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Abstract: 
In the use of elliptic curves in its applications (especially in cryptography), 

one often needs to construct elliptic curves with a known type (number of 

points) over a given finite field Fp, where some types are more secure than 

others. So we introduce a simple way to construct a supersingular elliptic curve 

by computing the coefficient of x
p-1 

in f(x)
(p-1)/2 

where 

f(x)= x
3
+ax+b. And we give an algorithm that compute that coefficient and 

construct the required curve. 
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1. Introduction 
Let Fq be a finite field with q=p

r
 elements where p is a prime number and r 

is a positive integer. Efficiently, constructing supersingular elliptic curves of 

prescribed order has its impact outside the area of arithmetic geometry. 

In other application as cryptography, a supersingular curve of prime order 

N=#E(Fq) has the property that, its embedding degree with respect to N is very 

small and this makes supersingular curves suitable for pairing based 

cryptographic systems [2]. 

In 2008 Broker [1] gives an algorithm that construct a supersingular elliptic 

curve over the finite field Fq with trace of Frobenous t depending on the result 

due to Waterhouse [7], where the inputs are a prime power q and an integer t. 

Later, L.R. Finotti [3] gives a formula for the supersingular polynomial in 

characteristic p5 depending on the Hass invariant of E that defined on finite 

prime field Fp. 

 In this research, we'll follow a similar approach to introduce a formula for 

supersingular elliptic curve derived from the Hass invariant too, but we obtained 

another different result. We give an algorithm for computing this formula to 

construct a supersingular elliptic curve over the finite field Fp. This algorithm 

depends on the field elements a and b that define the equation of the elliptic 

curve E(Fp) of characteristic greater than 3. 

Section (2) contains elliptic curves and group structure and some important 

definitions. 
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Section (3) contains the computation of Hass invariant and the formula that 

derived to constructing supersingular elliptic curves. For the facility of our 

computation there is an algorithm that constructs a supersingular elliptic curve 

using the formula which introduced in our research. 

2. Elliptic Curve and Group Structure [8] 

Let K be a field. An elliptic curve over K is a pair (E,O) where E is a non 

singular curve of genus one over K with a point O E called the point at 

infinity. The set of points (x, y)  K×K verifying the (non-singular) weierstrass 

equation: 

 E(K): y
2
+a1xy+a3y= x

3
+a2x

2
+a4x+a6   (aiK)   …(1) 

together with the point O. 

The set of points (x,y) that satisfied equation (1) and O form an abelian 

group where O is the additive identity element. This group is denoted by E(K) 

and the group operation is denoted by (+). 

When the characteristic of the field K is greater than 3, the weierstrass 

equation of an elliptic curve equation(1) can be simplified to 

E(K): y
2
 =x

3
+ax+b                  a, b K   … (2) 

Definition (2-1)[6] 

The discriminant () of the polynomial f(x) = x
3
+ax+b is -4a

3
-27b

2
. 

The curve given by weierstrass equation (1) can be non singular if and only 

if 0 [6]. So, to construct an elliptic curve defined over K=Fp (prime field of 

characteristic p > 3), we must make sure that the parameters a and b satisfy the 

quantity 

4a
3
+27b

2
 0 mod p      …(3) 

Definition (2-2)[4,5] 

The order of an elliptic curve is defined as the number of points on the 

curve, and it is denoted by #E. 

2.1 Supersingular Elliptic Curves 
Let E(Fq) be an elliptic curve with trace t and q is a power of p. E is said to 

be supersingular if p divides t, where #E(Fq)=q+1-t. In other words we can say 

that E is supersingular, if and only if t
2
 = 0, q, 2q, 3q or 4q. Particularly when q 

= p, the curve E over prime field of characteristic p>3 is supersingular if and 

only if t is congruent to 0 modulo p, i.e. E has exactly (p + 1) points [5]. 

3. Determining the Supersingular elliptic Curves 
Consider the Elliptic Curve E defined over the prime field Fp. The type of E 

can be determined from the coefficient of x
p-1 

in the cubic equation (x
3
+ax+b)

(p-

1)/2 
which has roots in K (an algebraic closure of K) as the following theorem 

states. 
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Theorem (3.1) [6, p. 140]: 

Let K be a finite field of characteristic p  2. Let E be an elliptic curve 

defined over K with Weierstrass equation E: y
2
 = f(x), where f(x)  K[x] is a 

cubic polynomial with distinct roots (in K ). Then E is supersingular if and only 

if the coefficient of x
p-1 

in f(x)
(p-1)/2 

 is zero. 

Note: The Hasse invariant of E defined in equation (1) is the coefficient of x
p-1 

in (x
3
+ax+b)

(p-1)/2
 [3]. 

3.1 The Formula for Supersingular Elliptic Curve 
Let E be an elliptic curve defined over the field Fp of characteristic p 

greater than 3 with Weiersrass equation E:y
2
=x

3
+ax+b. By putting s=p-1 we'll 

compute the coefficient of x
s
 in (x

3
+ax+b)

s/2 
which is equal to the coefficient of 

x
p-1 

in (x
3
+ax+b)

(p-1)/2
 as follows: 

Since  
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,
62

3

4
0

2

3

4
m

s
m

s
m

s
  then equation (5) becomes 

 
)6(24

24

2
6

0

2

3

4 







































s

m

sm

ms

xba

m

ms

ms

s

 



Constructing Supersingular Elliptic Curves Depending on the Coefficients 

of Weierstrass Equation ……………………………… Samaa Fuad Ibraheem 
 

 070 0202 /الخامس والستونمجلة كلية التربية الأساسية                                               العدد  

Where 








6

s
 is the greatest integer function. 

If we let 
2

1

s
Z    and 


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s
Z
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    ZmZZmZ 2,
2

1
11  . Therefore (Z1-m) is even quantity, which 

yields that (Z1-m) becomes even only when Z1, m are both even or both odd, so 

we have two cases: 

Case1: 

If Z1, m are both even then Z10 mod 2, m0 mod 2 and s0 mod 4 i.e p1 

mod 4. In other words, when p1 mod 4; m must be even less than or equal to 

(s/6). 

Case2: 

If Z1, m are both odd then Z11 mod 2, m1 mod 2 and s2 mod 4, i.e. p3 

mod 4. In other words, when p3 mod 4; m must be odd less than or equal to 

(s/6). 

 

For example take an elliptic curve E: y
2
=x

3
+ax+b defined on F13. E is 

supersingular iff the coefficient 
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 equal to zero. 

Since p=1 mod 4 then m is even less than or equal to 2, i.e. m=0, 2 and the 

coefficient is 20a
3
+15b

2
. 

Therefore if we want to find all supersingular elliptic curves that defined on 

F13, we must find the parameters a and b that satisfy: 

20a
3
+15b

2
=0 mod 13    …(7) 

The values of a and b that satisfy equation(7) is: 

a 1 1 3 3 4 4 9 9 10 10 12 12 

b 4 9 4 9 6 7 4 9 6 7 6 7 

which can be found using the following algorithm after giving the value of p as 

an input. 

(Note: The above results are obtained by using a program written in Matlab 

language) 

3.2 An Algorithm for Finding the Supersingular Curves 
 

Input: prime number p 

Outputs: a,b which makes the elliptic curve y
2
=x

3
+ax+b a supersingular 

 

1. set s=p-1 

2. if p=1 mod 4 ,m1=0, otherwise m1=1 
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3. for a from 0 to s do the following: 

3.1 for b from 0 to s do the following: 

3.1.1 if 4a
3
+27b

2
 0 mod p  

% computing Hass invariant 

1. for m from m1 to [s/6] step 2 do the following: 

3.1.1.1.1 w1=factorial(s/2)/(factorial(s/4-m/2)*factorial((s/2)-(s/4-m/2))) 

3.1.1.1.2 w2=factorial(s/4-m/2)/(factorial(s/4-m/2-m)*factorial(m)) 

3.1.1.1.3 w=w+w1*w2*a^(s/4-3*m/2)*b^m 

3.1.2 if w =0 mod p, return a,b 

4. Conclusion 

From this research, the supersingular elliptic curves that defined on Fp can be 

found without computing #E, by computing the coefficient of x
p-1

 in (x
3
+ax+b)

(p-

1)/2
 which is 
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 and finding the values of a, b that 

makes the above coefficient equal to zero, thus makes E(Fp) a supersingular 

elliptic curve. In this research we reduce the calculation by putting the available 

values of m in two cases, even or odd values. For computations we introduce an 

algorithm for computing the coefficient as well as finding the values of a and b 

which makes the elliptic curve that defined on Fp as a supersingular elliptic 

curve. 
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إنشاء منحنيات مفردة مفرطة بالاعتماد على معاملات 
 معادلة ويرسترس

 
 الخلاصة:

 Fp( المعرّف على الحقل المنته elliptic curve)ان معرفة نوع المنحني الاهليليجي 
له اهمية عند استخدام تلك المنحنيات الاهليليجية في التطبيقات وخاصة في انظمة التشفير. 

ن اكثر أمنية من غيرها. ولذلك قدمنا طريقة بسيطة لانشاء حيث ان بعض الانواع تكو 
xعن طريق حساب معامل (  supersingular)منحني اهليلجي مفرد مفرط 

p-1  فيf(x)
(p-

f(x)=xحيث   2/(1
3
+ax+b.  مع خوارزمية لحساب ذلك المعامل لانشاء المنحني

 المطلوب.
 

 


