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Abstract: 

    Copula modeling is widely used in modern statistics. The boundary bias problem is one 

of the problems faced when estimating by nonparametric methods, as kernel estimators are the 

most common in nonparametric estimation. In this paper, the copula density function was 

estimated using the probit transformation nonparametric method to eliminate of the boundary 

bias problem that suffers kernel estimators. Simulation was also employed for the for three 

nonparametric methods to estimate the copula density function and we proposed a new method 

that is better than the rest of the methods by five types of copulas with different sample sizes and 

different levels of correlation between the copula variables and the different parameters for the 

function. The results showed that the best method is to combine probit transformation and mirror 

reflection kernel estimator (PTMRKE) and followed by the (IPE) method when using all copula 

functions and for all sample sizes. If the correlation is strong (positive or negative). However, in 

the case of using weak and medium correlations, it turns out that the (IPE) method is the best, 

followed by the proposed method (PTMRKE), depending on (RMSE, LOGL, Akaike) criteria. 

The results also indicated weak mirror kernel reflection method when using the five copulas. 

 

Paper type: Research paper. 

Keywords: Copula function, probit transformation, Kernel copula function, Improved probit 

transformation, Mirror reflection, Boundary bias. 
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1. Introduction:  

   The nonparametric estimation technique is a common and flexible tool for analyzing 

data and modeling relationships between variables. The nonparametric estimation is different 

from the parametric estimation in that it does not take a fixed form or a specific form. 

Nevertheless, it is obtained according to the information derived from the data. All information 

regarding the phenomena under research is assumed to be regularly distributed in parametric 

models. Under tight assumptions and circumstances, we cannot use standard correlation 

measurements like Kendall's or Spearman's if the random variables are not normally distributed. 

Separating random variables' effects is extremely challenging, especially when evaluating the 

degree of positive and negative dependence. As a result, researchers use nonparametric 

approaches such as the kernel density function to detect dependencies, especially in multivariate 

distributions.  

    The problem in the modeling of multivariate functions is the presence of dependency 

between the observations of the variables of the examined phenomena, which can lead to various 

of issues, including boundary effects. In this situation, it is impossible to get the exact estimation 

for these functions. A suitable statistical tool must be used to characterize the dependence 

structure between the variables of the examined phenomenon, particularly when the effect 

extends over a long or medium period of time and the data distribution is unknown. 

Nonparametric approaches are employed to estimate the copula functions in this research. 

    Many studies have been published by researchers to help develop ideas for modeling 

dependency measures in many fields, especially the challenges encountered during the analysis, 

such as problems of association between study variables and problems of boundary effects.  

Deheuvels (1979) developed the theory of nonparametric estimation of the copula function 

of a random variable based on the empirical copula and measured the sample dependency by 

employing of the empirical copula, and obtained a consistent empirical copula function.  

Hmood (2005) clarified and reviewed some parametric, nonparametric, and semi-

parametric methods and suggested methods for estimating the probability density function and 

choosing the appropriate method for estimating smoothing parameter and comparing the 

mentioned methods in determining the best estimator for the probability density function using 

the simulation method. 

Dawod (2006) used the copula theory in modelling the survival function of the bivariate 

variable Weibull distribution and bivariate standard normal distribution cut off at zero point and 

using simulation experiments for comparison between the estimation of the survival function by 

using six different copula. 

Genest and Favier (2007) presented a paper for inference copula models, based on the rank 

method. Working in detail on a small imaginary numeric example, illustrate the different steps 

for checking the dependence between two random variables and modeling it using copulas. It 

also introduces simple graphical tools and numerical techniques for selecting a suitable model, 

estimating its parameters, and checking its suitability. An application of the methodology to 

hydrological data is then presented. 

Omelka et al. (2009) investigated kernel methods for obtaining smooth and flexible 

estimates of the bivariate correlation cumulative distribution function, and also discussed the 

selection of bandwidth parameters. 

Chloob (2011) presented a proposal for a new copula by applying the Plackett copula 

through a mathematical modification that was made on that copula and comparing the Plackett 

copula with the proposed copula using simulations. 

 Geenens (2014) introduced the probit transformation of estimating the density of the 

kernel on the unit interval and he proposed a correct and simple method by combining the 

concept of transformation with estimating the local likelihood density, resulting in workable 

density estimations that are free of boundary issues in most cases. 
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Geenens et al. (2017) investigated the probit transformation of the nonparametric kernel 

estimation of the copula density. He proposed a kernel type copula density  based on the idea of 

transforming the margin of copula density to normal distributions using the probit function and 

estimating the density in the transformed domain without boundary bias problems. Thus, 

obtaining an estimation of the copula density via the back-transformation, and it was then 

demonstrated that when this method is combined with methods of estimating the local 

polynomial density. 

Hmood and Hamza (2019) presented a method for estimating the copula density using 

different kernel density methods, including the mirror reflection method, beta kernel method and 

kernel transformation method, and then comparing the three methods using simulation 

experiments, the results showed that The transformation kernel estimator is the best among the 

three methods, and it is proved that the copulas are highly explicitly for high dependency, 

especially of the Gaussian type. 

Nagler (2021) presented a R package called Kdevine to estimate the density of the 

multivariate kernel with vine copulas. 

Dawod (2022) studied reliability structural analysis methods with multidimensional 

correlation and  when conducting a structural reliability analysis and calculating the probability 

of structural failure. The techniques that helped analyze structural reliability in light of the 

correlation problem, include the third-moment, fourth-moment, and D-Vine copula techniques. 

These techniques were based on the first-order reliability method in its basic techniques when 

transforming the studied random variables into independent standard normal random variables, 

and iterative algorithms were used to find the probability point of most failures. 

These studies were confined to nonparametric kernel functions using a fixed-value 

smoothing coefficient or a symmetric diagonal matrix.  

    This research aims to estimate the copula density by nonparametric methods through 

probit transformation depending on the Kernel copula function to correct the boundary bias. 

Probit transformation is one of the methods used in boundary correction, and it is the most 

commonly used method, and because of what this method suffers from biases at boundary 

points, we used a smoothing coefficient in the form of a full positive matrix. 

 

2. Materials and Methods: 

2.1 Copula definition: 

   A copula is a function that illustrates modeling the dependency of random variables. Sklar 

created and initially utilized the copula in 1959.  

This function has several advantages for modeling dependencies in multivariate data. First, 

consider the joint distribution's separation into the dependency structure (copula) and the basic 

marginal distributions. 

     And which can be viewed as a mathematical tool that is used to represent the relationship 

structure between two or more random variables. Many articles and studies have been written 

about the nonparametric estimation of copulas. Nonparametric methods are more flexible than 

standard parametric methods, as no assumptions are required.  

      According to Sklar theorem 1959, every joint cumulative distribution function F of 

continuous random quantities       can be written as                         , for all 

         , where    and    are continuous marginal distributions and                 is a 

unique corresponding to this joint distribution. Therefore, the copula is the joint cumulative 

distribution function with uniformly distributed marginal distributions on [0, 1] (Cherubini et al., 

(2004); Nelsen, (2006)). 

Therefore, every multivariate CDFs with standard uniform marginal that show the dependence 

structure of random variables X and Y, and their marginal cumulative distribution functions are 

described by 
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where U and V are uniformly distributed variables and            . The probability of 

two random variables,      and    , is described by the joint CDF              
      . 

 

                                                                                                           
  

where        is called a copula and can be uniquely determined when u and v are continuous 

(Alsina et al., (2006)). 

The following is the formula for a Gaussian copula: (Zeng et al., (2014)) 
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∫ ∫       

          

       
     

       

  

       

  

 

    Represents the standard normal distribution function, while     represents the inverse of 

standard normal distribution function. 

 Chen and Guo, (2019))by ( A Frank copula is given 
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Joe copula is provided by  

                                      
 

  as well as its density  

                   
 
 
                                 

Where                 . It is distinguished by upper tail dependency. moreover, 

      
 

  . (André, (2019)). 

Tawn copula is 
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                                         , we recover the Gumbel copula. 

                   it will be asymmetric in its components.  

 

2.2 Kernel and probit estimation: 

     Numerous nonparametric methods exist for estimating the dependence structure between 

two random variables, such as polynomial approximation copulas and kernel smoothing copulas 

(Geenenes et al., (2017)).  

 

2.2.1 Kernel density function estimation: 

The d-dimensional multivariate kernel density estimator in its general form demonstrated 

by Hmood as bellow (Hmood et al., (2008); Gramacki (2018)). 

 ̂      
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Where H is a positive and symmetric definite bandwidth matrix and K is a kernel function, and 

| |      | |           



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 126-148 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

631  

 

   

 

 

 

    There are several nonparametric techniques to estimate the dependence structure 

between two random variables, such as empirical. (Deheuvels, (1979)), polynomial 

approximation copula (Cherubini et al., (2004)) and kernel smoothing copulas (Charpentier et 

al., (2006); Cherubini et al., (2004)). 

     In the classical statistics texts, a kernel is a nonparametric method for estimating the 

probability density function (pdf) of a continuous random variable. Any probability density can 

be used for the kernel (Scott, (2009)). 

    In this study, we use kernel type copula estimators because this method is the most 

commonly used in the nonparametric estimation of copulas. Although  its flexible 

(Geenenes,(2014)), But is not appropriate for the unit squared copula densities, essentially 

because it is heavily influenced by boundary bias issues for estimation function. In addition, 

most common copulas permit unbounded densities, and kernel methods are inconsistent in that 

case. Therefore, many researchers study and provide solutions to the boundary bias, including 

(Gijbels and Mielniczuk,(1990 )) ;Charpentier et al., (2006) ;  Geenens ,(2017)).  

 The standard kernel estimator for c, denoted by  ̂  

 

 ̂       
 

 |   |
 

 ⁄
∑ 

 

   

(   

  
 ⁄ (

    
    

) )                                                                          

 

                                                      
     Using of kernel techniques to estimate an unknown bivariate copula density we will 

see that the boundedness of a copula density's support necessitates   using of more advanced 

techniques than the one considered. U, V ~U[0, 1] are random variables with the joint 

distribution C and the corresponding density c: [0, 1]
2
 →R. We assume that the copula C has 

i.i.d variables {                            } , and we aim to estimate the density 

c.(Genenes, ( 2014)) 

 

2.3 Probit Transformation Estimation Method (PTE): 

    Data transformations are commonplace and widely used to enhance the application and 

performance of classical estimating methods, this procedure deals with almost skewed data, 

heavy tails, or bounded support. 

    Several studies have investigated the transformation density estimation technique in the 

context of kernel density estimation, and they have presented several transformation families and 

transformation selection criteria. These studies created parametric families of transformations 

that approximate normality in a range of non-normal distributions. Although our essential goal 

of simple density estimation does not necessitate normality, Transformations can serve a variety 

of purposes in statistical analysis (Bean, (2017)).   

     To solve the problems that caused boundary bias by transforming the data to support its 

distribution on the full R
2
.In other words, this method can be correct the boundaries in naturally, 

and this method is characterized by dealing with boundary copula densities (Charpentier et al., 

(2006)). 

The difficulty in the copula density estimation of (U, V) is primarily due to the constrained 

nature of its support         . Now define 

 

                and                                                                                                                  

 

Where    is the standard normal cumulative distribution function and    its quantile 

function or the probit transformation. (Genenes, (2014) p5) Given that both U and V are uniform 

distributions [0,1], S and T have standard normal distributions, but this does not imply that the 

vector (S, T) is bivariate normal. If the joint CDF of (S,T) is the Gaussian, then     is the 
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Gaussian copula because copulas are invariant for increasing transformations. (Nelsen, (2006), 

Theorem 2.4.3) (S, T) has unconstrained support R
2
, and estimating its density     cannot be 

affected by boundary problems. Furthermore, due to its normal margins, one can expect     to be 

well-behaved and easy to estimate. Under mild assumptions,      and its partial derivatives up to 

the second order are found to be bounded on R
2
. In this case copula density is unbounded. If   

FST refer to copula C, and the variables (S,T) are standard normal distribution, then we can write 

Sklar's theorem as the equation below : 

 

                 (         )                                                                                                 

 

When differentiating FST with respect to s and t, we get the joint density of (s,t),  

          (         )                                                                                                  

 

where    is standard normal density. Inverting this equation yields. 

 

       
                  

                  
                                                                                         

 

 For any             , therefore, any estimator  ̂         automatically generates a Copula 

density estimate on the interior of  I. 

 ̂         
 ̂                 

                  
                                                                                  

where the symbol     refers to the transformation idea. When appropriate,  ̂    can 

alternatively be defined by continuity at the limits of  . This transformation-based estimator has 

a number of appealing qualities. Because                 is not defined for          

cannot allocate any probability outside  . Also, if     is a true density function, in the sense that 

                         and 

∫∫  ̂             
  

  

Then, through transformation in variables        and       ,  

 ̂                                ∫∫ ̂              
 

 

     According to the bivariate kernel density estimator, which we shall denote by  ̂    When 

apply to the copula: 

 

       
   (             )

 (      ) (       )
                                                                              

   

 for all            

The first basic idea is that we should use the standard kernel density estimator such as  ̂  . 

Specifically, we use the estimate as: 
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Where K is a bivariate kernel function and    is symmetric positive–definite matrix, and 
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is the transform domain sample. But         not available, and          as well. Instead, one 

must make use of  

,( ̂     ( ̂ )  ̂     ( ̂ ))         -                                                               

 That pseudo-transformed sample, as a result, the feasible form  ̂  
       is  

 

 ̂        
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 ⁄
∑ (   

  
 ⁄ .

   ̂ 

   ̂ 

/)  

 

   

                                                                   

 

Based on equation (11), this leads to a "probit transform kernel copula density estimator". 

(Genenes,G (2014) p5) 
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As a result, the asymptotic equation for the parameter of probit transformation is also obtained. 

The bias and variance of this method for copula density estimator are in the following form, 

respectively. 
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Where       ∫          

The variance is 
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Where      ∫        

Then the variance of probit transformation copula density as below 
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When we use standard normal distribution of kernel density and normal distribution for density 

function then, 

                       
  

 ⁄  . Where d represents a number of variables 

Observe that 
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2.4 Improved probit transformation method (IPT): 

An extension of transformation method is proposed by (Geenens, (2014)) fitting local 

polynomial to the log-density for the sample transformation and by quadratic polynomials.  

The purpose and the advantages of estimating     by the local likelihood methods as an 

alternative to standard kernel density estimation is related to the boundary behavior of the 

estimator of   on   and the tail behavior of the estimator of     on   . But, standard kernel 

estimators are well-known to work unsuccessfully in the tails of densities, with repeated 

occurrences of ‘spurious bumps’. These fluctuations are greatly magnified by back 

transformation (11), the so- yielded estimator of   illustrations a very irregular behavior at the 

boundaries. 

The local likelihood technique (Loader, (1996)) assumes that the log-density            

of the random vector                               may be approximated locally by a 

polynomial         of order p. The coefficient vector of the polynomial is denoted as         
               , where                  is simply the number of terms (including a 

constant) of a two- dimensional polynomial of order P. Then we can write local likelihood 

estimator as follows in this context of estimating     from the pseudo-sample ( ̂   ̂ )   
     .        is assumed to be well approximated by a polynomial of order p about       
  . Only local log-linear (p = 1) and local log-quadratic (p = 2) estimators are studied 

classically. In particular, in the first order (p = 1), it is assumed that, given ( ̃  ̃   'converge' to (s, 

t), 

Local log linear (p=1) it is follow: 

        ̃  ̃                     ̃               ̃        
  ̃     ̃                        

 

In the second order (p = 2), 
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By solving a weighted maximum likelihood problem. For either p=1or P=2 
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Where K is a bivariate kernel function and     is a symmetric positive-definite 

bandwidth matrix, as previously stated.  

The improved probit transformation estimation for kernel copula density. In the case of 

the local log-linear (p = 1)  
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And in the case of the local log-quadratic (p=2) approximation 
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We get for all         where           is positive and continuous second-order partial 

derivatives are admissible approximation estimator  ̃  
   

  to calculate the joint density 

      (Loarder, (1996)) 

Define the optimum local log-linear probit-transformation kernel copula density estimator. 
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Using (9), (11) and (19) in (27), one obtains. 
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Then the bias local linear probit transformation equals the equation  
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And the variance  
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Local log-quadratic probit-transformation kernel copula density estimator  ̃      for all       
       is such that 
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Where  
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And           is a similar equation to (probit transformation), except it involves partial 

derivatives of c up to the fourth order. 
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2.5 Mirror Reflection Kernel Estimation Method (MRKE): 

      Kernel estimation for copula is famous for suffering from boundary bias. One technique of 

removing this difficulty is by reflecting all data points with regard to each corner and edge of the 

unit square (Charpentier et al., 2006; Nagler, 2014). This idea was presented by (Gijbels and 

Mielniczuk, 199). And the method is known as mirror reflection. This procedure aims to add 

some "missing mass" to the sample by reflecting it with regard to the boundaries. They 

concentrate on the scenario where the variables are positive and have support as         
  The mirror reflection kernel takes the form (Gijbels and Mielniczuk,(1990)). 
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With {( ̂  ) ( ̂  )}  { (  ̂    ̂ ) (  ̂     ̂ ) (   ̂    ̂ )     ̂     ̂  } (Charpentier 

et al., 2006). 

   An estimated formula for the reflection density function of the copula mirror can be written as 
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When we use full bandwidth matrix   the mirror reflection copula estimator as 
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Then the bias is the following formula 
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            are the second derivatives for u and v respectively      is the mixed second 

derivative 

The variance formula is as shown below: 
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2.6 Bandwidth selection: 

    The problem of selecting the bandwidth parameter is a crucial problem that occurs often in 

the context of KDE. The precision of KDE depends on the chosen bandwidth value. In the 

univariate case, the bandwidth is a scalar controlling the smoothing quantity. In the multivariate 

case, the bandwidth is a matrix that controls both the quantity and the smoothing shape. This 

matrix can be defined on various levels of complexity. (Gramacki, 2018) 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 126-148 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

636  

 

   

 

 

 

The bandwidth affects the balance between two concerns in nonparametric estimation: 

bias and variance. Furthermore, the mean squared error (MSE), which is the sum of squared bias 

and variance, performs composite metric. As a result, optimality in the sense of MSE is not 

significantly influenced by the kernel selection but is influenced by the bandwidth selection 

(Bowman, 1997).There are several techniques for calculating the bandwidth h. The plug-in 

approach and cross validation are two of the most often used. We utilize Silverman's rule of 

thumb bandwidth h for the plug-in approach in all methods and every sample size. We used 

plug–in method for the selection bandwidth matrix for all methods. 

2.7 Performance Criteria: 

The comparison between the estimation methods is carried out according to the Root 

Mean Squares Error (RMSE) and is done by calculating the mean squares error of the copula 

function estimated for each iteration according to the following formula:- 

     ̂        ̂                

      ̂     √    ̂                 
And the Akaike criterion (AIC) is: 
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where p is the number of family parameters and    is a parameter estimate.The logarithm of 

maximum likelihood possibility (LOG L). 

               ∏       
 
                       ∑        
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respectively, where: 

                           
          ∑   * (  

  )
 
    +  

 
     

The best method is the one that minimize root mean square error and minimize information 

criterion, both criteria select the model that gives the highest likelihood. 

 

3. Discussion of results: 
Simulation experiments were carried out using five sample sizes (n = 32, 64, 128, 256, 

and 512) with a frequency of 1,000 for each experiment, as follows: 

1- The variables u and v are distributed uniformly. 

2- Finding the probit transformation of the observations of the variables that were generated in 

step 1. 

3-Five copulas of Gaussian, Frank, Tawn, RotationTawn and Joe were used depending on the 

different values of each copula parameter. 

 

   Tables 1 to 15 represent the estimated root mean squares error of the copula density 

functions for nonparametric estimation methods and Akaike criteria and logarithm maximum 

likelihood criteria (LogL) at a correlation level tau = 0.7,0.5,0.3 respectively with 1000 

repetitions for each experiment that were used to determine the performance of the best 

estimation method it was found that the best estimation method for the copula density function 

in the case of strong negative and positive correlations and for all sample sizes and for five 

copulas(Gaussian, Frank, Tawn, RTawn, and Joe) it is the proposed method (PTMRKE ) 

followed by the improved probit transformation method(IPE), but in the case of medium and 

weak correlations, the best estimation method is the improved probit transformation 

method(IPE), followed by the proposed method (PTMRKE) when using the five copulas and for 

all sample sizes. The third method was probit transformation for all sample sizes and for all five 

copulas. The fourth and last place was the mirror reflection method (MRKE) for all sample sizes 

and copula functions. 
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Table 1: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Gaussian 

copula when        
Gaussian 

Method RMSE AIC LOGL 
Sample size 

32 

PTE 0.29933 -38.599 22.71667 

IPE 0.21762 -48.7999 25.68059 

MRKE 0.36543 -32.2141 17.57557 

PTMRKE 0.16616 -70.6815 36.17277 

64 

PTE 0.23146 -97.1761 49.99241 

IPE 0.19774 -115.534 58.9331 

MRKE 0.32671 -71.5952 40.34811 

PTMRKE 0.16125 -127.243 64.63423 

128 

PTE 0.21907 -215.913 109.6572 

IPE 0.18834 -246.026 124.3943 

MRKE 0.2748 -199.168 106.4232 

PTMRKE 0.14509 -283.616 142.8579 

256 

PTE 0.22168 -374.616 194.7401 

IPE 0.16444 -427.389 215.3725 

MRKE 0.25644 -330.682 167.3907 

PTMRKE 0.10983 -466.362 234.6158 

512 

PTE 0.18511 -771.349 387.8594 

IPE 0.1463 -829.842 416.7956 

MRKE 0.21098 -696.762 356.7875 

PTMRKE 0.10907 -854.544 428.9544 

Table 2: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Gaussian 

copula when        
Gaussian 

Method RMSE AIC LOGL 
Sample size 

32 

PTE 0.64513 -14.0259 9.10046 

IPE 0.4437 -27.6558 15.38779 

MRKE 0.68337 -12.1829 8.23528 

PTMRKE 0.46592 -26.3567 14.71949 

64 

PTE 0.51196 -50.1634 27.14061 

IPE 0.42137 -81.6028 42.28345 

MRKE 0.5836 -36.0855 20.84349 

PTMRKE 0.43883 -67.5245 35.44688 

128 

PTE 0.49618 -102.509 53.73536 

IPE 0.36003 -130.761 67.39552 

MRKE 0.57604 -74.4768 41.22462 

PTMRKE 0.36488 -129.049 66.47255 

256 

PTE 0.44895 -180.244 95.50428 

IPE 0.34212 -271.015 137.6494 

MRKE 0.56902 -137.868 71.95402 

PTMRKE 0.35817 -267.205 135.8615 

512 

PTE 0.42957 -342.784 174.5219 

IPE 0.27942 -416.055 210.6041 

MRKE 0.49456 -282.411 146.4054 

PTMRKE 0.34692 -391.041 198.1826 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 126-148 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

638  

 

   

 

 

 

Table3: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Gaussian 

copula when      . 

Gaussian 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.90599 -10.0097 7.17241 

IPE 0.66802 -19.3517 11.51404 

MRKE 0.95078 -3.40293 3.41731 

PTMRKE 0.80489 -10.3747 7.26159 

64 

PTE 0.80242 -25.8767 15.42052 

IPE 0.56084 -47.4618 25.66639 

MRKE 0.85514 -10.0902 7.04017 

PTMRKE 0.79767 -26.5584 15.67801 

128 

PTE 0.73139 -27.7824 17.43187 

IPE 0.54622 -113.279 58.593 

MRKE 0.85414 -6.46011 4.65237 

PTMRKE 0.72583 -12.6367 10.3235 

256 

PTE 0.71448 -86.0686 46.49385 

IPE 0.47636 -148.05 76.6885 

MRKE 0.81988 -50.8407 28.00765 

PTMRKE 0.7096 -87.8233 47.25986 

512 

PTE 0.66743 -112.706 60.65348 

IPE 0.41272 -206.561 106.5277 

MRKE 0.89912 -80.1228 42.69741 

PTMRKE 0.66036 -115.742 62.20851 

Table 4: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Frank 

copula when        
Frank 

Method RMSE AIC LOGL 
Sample size 

32 

PTE 0.15321 -81.6971 41.67683 

IPE 0.11183 -92.0527 46.69053 

MRKE 0.33162 -74.2142 37.9642 

PTMRKE 0.09322 -106.557 53.76981 

64 

PTE 0.15021 -95.0123 48.9454 

IPE 0.11156 -113.198 57.75536 

MRKE 0.27301 -70.6406 39.20701 

PTMRKE 0.07785 -119.95 61.03871 

128 

PTE 0.14841 -280.421 141.4846 

IPE 0.10953 -303.719 152.9268 

MRKE 0.26035 -218.77 110.8423 

PTMRKE 0.07399 -333.29 167.5095 

256 

PTE 0.14168 -485.297 244.3296 

IPE 0.09936 -535.622 269.214 

MRKE 0.23254 -344.508 174.2283 

PTMRKE 0.05632 -561.451 281.9717 

512 

PTE 0.12341 -895.484 449.935 

IPE 0.09835 -976.766 490.1482 

MRKE 0.2266 -746.853 383.1753 

PTMRKE 0.0358 -1182.2 592.7062 
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Table 5: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Frank 

copula when      . 

Frank 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.42059 -16.5343 10.4112 

IPE 0.37463 -18.7305 11.3339 

MRKE 0.8569 -4.94191 4.45647 

PTMRKE 0.31399 -28.4268 15.93552 

64 

PTE 0.41134 -59.704 31.66972 

IPE 0.3631 -64.8368 34.18017 

MRKE 0.77787 -31.5412 18.83118 

PTMRKE 0.29965 -77.1296 40.05924 

128 

PTE 0.39342 -148.273 76.18602 

IPE 0.34798 -179.281 91.29146 

MRKE 0.61089 -109.55 59.2531 

PTMRKE 0.24644 -188.787 95.93041 

256 

PTE 0.38824 -221.718 113.3838 

IPE 0.33548 -251.344 127.829 

MRKE 0.59649 -156.59 82.5269 

PTMRKE 0.2288 -270.235 137.1816 

512 

PTE 0.38815 -484.543 245.4771 

IPE 0.32608 -573.754 289.3423 

MRKE 0.55692 -368.257 189.9977 

PTMRKE 0.42492 -559.206 282.0944 

Table 6: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Frank 

copula when      . 

Frank 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.90599 -10.0097 7.17241 

IPE 0.66802 -19.3517 11.51404 

MRKE 0.95078 -3.40293 3.41731 

PTMRKE 0.80489 -10.3747 7.26159 

64 

PTE 0.80242 -25.8767 15.42052 

IPE 0.56084 -47.4618 25.66639 

MRKE 0.85514 -10.0902 7.04017 

PTMRKE 0.79767 -26.5584 15.67801 

128 

PTE 0.73139 -27.7824 17.43187 

IPE 0.54622 -113.279 58.593 

MRKE 0.85414 -6.46011 4.65237 

PTMRKE 0.72583 -12.6367 10.3235 

256 

PTE 0.71448 -86.0686 46.49385 

IPE 0.47636 -148.05 76.6885 

MRKE 0.81988 -50.8407 28.00765 

PTMRKE 0.7096 -87.8233 47.25986 

512 

PTE 0.66743 -112.706 60.65348 

IPE 0.41272 -206.561 106.5277 

MRKE 0.89912 -80.1228 42.69741 

PTMRKE 0.66036 -115.742 62.20851 
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Table 7: Root-mean square error, (AIC)criterion and logarithm likelihood criteria for Tawn 

copula when      . 

Tawn 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.15321 -81.6971 41.67683 

IPE 0.11183 -92.0527 46.69053 

MRKE 0.33162 -74.2142 37.9642 

PTMRKE 0.09322 -106.557 53.76981 

64 

PTE 0.15021 -95.0123 48.9454 

IPE 0.11156 -113.198 57.75536 

MRKE 0.27301 -70.6406 39.20701 

PTMRKE 0.07785 -119.95 61.03871 

128 

PTE 0.14841 -280.421 141.4846 

IPE 0.10953 -303.719 152.9268 

MRKE 0.26035 -218.77 110.8423 

PTMRKE 0.07399 -333.29 167.5095 

256 

PTE 0.14168 -485.297 244.3296 

IPE 0.09936 -535.622 269.214 

MRKE 0.23254 -344.508 174.2283 

PTMRKE 0.05632 -561.451 281.9717 

512 

PTE 0.12341 -895.484 449.935 

IPE 0.09835 -976.766 490.1482 

MRKE 0.2266 -746.853 383.1753 

PTMRKE 0.0358 -1182.2 592.7062 

Table 8: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Tawn 

copula when        
Tawn 

Method RMSE AIC LOGL 
Sample size 

32 

PTE 0.42059 -16.5343 10.4112 

IPE 0.37463 -18.7305 11.3339 

MRKE 0.8569 -4.94191 4.45647 

PTMRKE 0.31399 -28.4268 15.93552 

64 

PTE 0.41134 -59.704 31.66972 

IPE 0.3631 -64.8368 34.18017 

MRKE 0.77787 -31.5412 18.83118 

PTMRKE 0.29965 -77.1296 40.05924 

128 

PTE 0.39342 -148.273 76.18602 

IPE 0.34798 -179.281 91.29146 

MRKE 0.61089 -109.55 59.2531 

PTMRKE 0.24644 -188.787 95.93041 

256 

PTE 0.38824 -221.718 113.3838 

IPE 0.33548 -251.344 127.829 

MRKE 0.59649 -156.59 82.5269 

PTMRKE 0.2288 -270.235 137.1816 

512 

PTE 0.38815 -484.543 245.4771 

IPE 0.32608 -573.754 289.3423 

MRKE 0.55692 -368.257 189.9977 

PTMRKE 0.42492 -559.206 282.0944 
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Table 9: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Tawn 

copula when        
Tawn 

Method RMSE AIC LOGL 
Sample size 

32 

PTE 0.7151 -9.30299 6.94363 

IPE 0.49316 -59.4376 30.6466 

MRKE 0.98378 -0.52327 1.79105 

PTMRKE 0.82096 -3.07841 3.91647 

64 

PTE 0.71314 -21.1549 13.43301 

IPE 0.41848 -42.2807 23.35492 

MRKE 0.9348 -4.31536 3.6875 

PTMRKE 0.77409 -12.6261 9.41658 

128 

PTE 0.6932 -56.5897 31.11079 

IPE 0.41745 -90.4873 47.44672 

MRKE 0.90828 -12.8533 8.34424 

PTMRKE 0.74773 -46.9046 26.40814 

256 

PTE 0.69094 -104.666 55.57158 

IPE 0.56379 -146.708 76.11861 

MRKE 0.90446 -65.5524 35.51815 

PTMRKE 0.72871 -99.2848 53.04566 

512 

PTE 0.67853 -171.691 90.04039 

IPE 0.51652 -447.28 226.4952 

MRKE 0.86144 -76.3629 40.78896 

PTMRKE 0.71853 -162.035 85.20885 

Table 10: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Rotation 

Tawn copula when      . 

RTawn 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.23397 -57.2149 33.03649 

IPE 0.22434 -70.0372 35.94978 

MRKE 0.32936 -47.8263 25.121 

PTMRKE 0.18981 -94.4901 47.82346 

64 

PTE 0.16509 -115.282 58.98329 

IPE 0.16245 -131.871 67.01851 

MRKE 0.16823 -71.0787 37.31199 

PTMRKE 0.16126 -149.893 75.81619 

128 

PTE 0.1342 -308.368 155.2586 

IPE 0.12739 -316.724 159.3168 

MRKE 0.15286 -228.148 120.5535 

PTMRKE 0.12124 -323.996 162.9021 

256 

PTE 0.10253 -540.165 271.6675 

IPE 0.10036 -583.067 292.8519 

MRKE 0.11207 -467.14 242.3051 

PTMRKE 0.09613 -617.007 309.5827 

512 

PTE 0.08421 -930.513 467.163 

IPE 0.07956 -968.129 485.7099 

MRKE 0.08989 -731.277 375.7 

PTMRKE 0.05219 -1177.07 589.6745 
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Table 16: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Rotation 

Tawn copula when      . 

RTawn 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.60703 -26.265 14.88072 

IPE 0.53565 -41.3756 21.96108 

MRKE 0.61915 -16.5941 11.07809 

PTMRKE 0.59537 -28.3714 15.86527 

64 

PTE 0.48253 -46.6379 25.57054 

IPE 0.43968 -64.2414 33.93003 

MRKE 0.48314 -30.6823 18.04697 

PTMRKE 0.46315 -58.5933 31.15594 

128 

PTE 0.41205 -98.5228 51.86625 

IPE 0.39201 -130.591 67.33317 

MRKE 0.42299 -63.8942 35.30246 

PTMRKE 0.40031 -120.508 62.37158 

256 

PTE 0.38617 -186.226 96.1536 

IPE 0.36649 -243.575 124.1609 

MRKE 0.39005 -133.729 70.95541 

PTMRKE 0.36879 -220.266 112.6513 

512 

PTE 0.29948 -420.718 213.685 

IPE 0.21446 -510.732 257.9583 

MRKE 0.32333 -319.628 165.4794 

PTMRKE 0.27445 -479.478 242.4286 

Table 12: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Rotation 

Tawn copula when      . 

RTawn 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.85727 -20.5896 12.18931 

IPE 0.81826 -29.9002 16.51437 

MRKE 0.97197 -1.81957 2.45805 

PTMRKE 0.82609 -27.5715 15.40793 

64 

PTE 0.71005 -19.5586 12.57756 

IPE 0.67178 -39.2835 21.88297 

MRKE 0.74568 -9.39085 7.02143 

PTMRKE 0.68581 -36.3116 20.36863 

128 

PTE 0.62866 -59.4131 32.42453 

IPE 0.59029 -67.4736 36.34011 

MRKE 0.66807 -19.7116 12.08966 

PTMRKE 0.63266 -58.6007 32.09161 

256 

PTE 0.54129 -96.5501 51.66227 

IPE 0.53813 -154.619 79.97331 

MRKE 0.55765 -35.7064 20.04867 

PTMRKE 0.54663 -87.658 47.34806 

512 

PTE 0.42248 -206.519 106.9281 

IPE 0.39283 -299.016 152.4928 

MRKE 0.47904 -102.692 54.40671 

PTMRKE 0.42702 -203.686 105.7278 
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Table 13: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Joe 

copula when      . 

JOE 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.17041 -86.6256 43.92094 

IPE 0.12401 -86.8545 44.07575 

MRKE 0.22733 -80.0315 40.74686 

PTMRKE 0.082 -106.078 53.52986 

64 

PTE 0.15969 -117.411 59.98481 

IPE 0.123 -136.165 69.12226 

MRKE 0.21424 -98.6034 54.56637 

PTMRKE 0.07385 -166.765 84.12771 

128 

PTE 0.15494 -214.156 108.7846 

IPE 0.12205 -267.191 134.7292 

MRKE 0.20246 -188.59 99.29476 

PTMRKE 0.06673 -268.236 135.313 

256 

PTE 0.14883 -453.003 228.3562 

IPE 0.11913 -498.865 250.9384 

MRKE 0.18766 -408.883 211.4487 

PTMRKE 0.06626 -538.458 270.4771 

512 

PTE 0.14246 -872.756 438.4459 

IPE 0.11839 -954.745 479.0451 

MRKE 0.18184 -758.458 387.4757 

PTMRKE 0.03634 -975.336 489.1793 

Table 14: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Joe 

copula when      . 

JOE 
Method RMSE AIC LOGL 

Sample size 

32 

PTE 0.42297 -20.1695 11.94385 

IPE 0.32579 -30.0756 16.57662 

MRKE 0.75801 -8.86603 6.2354 

PTMRKE 0.37517 -23.6385 13.54153 

64 

PTE 0.41975 -55.5584 29.87232 

IPE 0.30208 -71.777 37.61576 

MRKE 0.58183 -34.6611 20.29781 

PTMRKE 0.35761 -71.7391 37.53502 

128 

PTE 0.47773 -138.883 71.77869 

IPE 0.29971 -178.411 90.83952 

MRKE 0.58168 -110.138 59.05355 

PTMRKE 0.33789 -176.922 90.24075 

256 

PTE 0.45859 -217.66 111.6068 

IPE 0.25103 -287.044 145.597 

MRKE 0.55837 -149.181 78.66661 

PTMRKE 0.32598 -263.251 133.7901 

512 

PTE 0.42731 -399.153 202.6058 

IPE 0.24812 -612.904 308.41 

MRKE 0.54144 -277.416 143.8184 

PTMRKE 0.32587 -480.722 242.8798 
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Table 15: Root-mean square error, (AIC) criterion and logarithm likelihood criteria for Joe 

copula when        
JOE 

Method RMSE AIC LOGL 
Sample size 

32 

PTE 0.71841 -5.35054 5.12134 

IPE 0.51863 -14.7359 9.38528 

MRKE 1.06945 2.1485 0.04917 

PTMRKE 0.84603 1.55874 2.07229 

64 

PTE 0.68521 -21.1653 13.1342 

IPE 0.62134 -31.0146 17.99025 

MRKE 1.04992 1.45053 0.54499 

PTMRKE 0.79347 -9.15675 7.51553 

128 

PTE 0.6379 -42.2662 24.05792 

IPE 0.61594 -92.7233 48.50942 

MRKE 1.02292 -21.328 12.65086 

PTMRKE 0.77322 -40.7035 23.26146 

256 

PTE 0.72761 -115.09 60.9177 

IPE 0.57132 -249.884 126.8797 

MRKE 0.86669 -59.2224 32.13698 

PTMRKE 0.63472 -118.633 62.54165 

512 

PTE 0.71878 -232.741 119.9393 

IPE 0.52043 -286.617 146.4281 

MRKE 0.84652 -131.683 69.14675 

PTMRKE 0.63097 -243.648 125.1941 

 

 

 

 Figures 1,2,3,4 and 5 explain the behavior for all five copula.  

  
Figure (1) three dimensions Gaussian copula density. 

 

 
Figure (2) three dimensions for Frank copula density. 
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Figure (3) three dimensions for Tawn copula density. 

   
Figure (4) three dimensions for  Rotation Tawn copula density. 

     
Figure (5) three dimensions for Joe copula density. 

 

4. Conclusions: 
    Through the results reached in the simulation part of this research, the researcher reached the 

following conclusions: 

1- All the copula functions that have been studied and for all nonparametric estimation methods 

referred to in the theoretical part and for all sample sizes and at correlation levels, the value of 

the square root of the mean square error (RMSE) decreases as the sample size increases, while 

the (LogL) criterion is as maximum as possible, As for the Akaike criteria as minimum as 

possible. 

2- The method of estimating the copula density function using PTMRKE (proposed method) and 

(IPE) are the two best methods among these methods for the used copulas. 

3- The method of nonparametric estimation (IPE) is one of the best methods in estimating the 

copula density functions due to the fact that the nonparametric function (Gaussian) is more 

flexible when it is used in choosing the parameter smoothing is fully matrix. 

4-The results also indicated that the least-performing estimation method for all values of RMSE 

and for all sample sizes used is the MRKE method. 

5- The proposed method Probit Transform Mirror Reflection Kernel Estimator (PTMRKE) 

showed handling the boundary bias problem with a probit transform for smoothing observations 

at boundaries and edges. 

6- There is a clear positive effect of the proposed method on the copula functions Tawn, RTawn 

and Joe; this effect decreases with the large sample size at the copulas (Gaussian, Frank) and in 

the case of weak and medium dependency. 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 126-148 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

646  

 

   

 

 

 

Authors Declaration: 

Conflicts of Interest: None 

-We Hereby Confirm That All The Figures and Tables In The Manuscript Are Mine and Ours.  

Besides, The Figures and Images, Which are Not Mine, Have Been Permitted Republication and 

Attached to The Manuscript. 

- Ethical Clearance: The Research Was Approved By The Local Ethical Committee in The 

University. 

 

References : 

1. Alsina, C.,  Schweizer, B.,  and Frank, M. J. 2006.  Associative functions: triangular norms 

and copulas. Copyright   by World Scientific Publishing Co.Pte.I.td 

2. André, L. M. B. C. M. 2019. Copula models for dependence: comparing classical and 

Bayesian approaches (Doctoral dissertation). Unversdade  Delisboa.   

3. Bean, A. T. 2017. Transformations and Bayesian Estimation of Skewed and Heavy-Tailed 

Densities (Doctoral dissertation, The Ohio State University).  

4. Bowman, A. W., and Azzalini, A. 1997.  Applied smoothing techniques for data analysis: the 

kernel approach with S-Plus illustrations. Published in the United States by Oxford University 

Press INC.  New York. 

5. Chaloob ,I.H. 2011. Finding Bivariate distribution by using different copulas Function with 

Application in Biotical Field. PhD thesis, University of  Baghdad, Baghdad. 

6. Charpentier, A., Fermanian, J. D., and Scaillet, O. 2006. The estimation of copulas: Theory 

and practice. Copulas: From theory to application in finance, Ensae-Crest and Katholieke 

Universiteit Leuven; BNP-Paribas and Crest; HEC Genève and Swiss Finance Institute. 

7. Cherubini, U., Luciano, E., and Vecchiato, W. 2004. Copula methods in finance. John Wiley 

& Sons. 

8. Chen, L., and  Guo, S. 2019. Copulas and its application in hydrology and water resources. 

Springer Singapore   

9. Dawod, E.A.A. 2006. Using the Copula theory for Analyzing the Bivariate survival Function. 

PhD thesis, University of  Baghdad, Baghdad. 

10. Dawod, L.A-J. 2022. Structural Reliability Analysis Techniques with Multidimensional 

Correlation with Application. PhD thesis, University of  Baghdad, Baghdad. 

11. Deheuvels, P. 1979. La fonction de dépendance empirique etses propriétés. Un test non 

paramétrique d'indépendance. Bulletins de l'Académie Royale de Belgique, 65)1(, pp. 274-292. 

12. Fabien, F., Perrin, T. T., and Neptune-La Defense, T. 2003. Copula: a new vision for 

economic capital and application to a four line of Business Company. In Astin Conference.  

13. Faugeras, O. P. 2009. A quantile-copula approach to conditional density estimation. Journal 

of Multivariate Analysis,  100(9),pp. 2083-2099.  

14. Geenens, G. 2014. Probit transformation for kernel density estimation on the unit 

interval. Journal of the American Statistical Association, 109(505),  pp.346-358.  

15. Geenens, G., Charpentier, A., and Paindaveine, D. 2017.  Probit transformation for 

nonparametric kernel estimation of the copula density. Bernoulli,  23(3), pp.1848-1873.  

16. Genest,  C., and Favre, A. C. 2007. Everything you always wanted to know about copula 

modeling but were afraid to ask. Journal of hydrologic engineering,  12(4), pp.347-368.  

17. Genest, C., Masiello, E., and Tribouley, K. 2009. Estimating copula densities through 

wavelets. Insurance: Mathematics and Economics,  44(20), pp.170-181.  

18. Gijbels, I., and Mielniczuk, J. 1990.  Estimating the density of a copula 

function. Communications in Statistics-Theory and Methods,  19(2), pp. 445-464.   

19. Gramacki, A. 2018. Nonparametric kernel density estimation and its computational 

aspects (Vol. 37). Cham: Springer International Publishing.  

20. Hmood, M.Y. 2005.Comparing Nonparametric Estimators for Probability Density 

Estimation. PhD thesis, University of  Baghdad, Baghdad. 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 126-148 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

647  

 

   

 

 

 

21. Hmood ,M. Y., Abbas, T. M. and Nayef, Q. N. 2008. Nonparametric estimation of A 

Multivariate Probability Density Function , Al-Nahrain University Journal , 11(2), pp.55-63. 

22. Hmood, M. Y., and Hamza, Z. F. 2019. On the Estimation of Nonparametric Copula Density 

Functions. International Journal of Simulation-Systems, Science & Technology,  20(2),pp.1-7 

23. Loader, C. R. 1996. Local likelihood density estimation. The Annals of Statistics,  24(4), 

pp.1602-1618.  

24. Nagler, T. 2014. Kernel methods for vine copula estimation. Master’s Thesis, Technische 

Universität München Department of Mathematics. 

25. Nagler,T. 2021 "Packge  Kde vine , Multivariate kernel density Estimation with vine copula 

" URL https://github.com/tnagler/Kde vine. 

26. Nelsen, R. B. 2006. An introduction to copulas. Springer Science & Business Media.  

27. Omelka, M., Gijbels, I., and Veraverbeke, N. 2009. Improved kernel estimation of copulas: 

weak convergence and goodness-of-fit testing. The Annals of Statistics,  37(5B), pp. 3023-3058.  

28. Patton, A. J. 2002. Applications of copula theory in financial econometrics. Dissertation 

submitted in partial satisfaction of the requirement for the degree of Doctor of Philosophy in 

economics. University of California, San Diego.  

29. Sklar, M. 1959. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. 

Univ. Paris. 8 ,pp 229–231. MR0125600. 

30. Scott D.W. 2009. Multivariate Density Estimation: Theory, Practice, and Visualization, 

Papers, No.2004,16. New York: John Wiley & Sons. 

31. Xue‐Kun Song, P. 2000. Multivariate dispersion models generated from Gaussian copula. 

Scandinavian Journal of Statistics, 27(2), pp.305-320. 

32. Zeng,X., Ren, J., Sun, M.,Marshall,S., and Durrani,T. 2014. Copulas for statistical signal 

processing (Part II): Simulation, optimal selection and practical applications. Signal 

processing, 94, pp.681-690.  

 
 
 
 

 

 

 

 

  

https://github.com/tnagler/Kde


 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 126-148 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

648  

 

   

 

 

 

 

 على الححوٌل الاححمالً والححوٌل الإححمالً المحسّن بالاعحماد اللب الزابطةقذر كثافة م

 

 
     

Received:1/7/2023          Accepted: 13/8/2023       Published Online First: 29 /2/ 2024 
 

  4.1العمومً الذولً  الحزخٍص  -غٍز ججاري  -نَسب المُصنَّف ىذا العمل مزخص جحث اجفاقٍة المشاع الابذاعً                

NC 4.0)-(CC BY NonCommercial 4.0 International-Attribution                                      
  
 

 
 البحث: مسحخلص

تستخذو ًَزجت انشابغت عهى َغاق واسع فً الإحصائٍاث انحذٌثت. ار تعذ يشكهت انتحٍض انحذودي يٍ انًشاكم انتً     

ورنك لاٌ انًمذساث انهبٍت هً الاكثش شٍىعا فً انتمذٌش انلايعهًً . فً هزا انبحث تى  َىاجهها عُذ انتمذٌش بانغشائك انلايعهًٍت

تمذٌش دانت كثافت انشابغت  باستعًال ثلاثت عشائك لايعهًٍت يٍ خلال انتحىٌم الاحتًانً نهتخهص يٍ يشكهت الاَحٍاص انحذي انتً 

نلايعهًٍت انثلاثت نتمذٌش دانت كثافت انشابغت وبالاعتًاد عهى خًست تعاًَ يُها انًمذساث انهبٍت, و باستخذاو انًحاكاة نهغشائك ا

أَىاع يٍ انشوابظ راث أحجاو عٍُاث يختهفت ويستىٌاث يختهفت يٍ الاستباط بٍٍ يتغٍشاث انشوابظ ونًعهًاث يختهفت يٍ تهك 

( عُذ PTMRKEنًشآة انهبً )انذانت. أظهشث انُتائج أٌ أفضم عشٌمت هً انجًع بٍٍ انتحىٌم الاحتًانً ويمذس اَعكاط ا

(. أيا IPEاستخذاو جًٍع دوال انشابغت ونكافت أحجاو انعٍُاث ، إرا كاٌ الاستباط لىًٌا تهٍها عشٌمت انتحىٌم الاحتًانً انًحسُت  )

تهٍها ( هً الأفضم ، IPEفً حانت استخذاو الاستباعاث انضعٍفت وانًتىسغت ، فمذ تبٍٍ أٌ عشٌمت انتحىٌم الاحتًانً انًحسُت )

(. وأشاسث انُتائج أٌضًا إنى أٌ عشٌمت RMSE  ،LogL  ،Akaike(، اعتًادًا عهى انًعاٌٍش)PTMRKEانغشٌمت انًمتشحت )

 اَعكاط انًشآة انهبٍت تكىٌ ضعٍفت عُذ استخذاو انشوابظ انخًست.

 

 : وسلت بحثٍت. نوع البحث

، دانت انشابغت انهبٍت، انتحىٌم الإحتًانً انًحسٍ، اَعكاط :دانت انشابغت، انتحىٌم الإحتًانً المصطلحات الزئٍسة للبحث

 انًشآة، انتحٍض انحذي.

 

  

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 اطزوحة دكحوراهبحث مسحل من لا*

 فاطمو ىاشم فلحً مناف ٌوسف حمود

 لسى الاحصاء /والالتصادكهٍت الاداسة / جايعت بغذاد 

 بغذاد، انعشاق

 لسى الإحصاء /كهٍت الإداسة والالتصاد/جايعت انبصشة 

 انبصشة، انعشاق
munaf.yousif@coadec.uobaghdad.edu.iq 

http://orcid.org/0000-0002-1134-9078 

fatma.hashem1101a@coadec.uobaghdad.edu.iq 

fatima.falhi@uobasrah.edu.iq 

http://orcid.org/0009-0008-1170-5635 
 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:munaf.yousif@coadec.uobaghdad.edu.iq
mailto:m.jasim@coadec.uobaghdad.edu.iq
mailto:m.jasim@coadec.uobaghdad.edu.iq
mailto:m.jasim@coadec.uobaghdad.edu.iq
http://orcid.org/0009-0008-1170-5635
mailto:fatma.hashem1101a@coadec.uobaghdad.edu.iq
mailto:fatima.falhi@uobasrah.edu.iq
http://orcid.org/0009-0008-1170-5635

