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Abstract.

Evolutionary computation is a class of global search techniques based on
the learning process of a population of potential solutions to given problem that
has been successfully applied to a variety of problems. In this paper a new
approach to design of the neural networks based on evolutionary computation is
present. A linear chromosome representation of the network are used by genetic
operators, which allow the evolution of the architecture and weights
simultaneously without the need of local weights optimization. This paper
describes the approach, the operators and reports results of the application of
this technique to several binary classification problems.

1. Introduction

The design of a neural network is still largely performed using a lengthy
process of trial and error definition of the topology, followed by the application
of learning algorithm such as back propagation [Mor.93].The most ambitious
combination attempts to evolve the architecture and weights simultaneously
without a separate training process [Ham.97].Two common strategies to do this
are the destructive and constructive algorithms.

Evolutionary computation is a class of global search techniques based on
the evolution process of each individual [Fuj.94][Ang.94], representing a
potential solution to a given problem. Typical evolutionary computation updates
this population seeking for better regions of the search space using the
operations of selection, recombination and mutation, inspired by biological
evolution [Sch.04].

Approaches based on (Genetic Algorithms) usually represent the structure
and weights of a neural network as a string of bits or a combination of bits and
real numbers [Mor.93][Gru.06] and perform the crossover operation as if the
network were a linear structure. However, neural networks cannot naturally be
represented as binary vectors. They are oriented graphs, whose nodes are
neurons and whose arcs are synaptic connections. Therefore, it is arguable that
any efficient approach to evolve (Neural Networks) should use operators based
on this structure[Ham.97]. An approach based on genetic programming [GP],
has been largely limited by the lack of a good encoding mechanism, which is a
first step in this direction, for example, in [Mor.93 and Fog.03] NNs have been
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represented as parse trees. This representation was proposed by Koza, which is
recombined using a crossover operator that swaps sub-trees representing sub-
nets. The graph like structure of NNs is not ideally represented directly with
parse trees either.

This paper describes a new form of GAs which is suitable for evolution of
artificial NNs.
It represents each individual with a linear chromosome of variable size and
shape. This feature gives the power and ability of the new approach to passing
most problems of representation inGAs.

The new approach allows the use of standard genetic operators (such as
one-point crossover, two-point crossover and uniform crossover). In addition, it
proposes a new combination of crossover and mutation operators. Applying any
one from both standard or special genetic operators allows the evolution of
topology and weights of NNs concurrently and very efficiently. The new method
has been successfully applied to determination of architecture and weights of
(three layers) feed forward networks.

2. Representation

In the new form, instead of the usual parse tree or the graph representation,
an array of pointers is used to represent the chromosome. Each pointer
represents a neuron and points to a linked list of nodes that describe its
connections with the sending neurons in a previous layer.

Graph representation uses a linear genotype and a separate grid description to
make it more natural. Our new(linear or two-dimensional) representation avoids
this problem where no need to descriptions because it represents NNs directly .
The linear chromosome consists of a number of genes which represent the
neurons of network.This chromosome is divided into three sub chromosomes.
The genes of the first sub chromosome represent the input neurons, the genes of
the second sub chromosome represent the hidden neurons, and the genes of the
third sub chromosome represent the output neurons. This chromosome uses an
array of pointers structure (see figure (1)).

51‘ L ‘Sp‘lhl ‘ . ‘hq‘lOl‘ ...‘On
INPUT LAYER HIDDEN LAYER OUTPUT LAYER
FIRST SECOND THIRD
SUBCHROMOSOME SUBCHROMOSOME SUBCHROMOSOME

FIGURE (1) The general structure of the representation of three layeres NNs by our new form
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In the standard GP the size of chromosome (parse tree) may grow
excessively, but the new representation avoids this problem because the length
of the chromosome is limited by the length of the array which equals the total
sum of neurons in a particular neural network. Graph representation must
represent the same number of neurons in all layers, but in our new form no need
to do that. This characteristic can make the new method of representation more
efficient in using the available memory. Like in standard GP there are three
classes of neurons. The input class, the internal class and the output class. Also
there are three types of nodes, in the linked lists pointed to by the neurons:
function node, terminal node and body node . Each node consists of four fields.
The function node fields are (see figure 2.a):

e The first field contains a value representing the number of nodes in the linked
list.
e The second field contains a value representing the type of activation function.
e The third field contains a value representing the bias of the receiving neuron.
The fourth field contains a pointer to next node.
The body node fields are (see figure 2.b):
The first field contains a value representing the class of sending neuron.
The second field contains the index of sending neuron.
The third field contains a weight value of the link.
The fourth field contains a pointer to the next node.
The terminal node fields are (see figure 2.c):
The first field contains a value representing the the class of sending neuron.
The second field contains the index of sending neuron.
The third field contains the input value or a weight value of the link.
The fourth field contains the nil pointer.
The input class must contain terminal nodes only, but the internal class and
output class may consist of all types of nodes.

In the following are descriptions of the neurons in all parts of the
chromosome, see figure (2): -

a. The first sub chromosome (Input neurons or input class). The neurons in this
part are representing the input layer, which contains input values. The node type
in this part is a terminal node only (see figure 3).

b. The second sub chromosome. (Hidden neurons or internal class) The
neurons in this part are representing hidden layer see figure (4). Each neuron in
this sub chromosome points to a linked list of nodes that describe its connections
with the sending neurons in the input layer. The nodes of this list consist of three
types of nodes, the first is a function node; the last is a terminal node and
otherwise is a body node (internal node).

C. The third sub chromosome. (Output neurons or output class)The neurons
in this part represent output layer see figure (©). Each neuron in this sub
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chromosome points to a linked list of nodes that describe its connections with
the sending neurons in a previous layer. The nodes of this list consist of three
types. The first is a function node; the last is a terminal node and otherwise is a
body node (internal node).

The number of input neurons and output neurons depends on the problem
(fixed number), and the number of hidden neurons is variable but subject to the
condition that at least there is one neuron in the hidden layer connected with
input and output layers.
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Figure (2) (a). Function node (b).body node (c).terminal node.
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Figure (3) first sub chromosome (input layer)
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Figure (4) second sub chromosome (hidden layer)

On

B

— ..

i [Wik

U7

}

Pointer to next node

l

Bias of neuron j

v Type of activation function
Number of next nodes

4
Class

l Pointer to next node
Weight of link from input
neuron i or hidden k to
Neuron j

Index of sending neuron
of sending neuron

S/hi[/k” wi nil

W

i’/
i

End-mark
Weight of link from input

Neuron i’ or hidden
Neuron k to output neuronj

\

hdex of sending neuron
(Yass of sending neuron
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3. Genetic operators
Genetic operators are performed on the last two subchromosomes.

3.1. Crossover operators

The possibility of the new representation is to make advantage of the linear
structure of the chromosome and perform all types of crossover of the standard

GA. The types of standard crossover are carried out as follows:

e One point crossover (1-x crossover) The crossover is applied by selecting
randomly one point in both parents, and then replacing the block of neurons
coming after the cut point(kl) in the first parent by the block of neurons
coming after the cut point(k1)in the second parent(see figureb).

e Tow point crossover (2-x crossover) the crossover is applied by selecting
randomly two points in both parents (k1 and K2), and then exchanging the
blocks of neurons between k1 and K2. (See figure 6.)

e Uniform crossover (multi-point crossover) in the above methods replacement
is performed on block level, but this method performs replacement on gene
level of both parents. (See figure 7).

The genes of last two subchromosomes of parents are scanned from left to
right and exchanged with probability Pc.

First parent Kt

1|2 3 4 5 6 7 8 |9 10 11 |12

Second paren

1 2 2 il ) A 7 o} o} 10 11 12

Offspring

| 1|2 [ 3] 4|5 6] 7 | 8] 9 10]11 12|

Figure (6) the one point crossover

K1 K2
First parent
11 2 |3 415 6| 7 (8 |9 |10 |11 | 12|13 | 14
Second parent
1|2 3|4 5 6 71 819 10| 11| 12| 13|14
Offspring 1| 2 3|4 |5 6 7 | 8 19 |10 |11 | 12 |13 |14

Figure (7) the two point crossover
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1l 2| 3| 4, 5| 6 78| 9|10 11| 12| 1314

Figure (8) Uniform crossover (multi-point crossover)

3.2 Mutation operator
3.2.1 Changing mutation
The neurons of last two subcromosomes of the child are scaned from left to
right and with small probability (Pm) we mutate the bias and weight in all nodes
associated with the neuron. Each of the mutation values is generated randomly
in the range [-a.. + a].
If a new weight is close to zero, the node is removed. If all weights are close to
zero the hidden neuron is removed.
3.2.2 Removing mutation
The neurons of second subchromosome of the child are scanned from left to
right and with small probability Pr we remove the neuron (remove all its
associated nodes and set the neuron to nil).
Note
If all hidden neurons are removed, the child is refused.

4. Results

To show the performance of the method proposed, it was applied to a test suit
of benchmarks present in the literature: N-bit odd parity problems (for
N=2(XOR),3,4 and 5), where the network output must be 1 if there is an odd
number of 1's in the input pattern, and O otherwise.

In all experiments a population of 100 chromosomes was evolved for
maximum of 100 generations.

For each problem, we performed 50 runs with different random seeds. In the
experiments, we used a generational genetic algorithm with: tournament
selection (tournament size=2) and crossover and two types of mutation
probabilities of 0.4 and 0.09 and 0.1 respectively.

The weights and biases were randomly initialized within the range [-1.0, +1.0].
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The mutation operator used was the addition value to the weights during the
evolution. The fitness function was the standard mean square error of the output
of the network for all input patterns. The function set included a Sigmund
activation function.

The results obtained of using the XOR-problem (N-party problems) when
applied all type of crossover is shown in the table 1, table2, table3 and table4.

Table 1a-d.

Column 2 represents the average number of generations at which the solution.
Column 3 and 4 show the number of hidden neurons and the number of
connections of such solution, respectively. Column 5 shows the copulated effort,
and column 6 shows the percentages of runs in which solutions were found.

The representation of a typical solution for the XOR problem and the
corresponding.

4.1. The best solutions for (N-parity) problems:-

4.1.1. XOR problem:-

4.1. XOR problem:-

Table (1) the results of (XOR) problem for new method

The type of generation Hidde Connections | effort Solutions
crossover S neurons Min/avg./ma found
Min/avg./max X
One point crossover 47 4-3.0-2 12 -75-6 8150 %100
Tow point crossover 45 4-3.0-2 12 -7.5-6 7556 %100
Uniform 40 4-3.0-2 12 -75-6 6975 %100

4.2. 3-Parity problem:-
Table (2) the results of 3-parity problem for new method

The type of generations Hidde neurons Connections effort Solutions
crossover Min/avg./max Min/avg./max found
One pointcrossover 60 5-4.0-3 20 -16.0 - 12 8675 %95
Tow point crossover 60 5-2.5-4 9-7.5-6 8426 %96
Uniform crossover 60 5-2.5-2 9-75-6 7896 0698

4.3. 4-parity problem:-
Table (3) the results of 4-parity problem for new method

The type of generations | Hidde neurons Connections effort Solutions
crossover Min/avg./max Min/avg./max found
One point crossover 146 6-5.0-4 30 -25.0 - 20 14695 %55
Tow point crossover 138 5-4.5-4 25 -22.5- 20 13690 %61
Uniform crossover 130 5-4.5-4 25 -4.5 - 20 13459 %65
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4.4. 5-parity problem:-
Table (4) the results of 5-parity problem for new method

The type of generations | Hidde neurons Connections effort Solutions
crossover Min/avg./max Min/avg./max found
One point crossover 193 8-7.0-6 48 -42.0 - 36 23280 %10
Tow point crossover 188 8-6.5-5 48 -39.5 - 30 23010 %12
Uniform crossover 179 7-6.0-5 42 -39.0 - 36 21985 %16

5. Further works

1. The results obtained so far are promising, but they were achieved without any
optimization of relative probabilities of operators. Although some operators
seem to perform better than others.

2. To keep diversity within the population other mutation operators should be
explored.

3. The extension to recurrent neural networks is a natural one, allowing the
method to be applied to a wide range of tasks.

6. Conclusions

In this paper, a new approach to the automatic design of neural networks
based on evolutionary computation has been presented. New operators were
introduced, which exploited a liner representation, in which a linear encoding is
used in conjunction with an array representation.

The representation of the neural network in a liberalized form allowed the
development of efficient forms of crossover operations and the introduction of
strategy to reduce the complexity of solutions, whereas the array of pointer
description allowed controlling the connectivity properties of the network.

The method was applied to evolve feedforward networks for a variety of
binary classification problems showing promising results.
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