On Strong Periodic Ring

Muntaha Abdul Al Razak Hassin

Abstract

In this work we shall introduce a definition of strong periodic ring and we prove some properties of this type of rings.

1. Introduction : The concept of ring is very important concept in Algebra [1],[2]. We give a definition of periodic ring where a ring is called periodic if every subring is periodic that is there exist $r \in R$ such that rS=S for S subring of a ring R. And we give a definition of a strong periodic ring if rS=S for every r∈ R.

We find the intersection of two strong periodic subring is a gain strong periodic subring .we prove if R is a strong periodic ring and I be ideal of R then R_{I} is strong periodic ring.

2. Basic definition and remarks:

In this section, we recall the basic definition needed in this work 2.1 Definition [3]

Let R and S be two ring then a ring homomorphism F:R \rightarrow S is a mapping for all $r_1, r_2 \in \mathbb{R}$ we have $\mathbf{F}(\boldsymbol{r_1} + \boldsymbol{r_2}) = \mathbf{F}(\boldsymbol{r_1}) + \mathbf{F}(\boldsymbol{r_2})$ $F(r_1, r_2) = F(r_1).F(r_2)$

2.2 **Definition** [3]

Homomorphism function $f: R \rightarrow S$ where R,S be two rings is epimorphism if for each $s \in S$ there exists $r \in R$ such that f(r)=s.

2.3 Definition [4] : quotient ring

Let R be a ring and I be ideal of R then R/I is called quotient ring where

$$R_{I=\{a+i,a\in R\}}$$
 and we define +, on R_{I} by

$$(a+)_{R/I}(b+) = (a+b)_{R/I}I$$

$$(a+)_{R/I}(b+) = (a.b)_{R/I}I$$

In this section ,we recall a new definition and some example

3.1 **Definition :** A subring S of a ring R is said to be periodic subring if there exist $r \in R$; rS=S where r is called period elements.

3.2 **Example :** $Z_4 = \{0, 1, 2, 3, \}$, let $S = \{0, 2\}$

Let $r=3 \in Z_4$; 3S=S so S is periodic subring of R.

3.3 **Definition:** A ring R is called a periodic ring if every subring of R is periodic subring.

3.4 **Example :** Z_8 is periodic ring.

3.5 **Definition :** A subring S of a ring R is called strong periodic if rS=S for every $r \in R$.

3.6 **Definition** : A ring R is called strong periodic if every subring of R is a strong periodic.

3.7 **Example :**

- 1) {0} is a strong periodic subring of any ring since $r\{0\}=\{0\}$ for every $r \in \mathbb{R}$.
- 2) Z_2, Z_3, Z_4 are all strong periodic rings.

3.8 Remark:

It is clear that by definition (3-3) and definition (3.6) every strong periodic ring is periodic but the converse is not true for example

3.9 Example :

Let $\mathbf{R} = \langle \mathbf{Z}_{12,+12,\cdot,12} \rangle$ and let S1={0,2,4,6,8,10} is a subring of R then for every r \in R, rS1 = S1 then S1 is a strong periodic subring of R, also S2= [0,3,6,9] is a periodic subring but not strong subring since 10 S2 \neq S2.

3.10 Example :

Let $R = (M_2(\mathbf{n}), +, .)$ where **R** be the set of all real numbers. let $S = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$; $\mathbf{a}, \mathbf{b} \in \mathbb{R}, +...$ be subring of $M_2(\mathbf{n})$ and since there is

مجلة كلية التربية الأساسية

On Strong Periodic RingMuntaha Abdul Al Razak Hassin

 $r = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in R$ such that rS = S, So S is a periodic subring and since there is $r = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \in R$ but $rS \neq S$

S is not strong periodic subring.

3.11 <u>**Remark:**</u> It is clear that Z_{12} is periodic ring but the ring in Example (3.10) is not periodic ring since

 $S = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$; **a**, **b**, **c** $\in \mathbb{R}$, +...) is a subring of $M_2(\mathbb{R})$ but not periodic subring of $M_2(\mathbb{R})$.

In this section ,we shall prove several theorems concerning of strong periodic ring.

4.1 <u>Theorem</u>: The intersection of any two strong periodic subring is a gain strong periodic subring.

Proof:

Let R be a ring and S_1, S_2 are strong periodic subring there for each $r \in R$, $rS_1=S_1$ and $rS_2=S_2$ then $r(S_1 \cap S_2)=rS_1 \cap rS_2=S_1 \cap S_2$

Thus $S_1 \cap S_2$ is a strong periodic subring.

4.2 <u>Cor:</u> let R be periodic ring and A,B be two subring of R then $A \cap B$ is periodic subring if A and B are periodic subring which have the same period. <u>Proof</u>: observely.

4.3 <u>Theorem :</u> Let R be a periodic ring and let A and B be two subring of R such that A = B, if B is strong periodic ring then A be periodic ring.

Proof :

TO prove $\forall S \subseteq A$; rS = S $\forall r \in R$

▼ S ⊆ A ⊆ B so S ⊆ B but B is strong periodic ring so rS=S ▼ r∈ R.

4.4 **<u>Remark :</u>** It is Clear that every ideal is periodic subring.

4.5 <u>Theorem</u>: If R is strong periodic ring and I be ideal of R then R/I is strong periodic ring.

Proof:

Let $S \subseteq R$ and S be strong periodic subring of R, To prove S

 \Box is strong periodic subring of R / I

Let $r+I \in \mathbb{R}/I$ for each $r \in \mathbb{R}$ to prove

$$(\mathbf{r} + \mathbf{I}) \cdot (\mathbf{S} + \mathbf{I}) = \mathbf{S} + \mathbf{I}$$

 $(r + I) \cdot (S + I) = rS + I = S + I$ since S be strong periodic ring.

4.6 <u>Theorem</u>: Let R , S be two rings and f be epimorphism s.t $f:R \rightarrow S$, if R is strong periodic ring then S is a strong periodic ring.

١٢٢ العدد الخامس والستون/ ٢٠١٠

Proof:

Let W be a subring of S, then $f^{-1}(W)$ is a subring of R But R is strong periodic ring so for each $r \in R$ we have

 $rf^{-1}(W) = f^{-1}(W)$ or f(r)W = W

Thus S is a strong periodic ring.

4.7 Theorem :

Let F: $R \rightarrow S$ be epimorphism and S be strong periodic ring then R is strong periodic ring.

Proof :

Let A be a subring of R Then f(A) is a subring of S

But S is a strong periodic ring so for each $s \in S$ we have

sf(A)=f(A) or $f^{-1}(s)A=A$

Thus, R is a strong periodic ring.

References

- 1-F.W Anderson and K.R Fuller, Ring and categories of modules , university of Oregon , 1973
- 2 K.R Good reat , Ring throry –Non-singular ring and Modules , Marcel Dekker ,New York and Basel 1976
- 3-F.kash , Modules and Rings, Academic , London , New York , 1982
- 4 Farleigh , B . john , Afirst course in Abstract Algebra , Department of Mathematics, university of Rhoda is land,1981