
v hiy  hyp

Then ABias (é(MR)(u, v)) = Emz (K){hy1cuu + 2hyz¢up + hyzcyyl, (36)

] and H.(u,v) = [ Cw].

Cuv C‘U‘U

¢ and ¢, are the second derivatives for u and v respectively c,,, is the mixed second
derivative
The variance formula is as shown below:

var (6(MR)(u, v)) = R(K)c(u,v) + o <ﬁ> (37)
n 2

1
H|'/2
2.6 Bandwidth selection:
The problem of selecting the bandwidth parameter is a crucial problem that occurs often in
the context of KDE. The precision of KDE depends on the chosen bandwidth value. In the
univariate case, the bandwidth is a scalar controlling the smoothing quantity. In the multivariate
case, the bandwidth is a matrix that controls both the quantity and the smoothing shape. This
matrix can be defined on various levels of complexity. (Gramacki, 2018)
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The bandwidth affects the balance between two concerns in nonparametric estimation:
bias and variance. Furthermore, the mean squared error (MSE), which is the sum of squared bias
and variance, performs composite metric. As a result, optimality in the sense of MSE is not
significantly influenced by the kernel selection but is influenced by the bandwidth selection
(Bowman, 1997).There are several techniques for calculating the bandwidth h. The plug-in
approach and cross validation are two of the most often used. We utilize Silverman's rule of
thumb bandwidth h for the plug-in approach in all methods and every sample size. We used
plug—in method for the selection bandwidth matrix for all methods.

2.7 Performance Criteria:

The comparison between the estimation methods is carried out according to the Root
Mean Squares Error (RMSE) and is done by calculating the mean squares error of the copula
function estimated for each iteration according to the following formula:-

MSE(éy,¢) = E(¢y(u,v) — c(u,v))?
RMSE (¢, ¢) = EE (éy(w, v) — c(u, v))2.
And the Akaike criterion (AIC) is:

n
AICY = —2 Z In (cgg (u®, ...,ug"))) +2p,
i=1

1=
where p is the number of family parameters and 6n is a parameter estimate.The logarithm of
maximum likelihood possibility (LOG L).

L(6; uy, ..., up) =[lie1co(wy) and 1(6;uy, ..., up) = Nieq1 L(O; wy),

respectively, where:

1(6;u) = Incg(wy) = In[(—1)*Pa?[te ()] + X%, In [—(lpe_l) (ui)]-

The best method is the one that minimize root mean square error and minimize information
criterion, both criteria select the model that gives the highest likelihood.

3. Discussion of results:

Simulation experiments were carried out using five sample sizes (n = 32, 64, 128, 256,
and 512) with a frequency of 1,000 for each experiment, as follows:
1- The variables u and v are distributed uniformly.
2- Finding the probit transformation of the observations of the variables that were generated in
step 1.
3-Five copulas of Gaussian, Frank, Tawn, RotationTawn and Joe were used depending on the
different values of each copula parameter.

Tables 1 to 15 represent the estimated root mean squares error of the copula density
functions for nonparametric estimation methods and Akaike criteria and logarithm maximum
likelihood criteria (LogL) at a correlation level tau = 0.7,0.5,0.3 respectively with 1000
repetitions for each experiment that were used to determine the performance of the best
estimation method it was found that the best estimation method for the copula density function
in the case of strong negative and positive correlations and for all sample sizes and for five
copulas(Gaussian, Frank, Tawn, RTawn, and Joe) it is the proposed method (PTMRKE )
followed by the improved probit transformation method(IPE), but in the case of medium and
weak correlations, the best estimation method is the improved probit transformation
method(IPE), followed by the proposed method (PTMRKE) when using the five copulas and for
all sample sizes. The third method was probit transformation for all sample sizes and for all five
copulas. The fourth and last place was the mirror reflection method (MRKE) for all sample sizes
and copula functions.
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Table 1: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Gaussian
copula when 7 = 0.7.

CELESIW | e RMSE AIC LOGL

Sample size
PTE 0.29933 -38.599 22.71667

- IPE 0.21762 -48.7999 25.68059
MRKE 0.36543 -32.2141 17.57557
PTMRKE 0.16616 -70.6815 36.17277
PTE 0.23146 -97.1761 49.99241

54 IPE 0.19774 1115534 58.9331
MRKE 0.32671 71,5952 4034811
PTMRKE 0.16125 1127.243 64.63423
PTE 0.21907 -215.913 109.6572

128 IPE 0.18834 2246.026 124.3943
MRKE 0.2748 -199.168 106.4232
PTMRKE 0.14509 -283.616 142.8579
PTE 0.22168 2374.616 194.7401

256 IPE 0.16444 -427.389 215.3725
MRKE 0.25644 -330.682 167.3907
PTMRKE 0.10983 -466.362 234.6158
PTE 0.18511 771.349 387.8594
IPE 0.1463 -829.842 416.7956

o12 MRKE 0.21098 2696.762 356.7875
PTMRKE 0.10907 -854.544 428.9544

Table 2: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Gaussian
copula when 7 = 0.5.

Gausstan | pyethod RMSE AIC LOGL

Sample size
PTE 0.64513 114.0259 9.10046

2 IPE 0.4437 -27.6558 15.38779
MRKE 0.68337 112.1829 8.23528
PTMRKE 0.46592 -26.3567 14.71949
PTE 051196 150.1634 27.14061

o IPE 0.42137 -81.6028 42.28345
MRKE 0.5836 -36.0855 20.84349
PTMRKE 0.43833 67,5245 35.44688
PTE 0.49618 2102.509 53.73536

1o IPE 0.36003 2130.761 67.39552
MRKE 057604 74.4768 41.22462
PTMRKE 0.36488 2129.049 66.47255
PTE 0.44895 1180.244 95.50428

255 IPE 0.34212 -271.015 137.6494
MRKE 0.56902 1137.868 71.95402
PTMRKE 0.35817 2267.205 135.8615
PTE 0.42957 2342.784 1745219
IPE 0.27942 -416.055 210.6041

ol12 MRKE 0.49456 282411 146 4054
PTMRKE 0.34692 1391041 108.1826
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Table3: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Gaussian
copula when 7 = 0.3.

Gaussian |y 1ohod RMSE AIC LOGL

Sample size
PTE 0.90599 210.0097 7.17241

2 IPE 0.66802 119.3517 11.51404
MRKE 0.95078 -3.40293 3.41731
PTMRKE 0.80489 110.3747 7.26159
PTE 0.80242 -25.8767 15.42052

54 IPE 0.56084 “47.4618 25.66639
MRKE 0.85514 210.0902 7.04017
PTMRKE 0.79767 -26.5584 15.67801
PTE 0.73139 -27.7824 17.43187

128 IPE 0.54622 1113.279 58.503
MRKE 0.85414 -6.46011 4.65237
PTMRKE 0.72583 -12.6367 10.3235
PTE 0.71448 ~86.0686 46.49385

256 IPE 0.47636 -148.05 76.6885
MRKE 0.81988 750.8407 28.00765
PTMRKE 0.7096 -87.8233 47.25986
PTE 0.66743 1112.706 60.65348

510 IPE 0.41272 -206.561 106.5277
MRKE 0.89912 -80.1228 42.69741
PTMRKE 0.66036 1115.742 62.20851

Table 4: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Frank

copulawhen t = 0.7.

FUETE Method RMSE AIC LOGL
Sample size
PTE 0.15321 -81.6971 41.67683
2 IPE 0.11183 292.0527 46.69053
MRKE 0.33162 74.2142 37.9642
PTMRKE 0.09322 -106.557 53.76981
PTE 0.15021 -95.0123 48.9454
y IPE 0.11156 7113.198 57.75536
MRKE 0.27301 706406 39.20701
PTMRKE 0.07785 119.95 61.03871
PTE 0.14841 2280421 141.4846
128 IPE 0.10953 -303.719 152.9268
MRKE 0.26035 218.77 110.8423
PTMRKE 0.07399 -333.29 167.5095
PTE 0.14168 -485.297 244.3296
255 IPE 0.09936 -535.622 269.214
MRKE 0.23254 ~344.508 174.2283
PTMRKE 0.05632 561451 281.9717
PTE 0.12341 -895.484 449.935
1o IPE 0.09835 -976.766 490.1482
MRKE 0.2266 -746.853 383.1753
PTMRKE 0.0358 -1182.2 592.7062
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Table 5: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Frank
copula when 7 = 0.5.

PR oo RMSE AIC LOGL
Sample size
PTE 0.42059 -16.5343 10.4112
32 IPE 0.37463 -18.7305 11.3339
MRKE 0.8569 -4.94191 4.45647
PTMRKE 0.31399 -28.4268 15.93552
PTE 0.41134 -59.704 31.66972
54 IPE 0.3631 -64.8368 34.18017
MRKE 0.77787 -31.5412 18.83118
PTMRKE 0.29965 -77.1296 40.05924
PTE 0.39342 -148.273 76.18602
198 IPE 0.34798 -179.281 91.29146
MRKE 0.61089 -109.55 59.2531
PTMRKE 0.24644 -188.787 95.93041
PTE 0.38824 -221.718 113.3838
256 IPE 0.33548 -251.344 127.829
MRKE 0.59649 -156.59 82.5269
PTMRKE 0.2288 -270.235 137.1816
PTE 0.38815 -484.543 245.4771
510 IPE 0.32608 -573.754 289.3423
MRKE 0.55692 -368.257 189.9977
PTMRKE 0.42492 -559.206 282.0944

Table 6: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Frank

copula when 7 = 0.3.

FUETE Method RMSE AIC LOGL
Sample size
PTE 0.90599 -10.0097 7.17241
3 IPE 0.66802 -19.3517 11.51404
MRKE 0.95078 -3.40293 3.41731
PTMRKE 0.80489 -10.3747 7.26159
PTE 0.80242 -25.8767 15.42052
64 IPE 0.56084 -47.4618 25.66639
MRKE 0.85514 -10.0902 7.04017
PTMRKE 0.79767 -26.5584 15.67801
PTE 0.73139 -27.7824 17.43187
128 IPE 0.54622 -113.279 58.593
MRKE 0.85414 -6.46011 4.65237
PTMRKE 0.72583 -12.6367 10.3235
PTE 0.71448 -86.0686 46.49385
256 IPE 0.47636 -148.05 76.6885
MRKE 0.81988 -50.8407 28.00765
PTMRKE 0.7096 -87.8233 47.25986
PTE 0.66743 -112.706 60.65348
£10 IPE 0.41272 -206.561 106.5277
MRKE 0.89912 -80.1228 42.69741
PTMRKE 0.66036 -115.742 62.20851
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Table 7: Root-mean square error, (AlIC)criterion and logarithm likelihood criteria for Tawn
copula when 7 = 0.7.

LV Method RMSE AlC LOGL
Sample size
PTE 0.15321 816971 41.67683
2 IPE 0.11183 292.0527 46.69053
MRKE 0.33162 74.2142 37.9642
PTMRKE 0.09322 1106.557 53.76981
PTE 0.15021 195.0123 48.9454
64 IPE 0.11156 7113.198 57.75536
MRKE 0.27301 70,6406 39.20701
PTMRKE 0.07785 119.95 61.03871
PTE 0.14841 -280.421 141.4846
128 IPE 0.10953 -303.719 152.9268
MRKE 0.26035 218.77 110.8423
PTMRKE 0.07399 -333.29 167.5095
PTE 0.14168 485297 244.3296
256 IPE 0.09936 535,622 269.214
MRKE 0.23254 -344.508 174.2283
PTMRKE 0.05632 1561.451 281.9717
PTE 0.12341 -895.484 449.935
610 IPE 0.09835 -976.766 490.1482
MRKE 0.2266 746.853 383.1753
PTMRKE 0.0358 -1182.2 592.7062

Table 8: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Tawn

copula when 7 = 0.5.

LI Method RMSE AIC LOGL
Sample size
PTE 0.42059 -16.5343 10.4112
- IPE 0.37463 118.7305 11.3339
MRKE 0.8569 ~4.94191 445647
PTMRKE 0.31399 -28.4268 15.93552
PTE 0.41134 -59.704 31.66972
64 IPE 0.3631 ~64.8368 34.18017
MRKE 0.77787 31.5412 18.83118
PTMRKE 0.29965 77.1296 40.05924
PTE 0.39342 [148.273 76.18602
128 IPE 0.34798 1179.281 91.29146
MRKE 0.61089 -109.55 59.2531
PTMRKE 0.24644 -188.787 95.93041
PTE 0.38824 221.718 113.3838
256 IPE 0.33548 -251.344 127.829
MRKE 0.59649 -156.59 82.5269
PTMRKE 0.2288 -270.235 137.1816
PTE 0.38815 484543 245.4771
10 IPE 0.32608 -573.754 289.3423
MRKE 0.55692 -368.257 189.9977
PTMRKE 0.42492 -559.206 282.0944
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Table 9: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Tawn
copula when 7 = 0.3.

el Method RMSE AIC LOGL
Sample size
PTE 0.7151 -9.30299 6.94363
- IPE 0.49316 -59.4376 30.6466
MRKE 0.98378 20.52327 1.79105
PTMRKE 0.82096 -3.07841 3.91647
PTE 0.71314 -21.1549 13.43301
54 IPE 0.41848 ~42.2807 23.35492
MRKE 0.9348 -4.31536 3.6875
PTMRKE 0.77409 112.6261 9.41658
PTE 0.6932 '56.5897 31.11079
128 IPE 0.41745 200.4873 4744672
MRKE 0.90828 112.8533 8.34424
PTMRKE 0.74773 -46.9046 26.40814
PTE 0.69094 -104.666 5557158
256 IPE 0.56379 -146.708 76.11861
MRKE 0.90446 265.5524 3551815
PTMRKE 0.72871 209.2848 53.04566
PTE 0.67853 1171691 90.04039
510 IPE 0.51652 -447.28 226.4952
MRKE 0.86144 -76.3629 40.78896
PTMRKE 0.71853 -162.035 85.20885

Table 10: Root-mean square error, (AIC) criterion and

Tawn copula wh

ent =0.7.

logarithm likelihood criteria for Rotation

RTawn

. Method RMSE AIC LOGL
Sample size
PTE 0.23397 -57.2149 33.03649
32 IPE 0.22434 -70.0372 35.94978
MRKE 0.32936 -47.8263 25.121
PTMRKE 0.18981 -94.4901 47.82346
PTE 0.16509 -115.282 58.98329
64 IPE 0.16245 -131.871 67.01851
MRKE 0.16823 -71.0787 37.31199
PTMRKE 0.16126 -149.893 75.81619
PTE 0.1342 -308.368 155.2586
198 IPE 0.12739 -316.724 159.3168
MRKE 0.15286 -228.148 120.5535
PTMRKE 0.12124 -323.996 162.9021
PTE 0.10253 -540.165 271.6675
256 IPE 0.10036 -583.067 292.8519
MRKE 0.11207 -467.14 242.3051
PTMRKE 0.09613 -617.007 309.5827
PTE 0.08421 -930.513 467.163
£10 IPE 0.07956 -968.129 485.7099
MRKE 0.08989 -731.277 375.7
PTMRKE 0.05219 -1177.07 589.6745
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Table 11: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Rotation

Tawn copula when 7 = 0.5.

RTawn _ Method RMSE AIC LOGL

Sample size
PTE 0.60703 -26.265 14.88072

39 IPE 0.53565 -41.3756 21.96108
MRKE 0.61915 -16.5941 11.07809
PTMRKE 0.59537 -28.3714 15.86527
PTE 0.48253 -46.6379 25.57054

64 IPE 0.43968 -64.2414 33.93003
MRKE 0.48314 -30.6823 18.04697
PTMRKE 0.46315 -58.5933 31.15594
PTE 0.41205 -98.5228 51.86625

198 IPE 0.39201 -130.591 67.33317
MRKE 0.42299 -63.8942 35.30246
PTMRKE 0.40031 -120.508 62.37158
PTE 0.38617 -186.226 96.1536

256 IPE 0.36649 -243.575 124.1609
MRKE 0.39005 -133.729 70.95541
PTMRKE 0.36879 -220.266 112.6513
PTE 0.29948 -420.718 213.685

519 IPE 0.21446 -510.732 257.9583
MRKE 0.32333 -319.628 165.4794
PTMRKE 0.27445 -479.478 242.4286

Table 12: Root-mean square error, (AIC) criterion and

Tawn copula wh

ent = 0.3.

logarithm likelihood criteria for Rotation

RTawn

: Method RMSE AlIC LOGL
Sample size
PTE 0.85727 -20.5896 12.18931
30 IPE 0.81826 -29.9002 16.51437
MRKE 0.97197 -1.81957 2.45805
PTMRKE 0.82609 -27.5715 15.40793
PTE 0.71005 -19.5586 12.57756
64 IPE 0.67178 -39.2835 21.88297
MRKE 0.74568 -9.39085 7.02143
PTMRKE 0.68581 -36.3116 20.36863
PTE 0.62866 -59.4131 32.42453
128 IPE 0.59029 -67.4736 36.34011
MRKE 0.66807 -19.7116 12.08966
PTMRKE 0.63266 -58.6007 32.09161
PTE 0.54129 -96.5501 51.66227
256 IPE 0.53813 -154.619 79.97331
MRKE 0.55765 -35.7064 20.04867
PTMRKE 0.54663 -87.658 47.34806
PTE 0.42248 -206.519 106.9281
512 IPE 0.39283 -299.016 152.4928
MRKE 0.47904 -102.692 54.40671
PTMRKE 0.42702 -203.686 105.7278
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Table 13: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Joe
copula when 7 = 0.7.

s - Method RMSE AIC LOGL
Sample size
PTE 0.17041 -86.6256 43.92094
39 IPE 0.12401 -86.8545 44.07575
MRKE 0.22733 -80.0315 40.74686
PTMRKE 0.082 -106.078 53.52986
PTE 0.15969 -117.411 59.98481
64 IPE 0.123 -136.165 69.12226
MRKE 0.21424 -98.6034 54.56637
PTMRKE 0.07385 -166.765 84.12771
PTE 0.15494 -214.156 108.7846
128 IPE 0.12205 -267.191 134.7292
MRKE 0.20246 -188.59 99.29476
PTMRKE 0.06673 -268.236 135.313
PTE 0.14883 -453.003 228.3562
256 IPE 0.11913 -498.865 250.9384
MRKE 0.18766 -408.883 211.4487
PTMRKE 0.06626 -538.458 270.4771
PTE 0.14246 -872.756 438.4459
512 IPE 0.11839 -954.745 479.0451
MRKE 0.18184 -758.458 387.4757
PTMRKE 0.03634 -975.336 489.1793

Table 14: Root-mean square error, (AIC) criterion and

copula when 7 = 0.5.

logarithm likelihood criteria for Joe

O Method RMSE AIC LOGL
Sample size
PTE 0.42297 -20.1695 11.94385
32 IPE 0.32579 -30.0756 16.57662
MRKE 0.75801 -8.86603 6.2354
PTMRKE 0.37517 -23.6385 13.54153
PTE 0.41975 -55.5584 29.87232
64 IPE 0.30208 -71.777 37.61576
MRKE 0.58183 -34.6611 20.29781
PTMRKE 0.35761 -71.7391 37.53502
PTE 0.47773 -138.883 71.77869
198 IPE 0.29971 -178.411 90.83952
MRKE 0.58168 -110.138 59.05355
PTMRKE 0.33789 -176.922 90.24075
PTE 0.45859 -217.66 111.6068
256 IPE 0.25103 -287.044 145.597
MRKE 0.55837 -149.181 78.66661
PTMRKE 0.32598 -263.251 133.7901
PTE 0.42731 -399.153 202.6058
£10 IPE 0.24812 -612.904 308.41
MRKE 0.54144 -277.416 143.8184
PTMRKE 0.32587 -480.722 242.8798
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Table 15: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Joe
copula when 7 = 0.3.

s - Method RMSE AIC LOGL
Sample size
PTE 0.71841 -5.35054 5.12134
39 IPE 0.51863 -14.7359 9.38528
MRKE 1.06945 2.1485 0.04917
PTMRKE 0.84603 1.55874 2.07229
PTE 0.68521 -21.1653 13.1342
64 IPE 0.62134 -31.0146 17.99025
MRKE 1.04992 1.45053 0.54499
PTMRKE 0.79347 -9.15675 7.51553
PTE 0.6379 -42.2662 24.05792
128 IPE 0.61594 -92.7233 48.50942
MRKE 1.02292 -21.328 12.65086
PTMRKE 0.77322 -40.7035 23.26146
PTE 0.72761 -115.09 60.9177
256 IPE 0.57132 -249.884 126.8797
MRKE 0.86669 -59.2224 32.13698
PTMRKE 0.63472 -118.633 62.54165
PTE 0.71878 -232.741 119.9393
512 IPE 0.52043 -286.617 146.4281
MRKE 0.84652 -131.683 69.14675
PTMRKE 0.63097 -243.648 125.1941

Figures 1,2,3,4 and 5 explain the behavior for all five copula.

Real

Figure (1) three dimensions Gaussian copula density.

PTMRKE

Figure (2) three dimensions for Frank copula density.
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Real PTMRKE
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Figure (3) three dimensions for Tawn copula density.
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Figure (4) three dimensions for Rotation Tawn copula density.
Real PTMRKE
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Figure (5) three dimensions for Joe copula density.

4. Conclusions:

Through the results reached in the simulation part of this research, the researcher reached the
following conclusions:
1- All the copula functions that have been studied and for all nonparametric estimation methods
referred to in the theoretical part and for all sample sizes and at correlation levels, the value of
the square root of the mean square error (RMSE) decreases as the sample size increases, while
the (LogL) criterion is as maximum as possible, As for the Akaike criteria as minimum as
possible.
2- The method of estimating the copula density function using PTMRKE (proposed method) and
(IPE) are the two best methods among these methods for the used copulas.
3- The method of nonparametric estimation (IPE) is one of the best methods in estimating the
copula density functions due to the fact that the nonparametric function (Gaussian) is more
flexible when it is used in choosing the parameter smoothing is fully matrix.
4-The results also indicated that the least-performing estimation method for all values of RMSE
and for all sample sizes used is the MRKE method.
5- The proposed method Probit Transform Mirror Reflection Kernel Estimator (FTMRKE)
showed handling the boundary bias problem with a probit transform for smoothing observations
at boundaries and edges.
6- There is a clear positive effect of the proposed method on the copula functions Tawn, RTawn
and Joe; this effect decreases with the large sample size at the copulas (Gaussian, Frank) and in
the case of weak and medium dependency.
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