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Abstract:

In the use of elliptic curves in its applications (especially in cryptography),
one often needs to construct elliptic curves with a known type (number of
points) over a given finite field F,, where some types are more secure than
others. So we introduce a simple way to construct a supersingular elliptic curve
by computing the coefficient of x** in  fx)®Y?  where
f(x)= x*+ax+b. And we give an algorithm that compute that coefficient and
construct the required curve.
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1. Introduction

Let Fy be a finite field with g=p" elements where p is a prime number and r
IS a positive integer. Efficiently, constructing supersingular elliptic curves of
prescribed order has its impact outside the area of arithmetic geometry.

In other application as cryptography, a supersingular curve of prime order
N=#E(F,) has the property that, its embedding degree with respect to N is very
small and this makes supersingular curves suitable for pairing based
cryptographic systems [2].

In 2008 Broker [1] gives an algorithm that construct a supersingular elliptic
curve over the finite field F, with trace of Frobenous t depending on the result
due to Waterhouse [7], where the inputs are a prime power g and an integer t.
Later, L.R. Finotti [3] gives a formula for the supersingular polynomial in
characteristic p>5 depending on the Hass invariant of E that defined on finite
prime field F,.

In this research, we'll follow a similar approach to introduce a formula for
supersingular elliptic curve derived from the Hass invariant too, but we obtained
another different result. We give an algorithm for computing this formula to
construct a supersingular elliptic curve over the finite field F,. This algorithm
depends on the field elements a and b that define the equation of the elliptic
curve E(F,) of characteristic greater than 3.

Section (2) contains elliptic curves and group structure and some important
definitions.
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Section (3) contains the computation of Hass invariant and the formula that
derived to constructing supersingular elliptic curves. For the facility of our
computation there is an algorithm that constructs a supersingular elliptic curve
using the formula which introduced in our research.

2. Elliptic Curve and Group Structure [8]

Let K be a field. An elliptic curve over K is a pair (E,©) where E is a non

singular curve of genus one over K with a point @ €E called the point at
infinity. The set of points (x, y) € KxK verifying the (non-singular) weierstrass
equation:

E(K): y*+a;xy+agy= X +ax*+ax+ag (aieK) ...(1)
together with the point O.

The set of points (x,y) that satisfied equation (1) and O form an abelian
group where O is the additive identity element. This group is denoted by E(K)
and the group operation is denoted by (+).

When the characteristic of the field K is greater than 3, the weierstrass
equation of an elliptic curve equation(1) can be simplified to

E(K): y* =x*+ax+b a,beK ...(Q2)
Definition (2-1)[6]

The discriminant (A) of the polynomial f(x) = x*+ax+b is -4a3-27b.

The curve given by weierstrass equation (1) can be non singular if and only
if A#0 [6]. So, to construct an elliptic curve defined over K=F, (prime field of
characteristic p > 3), we must make sure that the parameters a and b satisfy the
quantity

42°+27b*~0modp  ...(3)

Definition (2-2)[4,5]

The order of an elliptic curve is defined as the number of points on the
curve, and it is denoted by #E.
2.1 Supersingular Elliptic Curves

Let E(F,) be an elliptic curve with trace t and q is a power of p. E is said to
be supersingular if p divides t, where #E(F )=g+1-t. In other words we can say
that E is supersingular, if and only if t* = 0, g, 2q, 3q or 4q. Particularly when q
= p, the curve E over prime field of characteristic p>3 is supersingular if and
only if t is congruent to 0 modulo p, i.e. E has exactly (p + 1) points [5].
3. Determining the Supersingular elliptic Curves

Consider the Elliptic Curve E defined over the prime field F,. The type of E
can be determined from the coefficient of X" in the cubic equatlon (C+ax+b)®
Y2 which has roots in K (an algebraic closure of K) as the following theorem
states.
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Theorem (3.1) [6, p. 140]:

Let K be a finite field of characteristic p > 2. Let E be an elliptic curve
defined over K with Weierstrass equation E: y* = f(x), where f(x) € K[x] is a
cubic polynomial with distinct roots (in K ). Then E is supersingular if and only
if the coefficient of x"*in f(x)®?™" is zero.

Note: The Hasse invariant of E defined in equation (1) is the coefficient of x**
in 0C+ax+h) P2 [3].
3.1 The Formula for Supersingular Elliptic Curve

Let E be an elliptic curve defined over the field F, of characteristic p
greater than 3 with Weiersrass equation E:y*=x*+ax+b. By putting s=p-1 we'll
compute the coefficient of x® in (x*+ax+b)*?which is equal to the coefficient of
xPLin (+ax+b)P V2 as follows:

Since
n(n
(x* + (ax +b))" = Z(rj x> (ax + b)"
r=0
then
s %S 3¢
(x3+(ax+b))2=2 2 |x 2 (ax+bh)'
r=0\ r
% r E r L m 3(3-r)+r-m
_ 2 a™™pMx 2 (4)
r=0 m=0 r m
. . s S(E—r)+r—m ]
Now, the terms in Xx° are obtained whenX =X 2 . ie.
S
s=3(=)-2r—-m
(2) .
Substituting in (4) gives:
ol 2 s m) e
S>> 2 a2 |at 2b"x - (5)
r=0 m=0 S m
Z m
4 2

Its clearly that m, r must Dbe integers and m=>0,also that
S Cmro= 2> gm = % >m, then equation (5) becomes

4 2 4
S
%] > S_M) sam
4 2 M yS ...
s “ml4 2 atrhtx(6)
m=0| —_ _ __ m
4 2
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Where E} IS the greatest integer function.

S 1(s
L, =— Z==|=-m
If we let £, > and 2(2 jthen,
1

E(Zl —m)=2Z,(Z,—-m)=2Z . Therefore (Z;-m) is even quantity, which

yields that (Z;-m) becomes even only when Z;, m are both even or both odd, so
we have two cases:

Casel:

If Z;, m are both even then Z;=0 mod 2, m=0 mod 2 and s=0 mod 4 i.e p=1
mod 4. In other words, when p=1 mod 4; m must be even less than or equal to
(s/6).

Case2:

If Z;, m are both odd then Z;=1 mod 2, m=1 mod 2 and s=2 mod 4, i.e. p=3
mod 4. In other words, when p=3 mod 4; m must be odd less than or equal to
(s/6).

For example take an elliptic curve E: y*=x’+ax+b defined on Fi3. E is

S m

4 2
Since p=1 mod 4 then m is even less than or equal to 2, i.e. m=0, 2 and the
coefficient is 20a>+15b%
Therefore if we want to find all supersingular elliptic curves that defined on
F13, we must find the parameters a and b that satisfy:
20a*+15b°=0 mod 13 ...(7)
The values of a and b that satisfy equation(7) is:

[%] % E_m s 3m
supersingular iff the coefficient Y| 4 2 |a* 2b"™ equal to zero.
m=0 m

a 1 1 3 3 4 4 9 9 | 10 | 10 | 12 | 12

b 4 9 4 9 6 7 4 9 6 7 6 7

which can be found using the following algorithm after giving the value of p as
an input.

(Note: The above results are obtained by using a program written in Matlab
language)
3.2 An Algorithm for Finding the Supersingular Curves

Input: prime number p
Outputs: a,b which makes the elliptic curve y>=x*+ax+b a supersingular

1. sets=p-1
2. 1f p=1 mod 4 ,m1=0, otherwise m1=1

—
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3. for a from O to s do the following:
3.1 for b from O to s do the following:
3.1.1 if 4a°+27b% 0 mod p
% computing Hass invariant
1. for m from ml to [s/6] step 2 do the following:
3.1.1.1.1 wil=factorial(s/2)/(factorial(s/4-m/2)*factorial ((s/2)-(s/4-m/2)))
3.1.1.1.2 w2=factorial(s/4-m/2)/(factorial(s/4-m/2-m)*factorial(m))
3.1.1.1.3 w=w+wl*w2*a”(s/4-3*m/2)*b"m
3.1.2 ifw=0modp, return a,b
4. Conclusion
From this research, the supersingular elliptic curves that defined on F, can be
found without computing #E, by computing the coefficient of x** in (x*+ax+b)®

bl 2 s mY) som
— T m

whichis 24| s “m |4 2|3 °P

m=0| — _ m

4 2

makes the above coefficient equal to zero, thus makes E(F,) a supersingular
elliptic curve. In this research we reduce the calculation by putting the available
values of m in two cases, even or odd values. For computations we introduce an
algorithm for computing the coefficient as well as finding the values of a and b
which makes the elliptic curve that defined on F, as a supersingular elliptic
curve.
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