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Abstract

The dynamical behavior of an ecological system of two predators-one prey
updated with incorporating prey refuge and Beddington —De Angelis functional
response had been studied in this work, The essential mathematical features of the
present model have been studied thoroughly. The system has local and global
stability when certain conditions are met. had been proved respectively. Further,
the system has no saddle node bifurcation but transcritical bifurcation and Pitchfork
bifurcation are satisfied while the Hopf bifurcation does not occur. Numerical
illustrations are performed to validate the model's applicability under consideration.
Finally, the results are included in the form of points in agreement with the obtained
numerical results.

Keywords: Ecological system, Predator-prey model, Beddington —De Angelis,
Refuge, Dynamical behavior.
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1. Introduction

The dynamical study of prey-predator model is one of the most important topics that is
studied in both ecology and mathematical ecology. The first well-known classical model was
given by Lotka-Volterra in 1927[1], the model was developed by many researchers taking
into consideration a number of factors affecting the system like a refuge in [2, 3, 4, 5, 6] and
the Beddington—DeAngelis functional response in [6].

Functional response is defined as the rate of consumption of one prey by predators and it
plays an important role in population dynamic, there are many types of functional responses
that are particularly associated with the work of Holling through his classification of
functional responses into three basic types, namely I, 1l and Ill, Beddington—-DeAngelis
functional response is similar to the well-known Holling type 11 functional response but has
an extra term in the denominator which models mutual interference between predators [8], It
is well known that refuge and harvesting are two of the most important factors affecting the
dynamics of prey-predator systems. By using refuges, the prey population is partially
protected against predators. The existence of refuges has a great influence on the coexistence
of the prey predator systems [3].

In this research, the system is incorporating of two systems studied in both [4]and [5],
where they studied the dynamical behaviour of a two-predator model with prey refuge and the
dynamical behaviour of an ecological system with Beddington—DeAngelis functional
response, respectively. According to the above, the resulting system has overcrowded with
parameters, which are reduced by using the dimensionless technique to simplify the work,
while preserving carefully the mathematical properties which are introduced in section 2.
Section 3 demonstrates the existence and positive invariance of the resulting system, while
section 4 sponsors the persistence of the resulting system. Equilibrium points and their
feasibility are discussed in section 5. We represent an analytical study including local and
global stability of the resulting dynamical system in section 6. We also explain the bifurcation
analysis for certain equilibrium points in sections 7 and 8. Numerical illustrations are
performed to validate the model's applicability under consideration shown in section 9.
Finally, conclusions are given in section 10.

2. Mathematical model
In this section, a Beddington—De Angelis prey-predator model considers the effect of
refuge, the considered model is based on two predators and one prey system that is shown in

[4]:

dxi _ ax (1 _ ﬁ) _ Baxaxa  Baxaixs

dt 1 k 1+a1x1 1+a2x1

dx, c1B1X1%;

— = —d{x, + ———— §1X,% 2.1
dt 142 1+a;%; 14243 ( )
dxs €1B2x1X3

— = —dyx3 + =2 - §yx,x

dt 173 1+ayxq 27273

The above system is updated by incorporating prey refuges proportionally to the prey
density via mx;, where 0 <m < 1.

It is considered that the first and the second predator species are compotation for food and
other essential resources, respectively, such as shelter. In addition, the predator function
response in the model (2.1) is known as Holling type II, which is replaced by Beddington-De
Angelis which has extra terms b;x, and b,x3; in the denominator that model mutual
interference between predators.

Thus our final model is given as follows:
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dxi _ ax (1 _ ﬂ) __ Bi(-myxix;  Ba(1-m)xaxs

dt 1 k a1+(1—m)x1+b1x2 a2+(1—m)x1+b2x3

dx c1f1X1%x

—Z2 = _dle + 1_'81 102 - 61x2x3 (22)
dt a1+(1 m)x1+b1x2

dx Clﬁlex:;

= —dx3 + — 0,XyX3

ar +(1—m)x1+b2x3

where

Vi.

Vii.

viii.

x4 (t) is the prey population size at time t.

x,(t) and x5(t) are the population size of the first and the second predator species at time
t, respectively. The prey grows logistically in the absence of the predator, in the same way,
that the predator declines directly in the absence of the prey.

The parameters a and k are the growth rate and the environmental carrying capacity of the
prey species, respectively.

The parameters d, and d, are the predators x;, x, death rates, respectively.

The parameters §;and &, are the rates at which the growth rate of the first predator x; is
annihilated by the second predator x, and vice versa.

The parameters c;and c, are the search rate of the first and second predator for each
captured prey species, respectively (0<c¢;, ¢, <1).

The parameters f; and 3, are the maximum number of prey that can be eaten by the first

and second predator per unit time respectively, aiai are their respective half saturation
1 2

rates.

The parameters b, andb, measure the coefficients of their mutual interference among the
first and the second predator, respectively.

m  represents the prey refuge where 0 < m < 1, it is considered that the first and the
second predator species are competing for food and other essential resources such as
shelter.

The terms B1(1-m)x1x; B2(1-m)x1x3
a1+(1—m)x1+b1x2 a2+(1—m)x1+b2x3
predator's response respectively on prey species. This type of predator response function is

known Beddington —De Angelis.

denote the first and the second

Now we will reduce the number of parameters and specify the control set of parameters, so in
order to simplify the system, the following dimensionless variables and parameters are used:

x X X dx as daPp. dx dap

S——l, P, = ﬁ12' P, = B2x3 t=at, 1 — ok 1:,31 2’ 2 _
ak ak dt dt dt a’k dt dt

B2 dx3 a; _ bia _ by ,81C1 §1k
Lo s 4 =% e A € 0 A =%k g, =
w2k @ 1T kLT g 2 = k 2= 5 1= 1= Y1 5, 02
d; B2c2 S2k
_112 — —_

“’z_ﬂz

Then the system (2.2) reduces the following dimensionless system:

s _ oy Qa-mysp,  (1-m)SP,

dt S(l S) Aq +((1—m))S+ElP1 A2+(1—m)s+62P2

ar, _ _G-mse

Freie 6,P1 + 4 A1+(1-m)S+€e.P; vibiP, @3)
dp, _ (1—m)SP2 _

E— 92P2 +AZ A2+(1—m)5+62P2 )/ZPlPZ

Where S(0) > 0,P;(0) = 0 and P,(0) = 0 are evident that the number of parameters is

reduced from fifteen in the system (2.2) to eleven in the system (2.3).
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3. Existence and positive invariance
Fort > 0,letY = (S, P, P,)T,F = (fi, fo, f3)T, then the system (2.3) becomes

Z—f = F(X),here f; e C* fori=1, 2, 3, where:
— oy Qa-mysp,  (1-m)SP,
fl B 5(1 S) A1+(1-m)S+e1 Py Ay +(1-m)S+ey P,
_ (1-m)spy
fo=-60PL+ 1 AL t(1—m)S+e.P; Y1P1 P, (3.1)
fa= =0k + 4, A, +(1-m)S+€2P; V2P1P;

Clearly, the interaction functions in the system (2.3) are continuous and have continuous
partial derivatives on the positive three dimensional space R3 = {(S,P;,P,): S(0) =
0,P,;(0) = 0,P,(0) = 0}. Therefore, these functions are Lipschitzian [9] over R3 and the
system (2.3) has a unique solution, see [2],[3],[4]

Theoreml. The solutions of the system (2.3) are uniformly bounded over X ={( S, P;, P,)
ER3; w(t) < %}.

Proof: From the first equation of the system (2.3) ,we observe that :
t
% < S(1 — S) ,then by solving the above differential inequality, we get that S(t) <ez—1
thus as t — oo, we get S(t) < 1. Now assume that W (t) = S(¢t) + P;—(t) + P;—(t), where W is
dw dS  1dP; ., 1dP, h ’

the total population, we get that iy FrTS + na

i—lPl - %Pz by simplifying the last differential inequality and substituting W, we conclude
L <S@2-8)—uw (3.2)
where p = min {1, 6,,6,} yeilds Z—V: +uw < S(2 - 5), finally by solving the differential

which gives &% < (1 - 5) —

inequality (3.2) we obtain that w(t) < max {w(to),%} and U™ supw(t) < % , hence all

solutions of the system (2.3) are bounded over X = {(S, P;, P,) €ER3; S(0) > 0, P,(0) > 0,
P,(0) > 0}.

4. Persistent
The work of this section is based on the method of Average Lyapunove function

Theorem 2. System (2.3) is persistence provided that

0, + 6, <1 (4.12)
Jp T 12,0 g, 40, (4.1b)
1+ A(f:fl_—P;z))(;;:;l 2 Az(i(_ln_l:)s >5+6,+6, (4.1c)
1+ A(:jfl_—P;l))(ler_eT:z))z 1 Al(i(_;:lirsz)s >S5+6:+0; (4.1d)

Proof: Considering a function of the form U(S, P,, P,) = S¥1P/2P)® , where k4, k5, k3 are
positive constants, obviously U(S, Py, P,) > 0 for all (S,P;,P,) € intR3 and U(S, Py, P,) —

0as S, P,or P, - 0, now define the function Z(S, P,, P,) such that Z(S, P, P,) = % and
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U_’ _ _ _ (1-m)P, _ (1-m)P, _ (1-m)s

v - <(1 5) A1+(1-m)S+e; Py A2+(1—m)5+62P2> T ( 01+ 4 A1+(1—m)5+61P1) +
(1-m)s

K3 (_92 + AZ A2+(1—m)5+52P2) )

Now we prove that Z(S, P;, P,) > 0 for all the boundary equilibrium points and for suitable
choices of k; > 0,k, > 0and k3 > 0, we get %(EO) =k(1—6,—6,)>0
if 6, + 6, <1 leads to the condition (4.1a) holds for suitable choice of k where k = k;,
. .. U_’ . _ a-m) (1-m) .
i =123 thisgives = (E,) = K( 01+ hy s — 6, + Ay A—2+(1_m)) > 0 if
(1-m) (1-m)
2 4,+(1-m) "t a+(1-m

u’ _ _ L-DA-mPy (1-m)s )
of k, also F(EZ) =K ((1 H+————-6,—-0,+ 1, A—2+(1_m)5> >0 if

; > 0, + 0, that is the condition (4.1b) holds for a suitable choice

A1+(1—m)5+€1P1

()llS—Pl)(l—m) (1—m)5 - .
1+ rriomsier. T2 Traoms > S + 6; + 6, , this means the condition (4.1c) holds for
: : - u’ _ _ (1-m)s A-DA-m)P,
suitable choice of k. Finally, m (E3) =k <(1 S)+ 44 A (om)s + Aot (oS esF, 0,

Gps-P)=m) _ , _(-m)s

romsier, T M iraoms > S +6; +6, then the condition (4.1d)

92>>0 as 1+

holds for suitable choice of k. Hence, the proof is completed.

5. Equilibrium Points and their feasibility
The system (2.3) has five equilibrium points they are as the following:
The points E, = (0,0,0) , E; = (1,0,0) are always feasible.
The first planer equilibrium point is E;, = (S,, 0, P,,) , where S, is a unique positive root, see
[3] for the quadratic equation

2 (1-m) (@A-m)f A0
SZ + ( € 6212 1) SZ Ezlz - O (5.1)
while Py =325,(1—5,) (5.2)
2

The equilibrium point E, exists uniquely in the interior of the positive quadrant of SoP2>
plan provided that the following sufficient condition holds

(1-me, _(1-m) (a-m) _ (a-m)8; _ .\ | 4426,
(1+ )+ J ( 1) + >0

€242 €2 €2 €24 €245

The second planer equilibrium point is E; = (S3, P;3,0) where S5 is a unique positive
root, see [3] for the quadratic equation

2 (1—m) _ (1—m)01 _ _ A191 _
S2 4 ( - - 1) S5 —22=0 (5.3)
while Pis =3155(1 - S3) (5.4)
1

The equilibrium point E5 exists uniquely in the interior of the positive quadrant of S;P;5
_ plan provided that the following sufficient condition holds

(1 L ammes (1—m)) N J((l—m) _a-mye, 1)2 Ll

6111 €1 €1 61/11 61/‘11
The last equilibrium point E, = E* = (S§*, P, P;) exists if the component S* is a positive
root of the equation
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Z1(SHZ + Z, (SO + Z5(S)0 + Z4(SH)° + Zs(SH)B + Z6(SH) + Z,(S) +  Zg(S*)° +

Zo(S)* + Z10(S*)* + Z11(S*)?* + Z1,5" + Z13=0 (5.5)
. " -0, Ay (1-m)s*
While Pf=—4+—= - (5.6)
Y2 Y2 Az+(1-m)S*+€,P,

iy Ar+(1-m)S*+€.P]

Where

Z,=H?H2 >0

Z, = 2H,H,(—H,Hs + H,H,) > 0,

Z3 = (—H,Hs + H,H,)? + 2H,H,(2H,,V; + H Hg — H,Hs + H3H,) > 0
Z4 = 2H,H,(2H,,V, + H;H, + HyH¢ — H3Hs + Hy3Hs) + 2(—H,Hs + H,H,)(2H,V; +
H,Hg — HyHs + H3H,) >0

Z5 = (_HlHS + H2H4)(2H12V2 + H1H7 + H2H6 - H3H5 + H13H5) + (2H12V1 + H1H6 -
H2H5 + H3H4)2 + 2H1H4_(2H12V3 + H1H8 + H2H7 + H3H6 - H13H16 + H14H15 + ng) -
€5 Hs >0

2 9
Z¢ = (2H,,V, + H{Hy — HyHs + H3H,)(2H,,V, + HH,; + HyHy, — H3Hs + Hy3Hs) +
2H1H4-(2H12V4 + HZ + H3H7 - H13H15 - H14-H16 - H19) - HgVZ - 2I_I‘BI_IIOVI +
2(—HyHs + HyH,)(H1,V3 + HiHg + HyH; + HsHg — HizHig + HiyHys + Hig) >0

Z; = (2Hy,V, + HiH, 4+ HyHg — HsHs + Hy3Hs)? — 2H Hy(Hy4Hys + Hyg + Vs) +
2(—H,Hs + H,H,)(2H,,V, + H, + H3H; — Hy3Hy5 — HyyHg — Hy9) + (2H1,Vy + HiHg —
HyHs + H3H,)(2H,,V3 + HiHg + HyH; + H3Hg — Hy3Hyg + Hi4Hys + Hig) — 2HoH 1oV, —
H.§ — Hy Vi + 2HoV, Vg, >0

Zg = (—HHs + HyH,)(Hy4Hys + Hyg + Vs) + (2H,,V;, + HiHg — HyHs + H3Hy) (Hy V3 +
H1H8 + H2H7 + H3H6 - H13H16 + H14H15 + H18) + 2(2H12V2 + H1H7 + H2H6 - H3H5 +
Hy3Hs5)(Hy,Vs + HiHg + HyH; + H3Hg — HyzHig + HigHys + Hig) — H5V, — HoHy Vs —
HioVi + 2HoV Vg — 2H V1V <O

Zy = —2(2H,,Vy + H{Hg — HyHs + H3H,) (2H1,V, + Hy + H3Hy — HyzHys — HigHyg —
Hio) +2(2H.;V, + HiH; + HyHg — H3Hs + Hy3Hs)(2H,,V, + Hy + H3H; — HyzHys —
Hy4Hy6 — Hyo) + (2Hy,V3 + HyHg + HyHy + H3Hg — HizHyg + HigHys + Hyg) — H5Vs +
2HyH, oV, — HyoVs + 2HoVy Vs — HyoVy Vg — VoV, < 0

Z10 = —2(2H,,V, + HiH; + HyHg — H3Hs + Hy3Hs)(Hy4Hys + Hyg + Vs) + 2(2H V3 +
HiHg + HyH; + H3Hg — Hi3Hqg + Hy4Hys + Hig) (2H 5V, + Hy + H3H; — Hy3Hys —
H14H16 - H19) + 2H9H10V3 - H10V4 + 2H9V4V6 - 2H10V3V6 - V2V7 < O

Zy1 = —2(2H,,V3 + HiHg + HyH; + H3Hg — Hi3Hyg + HiyHys + Hyg) (Hyi4Hys + Hyp +

Vs) + (2H,,Vy + Hy + H3H; — HyzHys — HigHyg — Hi9)? — HygVa — V3V; + 2Ho VsV —

2H, V,Vs >0

Z1y = —2(2H,,V3 + HiHg + HyH; + H3Hg — HisHyg + HiaHys + Hig) (Hy4Hys + Hyg
Y V) — HygVsVe — V,V, <0

Zi3 = —V,V; + (HiaHys + Hig +Vs)? >0

According to Descarte's rule, see [3] of sign equation (5.3) has three positive real roots in
R3 under the following conditions
Z,>0,2,>0,23>0,2, >0,Z5 > 0,25 > 0,2, > 0,253 < 0,29 < 0,Z19 < 0,Z1; >
0,Z,, <0,Zy5 > 0, where
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1

Hy =y,(1-m)®> |, Hy =€, y,(1—m) , Hy =€, y,A; +€,€, 6, , H,= Wz Hy =
1 1
2€2L§ (1 - m)(l - LZ) ) H6 = 4€%L% (1 - m)Z(LZ - 1)2 -2 E%_EZ L2A2’ H7 = sz ((LZ -
1 1
1)1 —m)(€;+ LyAz)) , Hg= E(EZ‘F L,A;), Hy= 22 , Hip = 7, Lz + (L, —
LA
(A —m) Hyp = zezszz ,  Hip= pr=; Lz , Hiz3 = (A7, +€1 0, + 4, €1+ 6, €3)(1 —
22

€,€,0,0 1 1 Ly—1

m) — ———= )2, = | Hyy =V,A14; +€, 0,4, + 0,4, €, , His = 2L, Hie = dmmidz—1) ;nE)(LZ ) ,
2 242
A €.046 €.041
Hy; = é , Hig=(1—-m)6;, Hyg=(0,4;+ 614, +¥+#)(1 —m) , Hyy =
9192142_%, L1_1+Azy1 Lzzﬂ V1_92 ,V1=E%, V2:4‘€2L2(1_m)_
Y2 )Lﬂ/z 12 V2/11

26, (1-m)(Ly—1) , Vi=—-m)2(Ly—1)2—2€2—2 €% L,Ay—4€, LA, +

4L, €, 1-m)+4 € , V= 2(62+ LZAZ)(l - m)(Lz -—1+4 €, LAy, +€, L1L,(1 —
m)
Vs = (Ez+ LzAz)2 v Ve =HiHiz +Hyy, V7 = (H14H17 + H11)2

6. Local Stability of Equilibrium points

In this section, we analyze local stability for each equilibrium point of the system (2.3)
The Jacobian matrix of the system (2.3) at any point (S,P1,P2) is defined as J=Ds (X)=[ cij]ax3
which is given as follows:

rl —2S - (A1+€,P)(1-m)P, ] _ [ (Az+€;P5)(1-m)P, ] _ [A(1-m)s+(1- m)zsz] _[A:(A-m)S+(1- m)ZSZ]
(A;+(1-m)S+€,P;)? (A;+(1-m)S+€,P;)? (A;+(1-m)S+€,P,)? (Az+(1-m)S+€,P,)?
I ( ) 2g2
(A1+€,P1)(1-m)P, a _ A;(1-m)S+(1-m)?S _
| 1 (A1+(1—m)S+61P1)2] 01 —viP + A (A1+(1—m)S+ElP1)2] V1P
(Ay+€,P,)(1-m)P A,(1-m)S+(1-m)?2S?
| 2 (A22+(12—nzn)S+EZP2§2] V2P, =0 =V P+ |

(6.1)
Local stability of Ey: the eigenvalues of the Jacobian matrix Jo are 1,-6; and — 6, .
Therefore, E, is unstable actually it is a saddle point.

1 0 0
Jo=Ds(E))=|0 —6; O ] (6.2)
0 0 -6,

Local stability of E;: the eigenvalues of the Jacobian matrix J; are -1, —6;+
A;(1-m)+(1-m)? _ Ay, (1-m)+(1-m)?
1 om0 F AT
A1 (1-m)+(1-m)?

stable for M TS <6, (6.3)

A, (1-m)+(1-m)?
(4z+(1-m)?)

Otherwise, it is a saddle point.

. Therefore, E; is locally asymptotically

and Ay < 0,. (6.4)

A1(1-m)+(1-m)?
(41+(1-m))? ]

A1(1-m)+(1-m)?
(41+(1-m))?

0 O _92 +AZ

_[A2(1—m)+(1—m)2]
(Az+(1-m))?

-1 —[

]1=Df(E1)= 0 -0,+4

0 (6.5)

Ay (1-m)+(1-m)?
(4z+(1-m))?

Local stability of E,: the characteristic equation of the Jacobian matrix J> = D#(E2)=(aij)3x3 IS
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B+ QA2+ QA+ Q53 =0, where Q; = —[ay; + azp +ass] , Qp = a1a, — apaq, +
a110a33 + azya35 and Q3 = —asz(a;1a,, — az1a4,) , hence by Routh-Hurwitz criterion [10]
E> is locally asymptotically stable if Q; > 0,Q3 > 0and A> 0where A=Q,Q, — Q3 =
—aj;(az; + as3) — a,(as1 + azz) — a3z(asq + az;) — 2011052033 + az142(a11 + az;),
so that E is locally asymptotically stable point if

a1 <0, a,, <0, as3<O0thatis:

1— 252 _ ( (A1+€1P;3)(1-m)Py, ) <0 (66)

(A1+(1-m)S;+€1Py;)?

_ A2(1—m)sz+(1—m)zs§)
02 + 2, ( (Ap+(1-m)S,+€,Pyy)2 <0 (6.7)
-0, — <
0; —viP + 4 ( (At (1-m)s,)? 0 (6.8)
J2 = Df(Ez) =
1-2S, —( (A1+€1P332)(1-m)Py; ) —( A1(1—m)sz+(1—m)zs§) Az(1-m)S;+(1-m)2s3
2 (A1 +(1-m)S3+€;P;;)2 (A1+(1-m)S,)? (A2+(1-m)Sz+€,P53)?
a A1 (1-m)S; +(1-m)2s3
0 01 —v1P22 + 24( A+ (1—m)S,)? ) 0
(A2+€2P22)(1-m)Py, _ _ Az(1-m)S, +(1-m)*s3
l 2( (AZ+(1—m)SZ+€2PZZ)2) Y1P22 02 +A2( (AZ+(1—m)SZ+€ZPZZ)Z)J

(6.8)

Local stability of E3: The characteristic equation of the Jacobian matrix Jz = Di(E3)=( bij)3=3
is A3+ W2+ WA+ W, =0, where W, = —[byy + byy + bsz] , W, = byybyy — b31biz +
by1b33 + byyb33 and W5 = —by,(by1b33 — b31by3) ,S0 by Routh-Hurwitz criterion Es is
locally asymptotically stable point if ¥; > 0,%; > 0 and A> 0 where A=W,¥, —¥; =
—b?(byz + bsz) — b3, (byy + b33) — b33(byy + byp) — 2by1bybsz + b31byz(byy + bs3),
thus E: is locally asymptotically stable if b;; < 0,

b,, < 0,b33 < 0,thatis:

1- 2S5 — ( (A1+€,P13)(1-m)Py3 ) <0 (610)

(A1+(1-m)S3+€1Py3)?

~0, = vahia + e (MIEEER) <0 61)

—0, 4y (AomS G < (6.12)
I3 = Df(Es) =
1-2S;—( (A1+€,P13)(1-m)Py3 ) _[A1(1—m)53+(1—m)25§] A,(1-m)Sz+(1-m)2S2

(A1+(1-m)S3+€,P13)? (A1+(1-m)S3+€,P13)? (Az+(1-m)S3)?
(Wramsmney) MG e nhis
0 0 =0, — ¥2P13 + A5( Az%;:?ff_ﬁ;sz) =)

(6.13)
Local stability of E*. Let J"=Df(E") = J as shown in (6.1) (After

substituting S with S*, P; with P; and P, with P})
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Theorem 3: The system (2.3) is locally asymptotically stable around the equilibrium point
E*=(S*, P}, P;) = (S,P1,P2) if the following conditions are satisfied :

(A1+€,P1)(1-m)Py (Az+€,P2)(1-m)P,
25+ [(A1+(1—m)S+61P1)2] + [(Az+(1—m)S+EZP2)2] >1 (614)

A;(1-m)S+(1-m)?s?
1] (A;+(1-m)S+€,P,)2

| <0, +v:P, (6.15)

A,(1-m)S+(1-m)?S?
2 [(A2+(1—m)S+E2P2)2] <08 +v:P (6.16)

Proof: Let us define the characteristic equation of the Jacobian matrix J* = Df(E™) =
(cij)axz =Df (X) as A3 + 0;4% + 0,44+ 03 = 0, where 0; = —[cq1 + ¢zp +33] , 0, =
C11€22 — €21C12 — €31€C13 + C11C33 + Ca2C33 — C32C23 ANd O3 = —c33(¢11622 — €21€12) —
C12C23C31 — €13C21C32 + C13C22C31 + C11C23C32 , SO by Routh-Hurwitz criterion E* is locally
asymptotically stable if &, > 0,0; > 0and A > 0,where A= 0,0, — 035 = —(cy; + 32 +
C33)[€11€22 — C21€12 + €11C33 + €22C33 — €31C13 — C32C23] + C33(€11Co2 — €21€12) +
C12€23C31 T €13C21C32 — €13C22C31 — €11C23C32-

So E™ is locally asymptotically stable if ¢;; < 0,c,, < 0,¢353 <0, that is: (6.14) ,(6.15) and
(6.16) holds . Therefore, the proof is complete.

Global Stability
In this subsection, the global stability is studied for each locally stable equilibrium point
using a suitable Lyapunov function that is given in the following theorems:

Theorem 4 Assume that the equilibrium point E; =(1,0,0) is locally asymptotically stable in

R3. Then it is globally asymptotically stable if the following conditions are satisfied:
(1-m)(1-s)P;

A+ ) 2 ammsrer, (6.17)
(1-m)(1-S)P,
A+ Aa) G msrerr, = (6.18)
Proof. Using an appropriate Lyapunov consider Wi=E—-1-InS)+P, +P,

(6.19).
Clearly, w;(S,P;,P,) > 0 is a continuously differentiable real-valued function for all

(S, P, P,) € R3with (S, Py, P,) # (1,0,0) and W;(1,0,0) = 0, we get

aw, s—1, dS dpPq dapP,
( s )dt

dat dt dt
awi _ 4 N2 (1-m)(1-s)P, (1-m)(1-S)P, _ _ _
dt 1=+ +24) A1 +(1-m)S+e, Py +(1+4) Ay +(1-m)S+exP, 01P1 — 6, P,

(y1 +v2)PiP; .

In order to get d;/zl < 0 the following inequalities must be satisfied
(1-m)(1-s)P, (1-m)(1-S)P, )
1+ Al)m <0and (1+ Az)m <0 ,forthis (6.17) and (6.18)
holds.

Hence E; is globally asymptotically stable.

Theorem 5: Assume that the equilibrium point E>=(S2,0,P22) is locally asymptotically stable
in R® . Then it is globally asymptotically stable if the following conditions are satisfied:
S—1)> —2mh (1-m)P; (6.21)

A1+(1—m)S+E1P1 A2+(1—m)S+62P2
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(1-m)s
02 +v2P1 > AZA +(1-m)S+e,P,

Proof. Applying suitable Lyapunov function at E, = (S,, 0, P,,) we get:

_ 2
W, = $=52 52) +p, + LePea)s ;’22) (6.23)

Clearly, w,(S,P;,P,) >0 is a continuously differentiable real-valued function for all
(S,P,P,) € ]R3With (S P, P,) # (S,,0,P,,) and W(S;,0,P,,), =0, moreover We have

(6.22)

that sz =(S-— Sz) — + dPl + (P2 Pzz)% we get by Substituting Z dp1 and 2 we get
- (S S2) [S(l N S) © A +(1-m)S+€,P;  Ay+(1-m)S+esP, ] — 0P+ ll A +(1-m)S+e,Py

(1-m)SP.
Y1P1P2 + (P, — Py3) [_92P2 +Azm

Now straightforward computations give
aw;
d_tz < —14(S = 5)% = 12(P, — Pp3) — (6:P; +v1P1P)

_)’2P1P2]

e (1-m)P; _ (1-m)P,
Where n=0-1 A1+(1-m)S+e1P; Ax+(1-m)S+ezP;
_ (1-m)s
T =0+ V2P~ Aoy 2+(1-m)S+e,P,

So according to conditions (6.20), (6.21) and (6.22) we guarantee % <0
Hence E, is globally asymptotically stable.

Theorem 6: Assume that the equilibrium point E; = (S5, P;3,0) is locally asymptotically
stable in R3. Then it is globally asymptotically stable if the following conditions are satisfied

(1-m)P, (1-m)P,
(1 - m)S (A1+(1—m)5+61P1 + A2+(1—m)5+62P2) > 0 (6.24)
S3+6,P, +6,P, >0 (6.25)
PiP,(y1 +72) >0 (6.26)
Proof. Applying a suitable Lyapunov function on E; we get :
Wy = (S =S5 —Ssins) + (P, — Pis — P13ln—) + P, (6.27)
3

Clearly, W5(S,P;,P,) >0 is a continuously differentiable real-valued function for all
(S, P, P,) € R3with (S, Py, P,) # (S3,P;3,0) and W5(Ss, Py3,0), = 0 , moreover we have
that

dws _ (§=S3)dS | (P1—P13)dP; | dP,
a s dt+ Py dt+dt'

s = S(1-5) — (1~ MK, SP, — (1~ mK,SP, — S3(1 = §) + (1 — m)K; Py S; +
(1 - m)K2P253 — 91P1 + (1 - m)).lspl - V1P1P2 + 91P13 — (1 — m)llKl.S'Plg, +
Y1P13P2 — 0P, + (1 — m)y,K,SP, — V1P1P12 :

where K; =

- K= —
A +(1-m)S+€,Py ' 2 T A,+(1-m)S+eyP,

da

< —(S =532 = (S5 = P1)* = (S5 = P)* = (S = P1)? = (S = Pp)? — (P13 — P)? —
(1-m)K;SP; — (1 = m)K,SP, — S3 — 6, P, — 0,P, — v, PP, — y1 P P,.

So according to conditions (6.26),(6.25) and (6.24) the condition % < 0 is guaranteed.

Hence, Ez is globally asymptotically stable.

Theorem 7. Assume that the equilibrium E* = (S*, P, P;) point is locally asymptotically
stable in R3.
Then it is globally asymptotically stable if the following conditions are satisfied:

§ + —2-h amP: 59, (6.28)
A1+(1—m)5+61P1 A2+(1—m)5+62P2
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(1-m)s

0 +viP, — A4 A t(-m)SterP, >0 , (6.29)
(1-m)s

0, +v2P— A Mot (l_m)StesPy >0, (6.30)

(5=8") | (P1—P]) | (P,—P;)?

Proof. Consider the following Lyapunov function W* = — + (6.31)

where W*is a function of (S*,P1",P2" ) and W™ > 0, Now by differentiating W" with respect to
time t, this gives that:

W _ o g8 | p _py@Piy p _ prydP
dd_t—(S S)dt+(P1 P1()dt)+(P2 Pz(dt)
i* _ 2 _ * _ _ 1-m Pl _ 1-m P2 _
at (5% —Ss )[ 5 A1 +(1-m)S+e, Py A2+(1—m)5+62P2]
2 _ * _ (1—m)S _ 2 _ * _
(Pf — P,Py) [91 + y1P A —A1+(1—m)5+61P1] (P; — P,P;) [92 + v Py

(1-m)s
2 A2+(1—m)5+62P2]'

After using the method of completing square and taking common factors of resulting

algebraic terms and simplifying them, we get

dw’ _ o o2 (1-m)P, (1-m)P, _ _ p*\2 _
dt =—(5-59) [S T A;+(1-m)S+€,P; T A2+(1—m)5+62P2] (P — Py) [91 + 1P
(1-m)s

__a-ms | _ (p _ pr)?2 _ gy, Ga-ms
A1+(1—m)S+61P1] (P, = P;) [92 tyPi— 4 A2+(1—m)S+ezP2]
So according to conditions (6.28), (6.29) and (6.30), the condition
Therefore E* is globally asymptotically stable.

aw*
dat

< 0 is guaranteed.

7. Bifurcation Analyses

The occurrence of local bifurcation is well known that non-hyperbolic equilibrium point
property is a necessary but not sufficient condition for the occurrence of bifurcation around
that point. In the following theorems, the candidate bifurcation parameter is selected so that
the equilibrium point under study will be a non-hyperbolic point, we study in this section the
local bifurcation for the equilibrium points E1 ,E> and Es by applying the Sotomayor’s
theorem [11] ,while Eis selected to analyze the Hopf -bifurcation occurrence around certain
parameter A,.

Theorem 8: The system (2.3) has no transcretical bifurcations and neither pitchfork

bifurcation nor saddle node bifurcation can occur near the equilibrium point E1 passes through

- - 2
E

Proof. It is easy to verify that the Jacobain matrix of system (2.3) at (E;, ;) can be written as

o: |71 —R —Ra A (1-m)+(1-m)?
-m -m
12 =|0 _91 + AlRl 0 where R1 = 1(A +(1—m))2 )
0 0 0 !
_A,(1-m)+ (1 —-m)?
2T (A + (1 -m))?

Clearly, the third eigenvalue ¢5p, in the P, direction is zero while the first eigenvalue ¢; =
—1 < 0, the second eigenvalue ¢, = —6; + 4;R; < 0 if conditions (6.3) is satisfied, further
the eigenvector v = (v, v,, v3)T corresponding to ¢3p, Ssatisfies the following ]fzv =qv
then ]f;v = 0 we get

-V — R1v2 - szg = O (71)

(_91 + AlRl)vz = 0 (72)
so by solving the above system of equations, we get v. =0, vi= -Rovs where v3 is a nonzero
value number thus :
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_szg
V= 0 ] , similarly we take the eigenvector w = (w4, w,, w3)T corresponding to the
U3
eigenvalue ¢3p, Of []fZ]T can be written as
-1 0 07 w1
-Ry —-6;+A4R; O 0)2] = 0, thisgives w = (0,0, w3)T (7.3)
_RZ 0 0 (1)3

Here w4is any nonzero real number.
Now rewrite the system in vector form as %zf(X) where X = (S,P,P,)T |, f=
(fvfa f3)"
And ;;; = fg; , we get that fo: = [0,0,—P,]" obviously fg:(Ey,65) = [0,0,0]" . Therefore,
W' fo;(Ey,63) = 0. (7.4)
Consequently, according to the Sotomayor theorem, the system has no saddle-node

bifurcation near E1 through 65, now in order to investigate the occurrence of the other types of
bifurcation, the derivative of f: with respect to vector X say Dfg: (Ey, 63) is computed

0 0 O
0 0 -1
Again, according to Sotomayor theorem if in addition to the above, the following holds
w'[D?fg;(E1, 6;)(v',v")] =0 (7.5)
And W' [D*fo;(Ey, 0) (v, v',v)] = 0 (7.6)

Then the system (2.3) has neither transcritical bifurcation nor pitchfork bifurcation at E;.

Theorem 9: The system (2.3) has transcretical bifurcations and pitchfork bifurcation can
Ay (1-m)S3+(1-m)? 52

occur near the equilibrium point Es passes through the parameter 65 = 1, (LIS T eP
2 - 3 213

. However, the saddle node bifurcation cannot occur.
Proof. The Jacobian matrix of the system (2.3) at (E5, 85) can be written as:

J303 =
125~ (G G mreurn?
1 [<if1+<fii§§i_§3f§§z] R (21(+1(_1Tr)ns)35+2(+1€_::335)§2] 11
In J36, clearly tr?e third eigenvalue in 75 p, in the 192 direction is zero 73 p, = (? while both of
e ) <O T2 =

A1(1-m)S3+(1-m)?S3 (Az(l—m)83+(1—m)S§)
(A1+(1-m)Sz+€,P43)? (Ax+(1-m)S3)?

)

the first and the second eigenvalues 7, =1 — 2S; —(

A;(1-m)S5+(1-m)S3

—O0ith (A1+(1-m)S,+€,P13)?

Further, the eigenvector H = (11,1,,15)7 corresponding to 75 p,satisfies the following:

J36;H = tH, we get J36;H = 0 thus :

(1 — 25, — ( (A1+€,P13)(1-m)Py3 )) _ A (Q-m)Ss+(1-m)?si (Az(l—m)S3+(1—m)S§)
3 (A1+(1-m)S3+€,Py3)2 L (A +(1-m)Sy+€,Pq35)2 12 (A2+(1-m)S3)2

] < 0 when conditions (6.11) and (6.10) satisfied, respectively.

3 =

(A1+€1P13)(1-m)Py3 . A;(1-m)S3+(1-m)S3 _
0 (7'7) (7\1 [(A1+(1—m)S3+ElP13)2])n1 + ( 91+/11 (A1+(1—m)sz+ezP13)2D 2

(y1P13)n3 =0 (7.8)
We have that: H = (Z12,1,,Z,1,)T where
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A1(1-m)S3+(1-m)2s3 Az(1-m)Sz+(1-m)S3 A1(1-m)S3+(1-m)S3
_ VlPZZ((A1+(1—m)52+ezP13)2> < (A2+(1-m)S3)? )(‘91”1 (A1+(1—m)52+eZP13)2D
Zy = A2(1-m)S3+(1-m)S3|( (A1+€1P13)(1-m)Py3 (A1+€1P13)(1-m)Py3
1 (az+(-m)s3)? ((A1+(1—m)53+€1P13)2)_V1P22[1_253_((A1+(1—m)53+E1P13)2)]
(7.9)
(A1+€1P13)(1—m)P
7, = [1_253_((A11'+(11n11)353+51P13:‘L)32)] 7, (7.10)

(Az2+(1-m)sS3)?
Similarly € = (&;,¢,,£3)" the eigenvector corresponding to 75 p, (the third eigenvalue) of
(J36;)T can be written as (J305)T Y = 0, so we have

(1 — 28— ( (A1+€1P13)(1-m)Py3 )) e+ (}\1 [ (A1+€1P13)(1-m)Py3 ])82 =0 (7.11)

(A1+(1-m)S3+€,Pq3)2 (A1+(1-m)S3+€,P13)?
_ A;(1-m)S3+(1-m)?S% _ A1(1-m)S;+(1-m)S3 _
((A1+(1—m)52+€2P13)2) & + ( 61+Al (A1+(1—m)SZ+E2P13)2]) &= 0 !
(7.12)
_ (A2(1—m)s3+(1—m)s§
(Az+(1-m)S3)?2

<A2(1—m)S3 +(1—m)s§>

)31 —Y1P136, =0

(7.13)

Solving the above equations we get € = (0,0, 5)7 , here &5 is any nonzero real number. Now
rewrite the system (2.3) in term of vector form as Z—}t{ = g(x) where X=(S, P1 P2 )" and G =

d .
(91,92 93)T and aeg; = gg; subsequently gg: = [0,0,—P,]" then gg:(E3,65) = (0,0,0)"

and €9¢;(E3,0;) =0 (7.14)
From the Sotomayor theorem, Es has no saddle node bifurcation through 6.
Now in order to investigate the occurrence of the other types of bifurcation the derivative of

0 0 O

g With respect to the vector X say Dgg:(Es, 0;) is computed Dgg:(E3, 0;) = \0 0 0 ]
0 0 -1

and

N A;(1-m)S3+(1-m)S3
€7D ge;(Es,03) = —0, + 1, = (Azf(ljm)s;; inse3 # 0, (7.15)
<A2(1—m)s3+(1—m)5§> <A2(1—m)s3+(1—m)5§>
* (Az+(1-m)S3)? (A2 +(1-m)S3)2
ETDZQHS(E&Hz)(H» H) = &34, : s > mns + 4, : 2P : Ny #0
1 13

(7.16)

Subsequently, Es has transcritical bifurcation through 6.

Finally, as the same way we compute €'D3gg;(E3,65)(H,H,H) # 0

(7.17)

Thus from (7.15),(7.16) and (7.17), we get that E3 has pitchfork bifurcation through8,.
By the same way, we could prove that E>=(S2,0,P22) has transcritical bifurcation through

_ 22
6;and pitchfork bifurcation through 6 such that 6; = A, A;(i (T)f;;'s(lﬁm; 5,
1 - 2 122

8. Hopf-bifurcation.
Theorem 10. The equilibrium point E” of the system(2.3) has no Hopf-bifurcation around the
parameter 4.

Proof. According to the local stability analysis of system (2.3) at E*, we have that the
coefficients of the characteristic equation ©;; i = 1,2,3 are positive provided that

A2 +0,A2+0,A+0;=0 (8.1)
However, A = 0,0, — O is positive provided that c,, < 0in J*
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A;(1-m)S+(1-m)?S?
(A1+(1—m)S+ElP1)2

Thatis —8; —yiP, + 2 |

in this case.

Now suppose that A =0,0, —0; =0 then according to [12] there is possibility to
occurrence of Hopf-bifurcation if and only if the Jacobian matrix of system (2.3) near E” has
two complex conjugate eigenvalues, say k; = p; * ip, with the third eigenvalue is real and
negative, in addition, the following two conditions are held in specific parameter say [ = [*
and

] < 0 and hence there is no Hopf- bifurcation

p1(1) =0, (8.2)
L) #0, (8.3)

Now from A = 0,0, — ©; = 0 we obtain that
McZ, + Bcyy +C =0 (8.4)

Where

M = —(c;; +¢33) >0,

B = (—(c11 + €33)% + c21€12 + €32€23)

C = (c11 + c33)(€13€31 + €11C33(C11 + €33) + €11C12Co1 + C33C32C23 + €13C21C32 +

€12€23€31) _
Clearly, for C < 0 we have two real roots of equation (8.4) say
-B |, VB%2-4MC . -B  VBZ-4MC
Cop = 5 T = 8ince ¢p; < 0 then we get c,, = o an and hence
A1(1-m)S+(1-m)?2s? B |, VB?2-4MC _
01—y + A [(A1+(1—m)S+ElP1)2] wmt = -0 (8.5)

Which gives f (1) = 0 and A, = A] represent a root of equation (8.5) consequently for 1; =
A7 we get 0,0, = @5 from which the characteristic equation can be written as

p(A)=(A+0,)(A%>+0,) =0, (8.6)
Hence, in such case 4; = A7 the eigenvalues A; = —0; <0 and A,3 = ii\/G)_2 so the first
condition of Hopf-bifurcation is satisfied at 1, = A] that is p; (1]) = 0 while p, = Je_ , that
is Apsz = p1(41) *ip,(41), substituting A = p; + ip, in equation (8.6) we get after some
algebraic computations

Np1 — dp; = -6 , (8.7)
where 2228 — 51 p)
dll
$¢p1 —Np; =T (8.8)
Such that
D =3p7 +20;p; + 0, — 3p3
b =6p1p; +20,p; (8.9)

0 =p70] + 03p; + 03 — O1p3
['=2p1p,01 + 03p;
Solving the linear system (8.7) and (8.8) for the unknowns p1, p5 it is obtained that

1= N?ﬂ P = —IN*9% " Hence, the second condition of Hopf-bifurcation will be reduced
N2 +¢? N2 +¢2

to verify that

NDOE+T¢+0, (8.10)
But©) = —1,0% = cy; + ¢33 and 05 = —0, + 0;(cy; + ¢33) thus D =—20, , $=20,,/0,
,0=01(c1y + c33) , [ = (c1q + c33)4/0, substituting in (8.8), we get
DO +T ¢= 0 . Hence the system (2.3) does not undergo a Hopf-bifurcation through E”.

9. Numerical Analysis.

In this section, we studied the global dynamics of the system (2.3) numerically to verify
the obtained analytical results and specify the control set of parameters. For the following
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hypothetical set of parameters system (2.3) is solved numerically and the obtained trajectories
are drawn in the form of phase portrait and time series. First, we examine varying the value of
each parameter on the dynamical behavior of the system (2.3). Second, we assure our
obtained analytical results. It is spotted that, the following set of parameters that satisfies
stability conditions of the positive equilibrium point E” of system 3. System 3 has a globally
asymptotically stable positive equilibrium point as shown in  Figure 1.a and Figure 1.b,
forr A1=05 A>=01,¢6=09,¢6,=09,y,=0.001,y,=001,m=06, 6; =

0.1, = 0.01,1, = 0.486,1, = 0.064 (9.1)
1 — 1 :
— ; ——g
_— M :
09 . Ug.v‘\ .......... —g;
il 'v o —
9 : 095
i 08 08 i .......... J ;
oz f 5 09 ;
' i 07,( ..........................
g07 ; ;
g s o 085 :
065 T Try] L TS, . 3
a-”ﬂ
& 2 08|
-9 . L] R R e S :
0%
05 . ;
3“3: 0 b UJ? 3
04 Jb-\‘ 03 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
i 05 ; 08
; \ 06 02 ] 06
0 M0 40 &0 80 10w P 02 05 s 0 500 1000 P1 0 04 S

time

(@) (b)
Figure 1: Time series of the solution of system (2.3) that start from two different initial
points (0.5,0.4,0.5) , (0.4 ,0.3, 0.9) shown in (a) and (b), respectively, for the data that are
given by (9.1), population size= (S ,P1 ,P2> ) the vertical line at a specific continuous time is
the horizontal line.

Clearly, Figure 1(a) and Figure 1(b) show that system (2.3) has a globally asymptotically
stable solution approaches asymptotically positive equilibrium points E™ =(0.792,0.791,0.79),
respectively according to data that are given in (9.1) and for two different initial points
(0.5,0.4,0.5) and (0.4,0.3,0.9) shown in Figure.1b and Figure.la, respectively, for more
accurately when ©; € (0.095 ,0.107),0, € (0.0097, 0.0103), y, € (0,0.004),y, €
(0.0097,0.0103) , 4; € (0.48,0.49)and A, € (0.063,0.065). In order to explain the effect
of the above parameters values of the system (2.3) on the dynamical behavior of the system,
the system is solved numerically for the data given in (9.1) with varying the two parameters
Ay and A, by decreasing to 1; = 0.1, A, = 0.035 the equilibrium point E* approaches E
= (S,0,P2) = (1.002, 0 ,0.997) , see Figure.2a. taking into the fixation of the rest of the values
for the parameters in (9.1) and initial point (0.4,0.3,0.9) , while when we vary y; and y, by
increasing to y; =0.03and y, =024 , 1; = 0482 , 1, =0.01 . We find that the
equilibrium point E*approaches Es=(S,P1,0)= (0.793, 0.791, 0 ) see Figure 2.b taking into the
fixation of the rest of the values for the parameters in (9.1) and initial point (0.4,0.3,0.9).

6397



Majeed and Naji Iragi Journal of Science, 2023, Vol. 64, No. 12, pp: 6383- 6400

—8
—FP1
S o S | P i
14 —
o
s 08 1
£ 5 osf.
& -
8 DB e seraiheoanss 204l
2
Bkl (1 e
02
02 .....................
[ 01p-
0 \ I‘ H
0 500 1000 DD 500 1000
time time
(@) (b)

Figure 2: Time series of the solution of system (2.3) with initial point (0.4,0.3,0.9) of varying
parameters 4; = 0.1, 4, = 0.035 shown in (a ), and varying parameters y; = 0.03 and
¥, = 0.24 shownin (b)

When 6, and 6, increase, that 8; = 0.5, 8, = 0.4 the equilibrium point E* approaches
E1=(1,0,0) taking into the fixation of the rest of the values for the parameters in (9.1) and
initial point (0.5,0.4,0.5) see (Figure.3a) and initial point (10,11,9) see (Figure.3b)
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Figure 3: Time series solution of system (2.3),E* approaching E: with varying parameters
6, = 0.5,60, = 0.4 for initial point (0.4,0.5,0.4) shown in (Figure 3.a ), and for initial point
(10,11,9) shown in (Figure 3.b)
Finally, regarding the refuge parameter m, the system (2.3) is globally stable around E"at m €
(0.56, 0.63) which is explained in Figure.4, (Figure.4a) for m= 0.5 and when m=0.64 shown
in (Figure.4b) with initial point (0.5,0.4,0.5)
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Figure 4 : Time series of the solution for system (2.3), global stability of E” differ when
m=0.64 in Figure.4a, and m= 0.5 in Figure.4b, for initial point (0.5,0.4,0.5).

10. Results and Conclusion

In this paper, an ecological system consisting of one prey- two predators with Beddington
—De Angelis functional response and refuge is proposed and studied. The model is assumed to
be held the effect of prey refuge on the absence of Beddington —De Angelis. The existence,
uniqueness and bounded condition of the solution of the proposed model are discussed. All
possible equilibrium points with their local stability conditions are obtained using the Routh-
Hurwitz criterion. Suitable Lyapunov functions are used to investigate the global dynamics of
the equilibrium points. The persistence of the system is investigated with the help of the
average Lyapunov method. The Local bifurcation analysis around the equilibrium points E>
and Ez are carried out depending on Sotomayor’s theorem. Finally, the appearance of the
Hopf bifurcation around the positive equilibrium point E” is also investigated. For the suitable
set of biologically feasible hypothetical data, the proposed system is solved numerically to
verify the obtained analytical results and specify the control set of parameters. Also, the
obtained numerical results depending on the data given by (9.1) can be summarized as
follows:
1. We found out that the system (2.3) has a globally asymptotically stable in the endemic
equilibrium point E* =(0.792,0.791,0.79) at certain intervals to the parameters ©1 € (0.095
,0.107), ©2 € (0.0097, 0.0103), y, € (0,0.004),y, € (0.0097,0.0103) , 1, € (0.48,0.49),
and 1, € (0.063,0.065).
2. The influence of varying the two parameters 4; and 4, is clear by decreasing them from
A, =0486 and A1, =0.064 to A, = 0.1 and A, =0.035, we found out that the
equilibrium point E approaches E, = (S,0,P2)= (1.002, 0 ,0.997) for the initial point
(0.4,0.3,0.9).
3. As we vary y1,Y2 by increasing them to y; = 0.03 and y, = 0.24 the equilibrium point
E” approaches E3=(S,P1,0)= (0.793,0.791, 0) according to the initial point (0.4,0.3,0.9).
4. Finally, the influence of 6, and 6,by increasing them from 6, = 0.1, 6, = 0.01 to
0, = 0.5, 8, = 0.4 leads to the equilibrium point E* approaches E;=(1,0,0).
5. The previous results are not affected mainly by changing initial values.
6. The refuge parameter m satisfies the above results for 0.56 > m >0.63.
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