e bl e kel el | coelS el
ret el bzt — Grcas i s 50 i

Journal of the College of Basic Education Vol.31 (NO. 129) 2025, pp. 14-35

Particle Swarm Algorithm for Optimizing Hyperparameters and
Artificial Neural Network Parameters to Predict Nuclear Binding
Energy for Some Odd-Mass Isotopes

Ruya H. Ibrahim® Akram Mohammed Ali @
Department of Physics, College Department of Physics, College
of Science, University of Anbar, of Science, University of

Ramadi, Irag. Anbar, Ramadi, Iraq
Roy21s2010@uoanbar.edu.iq dr.akram@uoanbar.edu.iq
Abstract:

Acrtificial neural networks (ANNSs) are essential machine learning
models widely used in various fields and applications. These models rely on a
vector of parameters, which must be computationally estimated. In this study,
a fully connected multilayer perceptron ANN, a modern feedforward neural
network with two input layers and two hidden layers (each containing 10
neurons), was developed to estimate the ground state binding energy of
isotopes with odd mass numbers ranging from 17 to 339, covering 3414
nuclei. The ANN was applied to three models: the integrated nuclear model,
the liquid drop model (LDM), and an empirical formula. The predicted
ground state binding energies were evaluated using mean square error (MSE),
correlation coefficient (R), and accuracy. To optimize the ANN's
performance, parameters such as the number of hidden layers and learning
rates were refined using the particle swarm optimization (PSO) algorithm.
This optimization reduced the ANN error, achieving an MSE of 0.0099706
and a high accuracy of 99.736% for the LDM model. The correlation
coefficient R demonstrated a strong association between the target and output
values, confirming the accuracy and robustness of the models. The PSO
algorithm's optimization further minimized errors and improved the results,
validating the differences in binding energy between the three models and the
ANN. This approach underscores the effectiveness of ANNs in modeling
complex physical phenomena with high precision.

Keywords: Artificial neural network, binding energy, mean square error,
particle swarm optimization algorithm Error, PSO algorithm.
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Introduction:

Over the last ten years, development in deep learning has produced
advancements in several fields, such as computer vision (He et al., 2016;
Szegedy et al., 2017), natural language processing(Bahdanau, 2014;
Vaswani, 2017) and the recognition of speech (Hannun, 2014; Chan et al.,
2016). High-performing neural architectures are very important for the
success of deep learning in these fields. The automated process of the design
of neural architecture for a given task called “Neural architecture search
(NAS)” (Hutter, Kotthoff and Vanschoren, 2019) is already overall the best
human- design for architecture in the many tasks [8-10] as ImageNet [11] or
diverse and less-studied datasets (Shen, Khodak and Talwalkar, 2022). NAS
has a large overlap with hyperparameter optimization (HPO) (Feurer and
Hutter, 2019), where the hyperparameters get automated optimization.
Sometimes NAS is referred to as a subset of HPO, but the two techniques are
often different. By NAS, one can find a new state-of-the-art Artificial Neural
Network (ANN) for many tasks without any substantial human supervision.

The ANN has emerged as one of the important techniques for
modeling nonlinear complexes. However, in recent years, several
optimization techniques have been utilized to optimize the materials. One of
them is particle swarm optimization (PSO) (Kennedy and Eberhart, 1995),
which is based on cooperative behavior among species. So, in this work, we
will use these two technigues to establish a novel prediction-optimization
(ANN-PSO) model that predicts the nuclear binding energies for nuclei. This
approach provides a flexible, useful, and efficient tool for optimizing the
datasets of binding energies.

Explanation and BP neural network-based residual interaction
prediction model. We are able to compute the nuclear masses of A > 100 by
using a residual interactions model to combine the experimental values (Jiao,
2020a). In 2022, using the artificial intelligence network, the nuclear binding
energy, which is one of the most essential basic nuclear characteristics, was
described with an accuracy of 0.2 Mev (Zeng et al., 2024). The exact
calculation of the mass of the nucleus is considered one of the most important
quantities of basic inputs in nuclear physics, and to improve accuracy in the
models, artificial neural networks are used, a training method was proposed
for the neural network, and thus the results have been improved by 20% from
the original results that were calculated by applying the liquid drop model

(Lietal., 2022).
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One of the crucial things to understand, explain, and rationalize in
nuclear physics is how protons and neutrons can be packed into the small
volume of the nucleus despite the presence of the Coulomb repulsive force.
Therefore, it is necessary to rely on models that explain the phenomena of
nuclear structure. One of these phenomena is the binding energy, which
depends on the nuclear mass, which is one of the fundamental properties of
the atomic nucleus through which the rest of the properties (mass, decay
lifetime, reaction rate) are controlled, in addition to other information about
the nuclear structure (pairing, shell effect, deformation, etc.) (Lunney et al.,
2003). This energy is defined by the empirical formula
BE = [Zmp + Nmn — M (Z,N)]C? (in a.m.u,) which will be used in this
paper as an empirical formula.

In recent years, many studies have been carried out to calculate binding
energy values based on the nuclear mass study (Roca-Maza and Piekarewicz,
2008; Mumpower et al., 2016; Utama, Piekarewicz and Prosper, 2016;
Kondev and Naimi, 2017) included in AME2003(Audi, Wapstra and
Thibault, 2003), which is an essential database for many experiments and
which was updated in 2012 in AME2012 (Wang et al., 2012) and in 2017 in
AME2017 (Audi et al., 2017) after the development of experimental
equipment and the acquisition of more accurate data. The RMSD for 2353 in
AME?2012 decreased from 2.455 MeV to 0.235 MeV for the liquid drop
model, while for the rest of the models, it decreased by about 30%

(Jiao, 2020b).

Most of these nuclei were not calculated experimentally as most of
them were measured from the directions from the mass surface
determined by the pairing energy between proton and neutron. While
theoretical modeling is fundamental in extrapolating the binding
energy even to unknown regions of the nuclear chart, it is also tricky
due to the transitions that occur as a result of nuclear interactions and
also in the quantitative calculation of the many-body (Garvey and
Kelson, 1966; Duflo and Zuker, 1995; Thoennessen, 2018).

The Bethe-Weizsacker (BW) formula is the first predictive formula (Fu
et al., 2011; Jiang et al., 2012). Based on macroscopic considerations of a
liquid drop-like nucleus without taking into account microscopic effects.
However, results using new models such as Density Functional Theory
(DFT) and Relativistic Mean-Field (RMF) gave different values from those
observed experimentally, with Mean Squared Error (MSE) values of ~3 MeV
for the BW model (Costiris et al., 2009; Akkoyun, Bayram and Turker,
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2014), and 0.3 MeV for the WS model (Jiang et al., 2010). The accuracy of
these models is not sufficient for the study of nuclear structure, so bells were
needed to improve the accuracy of the prediction of the binding energy at any
known or unknown mass after the field was narrow.

From these facts, the goal of this research paper will be to use the
predictions that the neural network will give about the ground state binding
energy using MATLAB 2016b in terms of accuracy, correlation coefficient
(R), and mean square error (MSE ) after performing the necessary
calculations for the empirical formula and two theoretical models, namely the
liquid drop model and the Integrated Nuclear Model (INM) that formulated
based on the theory of quantum chromodynamics for nuclei with an odd mass
number within the nuclear chart. This detailed understanding of the nuclear
binding energy of nuclei of known or unknown mass will provide the
possibility of obtaining a more accurate map of nuclei with essential
applications in nuclear physics and astrophysics. Obtaining the MSE from
ANN (which uses two inputs and two hidden layers to create a single input)
data will enable us to compare these results with available experimental data.
Then, to obtain more accurate results and reduce the error rate to optimize the
reduction of the results, a PSO algorithm optimization function will be used
that gives better performance for the accuracy of the results. The selected
initialization ANN was optimized by the PSO algorithm to predict binding
energies, which is called the PSO-ANN model. In this regard, the parameters
of the PSO algorithm were set up, including the number of particle swarms
(Sw). Consequently, it will be used to optimize the number of hidden layers
and learning rate of the ANN and reduce ANN error by comparing the results
with the output values, mean square error of the target values, and results
calculated by the ANN. The reason we used this method is one of the
modern methods used to predict theoretical results that can be compared with
practical results and can be used in many applications in the field of physics,
especially nuclear physics, where reactions can be studied or any other
applications related to nuclear physics.

ANN Construction:

In the past few years, algorithms based on machine learning have appeared,
which have been widely used in many studies (Utama and Piekarewicz, 2017,
2018). One of these algorithms is the Artificial Neural Network (ANN),
which is a computer model that is based on the architecture and operation of
neural networks in the human brain; alternatively, it is a structure composed
of connected, adaptive SPUs, occasionally referred to as artificial neurons.
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Figure 1 is organized into layers: input, hidden, and output. The weight of

each neuronal link determines the signal strength. By adjusting these weights

based on data, ANNSs are trained to identify patterns and relationships in the

data. They are extensively employed in machine learning for a variety of
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applications, such as natural language processing and image recognition
(Takamoto et al., 2022).

Figure 1. A single model neuron (Bishop, 2006).
Understanding Artificial Neural Networks (ANNs) and how they work
requires many essential formulas (Hassoun, 1995; Bishop, 2006). The
activation function, which determines the weighted inputs of each artificial
neuron, can be linear (ReLU), threshold, sigmoid (o), step, Gaussian,
rectified linear unit function, etc. The formula is used to get the weighted sum
of inputs to a neuron.

Weighted Sum = Z[mi Xx)+b (1)
i=1

where @; is the weight of the ith input, x; is the ith input value, 7 is the
number of inputs, and b is the bias term. The mass data was taken from
AME2020 (Wang et al., 2021) and included 3414 nuclei. Two input layers,
two hidden layers (10 neurons per layer), and one output layer were selected
for the ANN. Training calculation using the TRINLM function is shown in
Figure 2.

Figure 2. Show two input features (Z, N), hidden layers of ten nodes, and
output (B.E) we use in ANN.
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A learning rule is used to update the connection weights during
training. The backpropagation algorithm is one typical learning guideline.
Depending on the job, various metrics are commonly used to calculate the
error (or loss) of the network's projections. For regression tasks, the Mean
Squared Error (MSE) is frequently utilized. A hyperparameter that controls
the weight of the gradient descent is updated by the learning rate. It regulates
the rate at which the network converges on a solution.

Particle Swarm Optimization (PSO) Algorithm:

Kennedy and Eberhart initially suggested the technique known as
particle swarm optimization (PSO) in 1995 (Kennedy and Eberhart, 1997). In
the statistical world, this was regarded as an adaptive computation approach
that had numerous benefits. It can be used in nuclear physics due to its
robustness, capacity for worldwide exploration, and simplicity of application.
Therefore, in order to better understand binding energy, we will use it in
relation to each particle's position (zi) and velocity (vi) (Phommixay,
Doumbia and Lupien St-Pierre, 2020). That given as:

z(t+ 1) =z,()+v,(t + 1) (2)
v, (t+1) =w v; ¢, X @, X [pbest(t) — z,(t)]+ ¢,
X a,[ghest(t) —z,(D)]  (3)

on the right side of Eq.3, the first term represents the effect of the motion of
particular particles, where W is the weight of inertia; the second term
represents individual perception, which is based on the previous behavior of
the particle (the particle compares its position with the previous best (
Pbest,)); the third term represents the social aspect of intelligence, based on
a comparison of the position of the particle and the best result obtained by the
best swarm( gbest;) . Eq.2 describes how positions are updated. Both ( a;
and «; ) are uniformly distributed random numbers in the range [0,1] in this
work; (cyand c5) are acceleration constants, z constriction factor, in our work
=0.729. The weight of inertia has two values Wy =0.9, W,in=0.4. A
Solution for our specific problem will be represented by the multi-
dimensional position of a particle and a swarm of particles that work together
to find the best position that corresponds with the best problem solution and
according to the original position to a new one.

The fitness function will be formulated using different approaches. One
utilizes a calculation model based on the domain problem to build this
function. This will help us with our work. The second approach is to assign
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weights based on fuzzy logic rules. These approaches emphasize the
importance of designing effective fitness in PSO to get high-quality solutions.
The fitness function is related to the objective function. To minimize or
maximize this function, one can use PSO, so we will be focused on
maximizing the objective function in order to improve the results:

Max. f(xy,%,) = 21.5 4+ x, sin(4mx,) + x, sin(20mx,) (4)

Where —3.0 = x; =121 and 41<=x,=58
This research evaluates the ground state binding energy of odd-mass

isotopes using three models: accuracy, correlation coefficient R, and mean
square error. Next, an artificial neural network (ANN) is estimated. An ANN
combines two inputs and two hidden layers to produce a single input.
Furthermore, the PSO algorithm'’s optimization function verifies the accuracy
and correctness of the work. Thus, it will be used to improve the number of
hidden layers and learning rate of the ANN and decrease ANN error by
comparing the results with the output values, mean square error of the target
values, and results estimated by the ANN.

Binding Energy (BE):

In nuclear physics, the binding energy of a nucleus is the amount of energy
needed to separate each of its constituent nucleons (protons and neutrons)
completely (Hixipopos and Ckopenbkuii, 2012). Analyzing binding energy
requires applying a variety of nuclear models to represent proton and neutron
interactions where nuclei's behavior, stability, and the energy needed to hold
its constituents together are all explained by these models. Empirical formula
and two theoretical models were utilized in this study: binding energy
equation from the experiment, which uses the mass difference as
B.E = Amc?. The second approach, known as the liquid drop model or the
Weizsaecker semi-empirical mass formula (SEMF), views the nucleus as an
incompressible nuclear matter droplet. A nucleus's total binding energy is
calculated using a formula which accounts for different contributions
(Aldawdy and Al-jomaily, 2022):

2

B =apd —aA?? —ac%—as}m%—kﬁm,ﬁ (5)

where empirical coefficients (ay, a,, a,, @sy.,, and pairing coefficients) are
obtained by fitting the model to experimental data. An extensive theoretical
framework for characterizing the properties of atomic nuclei is the Integrated
Nuclear Model (INM) (Ghahramany, Gharaati and Ghanaatian, 2012), where
a new formula for binding energy of all nuclides will introduced based upon
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intuitive assumptions. The INM is an attempt to include a wide range of
nuclear properties and behaviors using his unifying approach (Ghahramany,
Gharaati and Ghanaatian, 2012):
(N2 —=Z*)+ 8N —-2) my c*
B[Z,N)—{[A ( 37 +3)] " }
A=5 (6)
Results and Discussion:

For odd mass number 17<A<339 nuclei, of which there were 3414
nuclei, the binding energy was determined by combining experimental data
as well as the models (LDM and INM). After that, the nuclear binding energy
was computed using an Artificial Neural Network (ANN) and compared to
the results of the empirical, LDM, and INM models. ANN was used to
estimate the mean root square error, and the PSO algorithm was used to
optimize the outcome.

The role of optimization PSO determines which Artificial Neural Network
(ANN) parameters are optimal for each model in order to determine the
optimal mean error square (MES), as shown in Table 1.

The results of the ANN were enhanced by a random optimization
algorithm, as illustrated in each of the figures below, and the mean square
error (MSE) and correlation of the input binding energy calculated by the
(exp., LDM, and INM) with the results of the output by the ANN.
Additionally, the error ratio and accuracy of the -calculations were
determined. Finding the weight value of each link in a neural network that
will cause the output to most closely resemble the actual target values is the
goal of the training process for an artificial neural network (ANN).
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Table 1. The best parameters of the ANN for each model selected by
ANN-PSO to choose the best MES:

ANN Exp. |LDM |INM PSO EXp. LDM | INM
Paramet. | Mode | Mode | Mode ANN Model | Model | Model

I | | Paramet.
Learnin 0.5 Learnin | 0.634 |0.132 |0.709
g Rate g Rate 1 4 1
N. of By | N. of
Neurons 10 PS | Neurons
in O |in 22 1 10
Hidden We | Hidden
L1 get | L1

—)

N. of N. of 26
Neurons 10 Neurons
in in 18 1
Hidden Hidden
L2 L2

Every particle is initially put into the search space at the beginning of the
process. Three factors influence the particle movements for every iteration:

1. The current velocity.
2. The best performance.

3. The best performance in its neighborhoods.
Figure 3 depicts the general idea behind PSO operation.
Figure 3. The Structure of ANN-PSO Models utilized in this study.
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Figure 4. Best Training Performance of Mean Square Error (MSE) by
ANN and ANN-PSO.

The performance of the ANN in calculating the mean square error
(MSE) for the three models is shown in Figure 4. For the empirical formula,
the MSE started at 101 and gradually decreased until it reached the best
training performance at 0.010044 at 100 epochs in the ANN. When ANN-

February (2025) bl sl s A Gl Tdoes
23



e bl e kel el | coelS el
ret el bzt — Grcas i s 50 i

Journal of the College of Basic Education Vol.31 (NO. 129) 2025, pp. 14-35

PSO optimized the MSE, it settled at the best training, which was 0.0016383
at 0 epochs (The results were optimized, and 0 epochs were selected, i.e., we
rounded it up because the values are small and close to 0 at ANN-PSO at the
beginning of the Best MSE tends to penalize larger errors more heavily,
which aligns with our objective to minimize significant deviations in the
model's predictions. This makes ME a more appropriate choice for the types
of predictions and error distributions we are dealing with in this study). In
contrast, for the LDM model, the MSE was at ANN starting from the value
101 and gradually training at the value 0.00027653 in 100 epochs. When the
MSE was optimized by PSO, it settled at the value of 6.1772x1072 at 0
epochs. The INM model's value began at 12 and decreased progressively
until it stabilized at 0.014639 after 100 epochs. Similarly, the PSO's MSE
stabilization occurred at 2.3144x 10~7 at 0 epochs after optimization. In
Figure 5, which depicts regression and illustrates the degree of correlation
between the binding energy computed by the three models and the ANN
results, the target input data for the model is represented by the x-axis, and
the y-axis represents the output. From the left, we can see how widely
distributed the samples are on the zero line (Fit) for each model, and the
value R, which indicates the mean value where it was in the experiment, was
equal to R=0.9824. However, after using the PSO function to optimize the
result, the value changed to R=0.99715, which indicates how much the
spread of samples on the zero-line fit has improved the value of R. Regarding
the second model, LDM, the value of R before ANN optimization was equal
to R=0.99955 and after PSO it was equal to R=1. Similarly, the third model,
INM, which ANN calculated, was equal to R=0.99001, and after ANN-PSO
it was equal to R=1.
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Figure 5. The regression for correlation between the value of binding
energy of (Exp., LDM, and INM) with the binding energy of ANN,

Figure 6 displays an error histogram between the error value on the x-
axis, which was calculated based on the difference between the output of the
binding energy calculated by ANN and the result of the binding energy
calculated according to the three models. The y-axis indicates the instances of
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the results, where 3414 samples were collected in 20 pins, i.e., formed in the
form of totals. In the first case, as per the model exp., prior to the
optimization by ANN-PSO, the most severe error value was 0.000991 at
Instance 2750, followed by 250 columns at the values -0.122 and 0.124. For
the ANN-PSO optimization, the error closest to zero and the most severe was
equal to -0.02301 at Instance 2850, then the column at Intensity 450 with the
error value of 0.06107. After optimization by ANN-PSO, the error value of
the model LDM became the highest instance 2750 in the column whose error
value is equal to —33 X 10> and followed by the column with error
0.000307 at Instance 400, whereas, before optimization, the error value was
at the most severe column closest to the zero-value equal to 0.001998 at
Instance 2400, roughly followed by the column whose error value is equal to
-0.001877 at Instance 500. Regarding the error in INM, prior to optimization,
its value was -0.04819 at Instance 1700, followed by a column with an error
value of 0.06628 at Instance 1300. Following PSO optimization, we observe
that the error is getting closer to zero, and the outcome improved to
6.29 X 107> at Instance 1400, after which comes the column with an error
value of 0.00043 at Instance 600.
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Figure 6. Error histogram in 20 pins for values of binding energy by

ANN and optimized by PSO in Exp., LDM, and INM models.

In order to assess the training efficacy of every measurement tool
utilized and compare the error resulting from applying each tool to the
training data that was included in it, Figure 7 illustrates an error in the
cumulative distribution function (CDF) for every model. This error suggests
that our predictions may be within a specific range of accuracy. For the
training error in the experimental case, the error value started at the value (-
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1.1677) with a straight line and gradually climbed from (-0.45476) with a
sloping line until it stabilized at the error value (0.36961) and the accuracy of
99.385%, as shown by the CDF for the three models. The error value
exhibited a considerable decrease both prior to and following the PSO
optimization. It began at -0.8217 and steadily increased until it reached the
error value of 0.15953, with an accuracy of 99.443%. Regarding the LDM,
we observe that the training error via (CDF) had a straight line beginning at
an error value (-0.23679) and then a gradual sloping line ascending from the
value (-0.0567) until it stabilized at the (0.97097) with the highest accuracy
of 99.736%.

Following ANN-PSO optimization, the error scheme started to
gradually ascend from the value (-0.0029254) until it stabilized at the error
value (0.0010556) with the highest accuracy of 99.443%. The scheme CDF
started at an error value (-1.1356) with a straight line and gradually ascended
with a sloping line from the value (-0.56995) until it stabilized at training
error (0.43014) at the highest accuracy of 99.385%. We also observed that
the error scheme, after optimization by ANN-PSO, started to gradually
ascend from the value (-0.0034206) until it stabilized at the training error
value (0.001373) with an accuracy of 99.209%. The results were nearly
identical to INM in terms of accuracy.
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Figure 7. The CDF error scheme on the training data and the accuracy
of results for ANN and ANN-PSO.
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While accuracy explores the average mistake, precision looks into the
distribution of error. A localization strategy that shows an error distribution
with more minor errors happening more frequently than more significant
errors is the recommended approach. So, when examining the accuracy of the
localization techniques using the cumulative distribution function (or CDF)
of error distance (Liu et al., 2007). The best model for calculating binding
energy is obtained through the use of ANN, and after the optimization by
PSO, the three models were compared and the LDM model is better than the
other two models because it obtained the highest accuracy among the three
models (see Fig. 8 for 100 epoch locations with best training performance,
CDF plot of the mean sequer error obtained using the constructed ANN and
three models is 0.0099706).

~ Eest Training Performance is 0.0098706 at epoch 100
1

—

fag

N

] [S—

=

m—]

=

Mean Sqguared Error (mse)

(T - )]
10) Epachs

Figure 8. Show the best training and the cumulative distribution
function-CDF error scheme for the result in ANN for Expt. and LDM,
INM Models.
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The accuracy of the data and its distribution near the zero line was
calculated by calculating the difference between the results by ANN and the
computational results of the three models, as well as calculating the
difference between the results improved by the optimization function of the
PSO and the computational results of the three models. This was done
through the computational results obtained for the nuclei and their isotopes
according to the (ext., LDM and INM) models, the theoretical results of the
binding energy calculated by the artificial neural network, and the results
improved by the PSO, and the observations of the extent of distribution and
accuracy of the data in the model for LDM and its proximity to zero before

ANN- B.E Exp. ANN-B.ELDM ANN- B.E INM

w e 54 ™ ¥ am

ANN- B.E EXP.
ANN-BE INM

ANN.BELDM

Wass Number A Mass Number & ) Mass Number A

PSO- B.E Exp. PSO- B.E LDM PSO- B.EINM

PSO-ANN B.E EXP.
PSO-ANN.B.ELDM
PSO-ANN-B.E INM
-]
&
3

Mass Number & Mass Numder & Mass Number A

and after optimization and reduction the INM model's minimal error rate that
can be adhered to, as seen in Figure 9.

Figure 9. The difference between the binding energy in three models

with ANN and PSO results.

Conclusion:
The different simulations utilized in this work demonstrated that the neural
network's computational structures can accurately represent a wide range of
experimental and theoretical data regarding nuclear binding energy.
Additionally, the neural network demonstrated exceptional efficacy in
predicting and extrapolating the results within the framework of this work,
which begins with the most basic options for algorithmic, coding, and
training implementation. It is evident from our work that the nuclear binding
energy results for the investigated odd mass number nuclei were well
predicted.

February (2025) Ll sl s A Gl Tdoes
31



e bl e kel el | coelS el
ret el bzt — Grcas i s 50 i

Journal of the College of Basic Education Vol.31 (NO. 129) 2025, pp. 14-35

In light of these facts, this study suggests including even mass nuclei for a
more comprehensive understanding. Furthermore, exploring the potential of
the proposed models in different datasets or nuclear properties to assess the
generalization ability. Finally, this study suggests utilizing different
optimization techniques to enhance the results further and offer in-depth
insight into nuclear structure.
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