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1. INTRODUCTION 

Acute lymphoblastic leukemia (ALL) is an overwhelming health challenge in modern oncology. The Global 
Cancer Observatory showed that about 1 million people were diagnosed with leukemia that year, with 627,105 
death, highlighting the pressing need for well-developed diagnostic and therapeutic procedures [1]. Even 
though ALL majorly affects the pediatric patient population, the adult patient population still considerably 
contributes to its complexity and gravity, making its management strategies very complex. The difference in 
the capacities of cancer management infrastructure between high-income and low-to-middle-income countries 
emphasizes the relevance of visionary and swift diagnosis tools to combat the rising morbidity rates related to 
ALL. 

For patients with ALL, the precise diagnosis of malignant blasts is particularly different from that of normal 
lymphatic lineage, thus producing diagnostic errors and ambiguities. Routine examination is conducted in 
terms of morphological, cytochemical, and immunophenotypic criteria, of which clinicians are usually short of 
experience with or without subjective interpretation, leading to necessary invasive procedures. In addition, the 
diagnostic dilemma is overwhelmed by limited datasets that are inadequate to cover everything about normal 
lymphoid precursors, thereby reducing the complexity of creating computer-aided diagnosis (CAD) appropriate 
for untargeted leukemia detection. As explained earlier, the current diagnostic approaches suffer from some 
deficiencies. Therefore, innovative diagnostic techniques that could benefit from the recent advances in 
computational techniques and deep learning algorithms with very high accuracy must be considered and 
adopted in response to these pressing needs. Many approaches have been proposed at present.  

2. RELATED WORKS 

In this section, some related works were reviewed to further understand ALL diagnosis and its. 

ABSTRACT  
Acute lymphoblastic leukemia (ALL) is a main health problem throughout the world. Therefore, fast 
and exact diagnosis is the most crucial factor for providing efficient management and treatment 
methods. The conventional diagnostic tools, based on the morphological and cytochemical 
investigation of blood and bone smears, are usually not specific and laborious. Thus, they often 
result in diagnostic errors and delay in treatment initiation. In this paper, ALL-diagnosing methods 
based on the convolutional autoencoder (CAE) was proposed to reduce the amount of data, and 
then convolutional neural network (CNN) was applied to identify ALL. The design method 
employed deep neural networks to recognize the features of the cells in question and then 
distinguish them as either leukemic or healthy cell types. The proposed laboratory method, with 
the use of the curated datasets of annotated pathological images of normal lymphoid progenitor 
cells, aimed to tackle the challenges related to the lack of curated datasets with annotated images 
of these cells. These challenges are believed to be linked to imprecise and time-consuming 
leukemia diagnosis and cure process. The simulated results confirmed the efficiency of the 
suggested technique, where CAE showed a correlation coefficient of 0.987 for lymphoblastic cells 
and CNN had an accuracy rate of 99.92% in ALL diagnosis. Such data demonstrated the capability 
of deep-based methodologies to fight leukemia. 
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The utilization of neuro-fuzzy and group data handling methods was investigated in [2] for diagnosing 
childhood acute leukemia through complete blood count tests, incorporating principal component analysis 
(PCA) to enhance diagnostic accuracy. Patient/non-patient differentiation was efficiently achieved via the 
adaptive neuro-fuzzy inference system, and distinguishing between specific disease types may necessitate 
additional pre-processing operations such as feature reduction. In [3], patients diagnosed with chronic myeloid 
leukemia (CML) were identified using the BCR-ABL1 diagnostic test and six consecutive prior years of blood 
cell counts in the largest U.S. integrated healthcare system. Machine learning (ML) models (XGBoost and least 
absolute shrinkage and selection operator [LASSO]) that were trained on blood cell counts at different time 
intervals before diagnosis demonstrated improved predictive ability. An ALL detection technique was 
introduced in [4], where three models incorporating fully connected and/or dropout layers in the ResNet50 
architecture were presented. The model with optimal training performance was chosen for feature extraction. 
Logistic regression, support vector machine (SVM), and random forest (RF) were employed for ALL 
classification, and their performances were compared. A study [5] explored the application of transcriptomic-
based ML to predict acute myeloid leukemia (AML) status across 12,029 samples from 105 studies. 
Employing data-driven and high-dimensional approaches, the study suggested the potential for a near-
automated workflow in AML diagnosis through a scalable combination of transcriptomics and ML, providing 
risk prediction, differential diagnosis, and subclassification capabilities. An ML analysis of pediatric ALL [6] 
showed the significance of clinical, phenotypic, and environmental variables in identifying the underlying 
causes of the disease. The study included 50 pediatric patients and utilized four supervised ML algorithms 
(classification and regression tree [CART], RF, gradient boosted machine, and C5.0 decision tree). Another 
study [7] introduced an ML model (RF) for efficient diagnosis of AML by detecting and classifying immature 
leukocytes. Utilizing images from The Cancer Imaging Archive, image format conversion, multi-Otsu 
thresholding, and morphological operations were employed for segmentation, extracting 16 features, including 
two novel nucleus color features. Study [8] aimed to develop diagnostic systems for early leukemia detection 
by using ALL image databases (ALL_IDB1 and ALL_IDB2). Three systems were proposed as follows: 1) 
artificial neural network (ANN), FFNN, and SVM based on hybrid features; 2) convolutional neural network 
(CNN) models (AlexNet, GoogleNet, and ResNet-18) with transfer learning for early leukemia detection; and 
3) hybrid CNN–SVM technologies. In [9], an integrative analysis of RNA-seq data from BCR-ABL1-positive 
acute leukemia samples identified p190 BCR-ABL1, a novel MAP2K2 gene fusion, and clinically significant 
mutations. Scoring algorithms and ML demonstrated high diagnostic performance not only for the original 12 
BCR-ABL1–positive cases but also for 427 public gene expression datasets from acute leukemia, irrespective 
of specific genetic aberrations. Study [10] employed artificial intelligence (AI)/ ML predictive modeling on 
morphological and immature fraction-related parameters derived from complete blood cell count (CBC) to 
differentiate various types of leukemias at the pre-microscopic level. By utilizing routine and research CBC 
parameters from 1577 subjects with hematological neoplasms, the study demonstrated the predictive capacity 
of research CBC items through statistical analysis, heatmaps, and PCA. Study [11] proposed an automated 
leukemia detection process using ML and image processing techniques on a dataset comprising blood smear 
images from patients with and without leukemia. Image segmentation employed K-means clustering, marker-
controlled watershed segmentation, and HSV color-based segmentation, extracting distinctive features from 
segmented lymphocyte images. The SVM classifier was then employed for leukemia classification into AML, 
ALL, CML, or CLL. In [12], an ML model was trained on a multicentric dataset of 2177 individuals from 27 
organizations, 25 cities, 15 countries, and four continents, utilizing 26 probe sets and age features to classify 
AML or healthy status. Study [13] proposed modifications to CNN topologies for precise recognition of 
nonmalignant and malignant cells, particularly focusing on automatic leukemia detection using CAD models. 
In a single-center study, a deep learning model was developed for classifying leukemic B-lymphoblasts, 
achieving a test accuracy of 95.59% through data augmentation methods and transfer learning techniques to 
enhance performance on a limited dataset. A model was developed in [14] to classify acute leukemias, 
including acute promyelocytic leukemia, and differentiate them from non-neoplastic cytopenia by using data 
from 531 patients. The model involved unsupervised learning with Gaussian mixture model and Fisher kernel 
methods on flow cytometry (FC) data, followed by supervised SVM classification. Study [15] introduced a 
novel method utilizing ML algorithms on leukemia GSE9476 cell microarrays to predict the initial leukemia 
disease. By employing decision trees, naive Bayes (NB), RF, gradient boosting machine, linear regression, 
SVM, and a novel approach combining logistic regression with decision tree parameters, the proposed 
ensemble LDSVM model achieved an impressive accuracy of up to 99%. Study [16] focused on ML-based 
treatment outcome classification for patients with ALL under 18 years of age and analyzed data from 241 
pediatric patients treated at MAHAK Hospital in Iran from 2012 to 2018. The dataset included demographic, 
medical, and treatment-related complication features. By employing common classification algorithms, the 
XGBoost algorithm achieved an accuracy of 88.5% in the first scenario, whereas SVM emerged as the superior 
model in the second scenario, with an accuracy of 94.90%. Study [17] focused on employing optimal ML 
algorithms to detect leukemia in its early stages. Peripheral blood smear (PBS) images, which are microscopic 
representations of blood samples, were collected, preprocessed, and segmented based on pixels. The enlarged 
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portions of the affected areas were utilized for feature extraction, and CNN was employed for classification, 
achieving accurate leukemia detection. Study [18] systematically evaluated existing ML-based algorithms for 
leukemia detection and classification using PBS images. The ML techniques achieved an accuracy rate 
exceeding 93.5% in the PBS image analysis for leukemia detection, showcasing the potential of ML 
applications in exceptional leukemia diagnosis from PBS images. In another study [19], leukemia cancer data 
with 7129 genes and 72 patients (47 patients with cancer and 25 controls), were obtained from the Kent Ridge 
Biomedical Data Repository, USA. Five feature selection techniques, including t-test, Wilcoxon sign rank sum 
test, RF, Boruta, and LASSO were used. Six classifiers, namely Adaboost (AB), CART, ANN, RF, linear 
discriminant analysis (LDA), and NB, were employed. Study [20] introduced two automated classification 
models by using blood microscopic images for leukemia detection. Transfer learning, which employs a pre-
trained deep CNN (AlexNet), was utilized. The first model involved pre-processing, feature extraction, and 
classification with various classifiers, and the second model fine-tunes AlexNet for feature extraction and 
classification. Experiments were conducted on a dataset of 2820 images. Various ML algorithms were 
employed in [21] to create an automated analysis for classifying normal and chronic lymphocytic leukemia 
cases in clinical FC. Among them, the gradient boosting algorithm demonstrated the best results, with the 
XGBoost classifier. An Internet of Medical Things framework was proposed in [22] for efficient leukemia 
identification, utilizing cloud computing to connect clinical devices and facilitate real-time coordination for 
testing, diagnosis, and treatment. The framework employed dense CNN (DenseNet-121) and residual CNN 
(ResNet-34) for leukemia subtype identification, utilizing publicly available datasets ALL-IDB and ASH 
image bank. An algorithm was proposed in [23] for early-stage leukemia detection using image processing and 
ML classification techniques. K-means clustering segment images and linear SVM were applied to classify 
cancerous and non-cancerous cells. The algorithm, which was validated on the ALL-IDB dataset with 368 
images, achieved 95% accuracy and approximately 93% precision. Two classification models were proposed in 
[24] for ALL detection, utilizing the ALL-IDB2 dataset of blood microscopic images. The hybrid model 
involved image pre-processing, feature extraction with AlexNet, and classification using SVM, kNN, 
XGBoost, and decision trees. The AlexNet-based model employed image pre-processing and conducts feature 
extraction and classification using AlexNet. A novel deep learning algorithm was proposed in [25] for 
leukemia diagnosis through microscopic blood sample images. The architecture incorporated squeeze and 
excitation learning to enhance feature representation, emphasizing channel associations. The model exhibited 
improved diagnostic performance on leukemia datasets (ALL_IDB1 and ALL_IDB2) through extensive 
experiments on cropped and full-size images, addressing data scarcity and enhancing overall accuracy. 

While giving encouraging hints to the overall progress in the field of medical imaging and diagnostic 
technologies, the exact diagnosis of ALL still seems to be unclear. The main diagnostic procedures, which 
crucially rely on morphologic and cytochemical examination of blood and bone marrow samples, are often 
very labor-intensive and time-consuming and the results are relatively subjective. Further, the digital methods’ 
diagnostic accuracy can be diminished by the subjectivity and variability between the observers, as well as by 
the fact that it relies on subjective criteria only, which can result in misdiagnoses and treatment delays. 

This work indexes the current body of research by establishing a new method for ALL diagnosis, with a 
synthesis of CAE for feature extraction and CNN for classification. The proposed method centers on the use of 
powerful deep learning models to extract complex features from lymphoblast cell photos, followed by accurate 
classification as leukemia or non-cancer cells. 

The methodology comprises the training of CAE to obtain the key cell morphological features of the 
lymphoblast images and then transforming these features into the inputs of CNN, which is parametrized for 
classification. The proposed approach let solving the feature extraction and classification tasks together in the 
same framework. Thus, improvements in diagnosis accuracy and efficiency are possible, which could lead to 
early diagnosis and timely intervention. 
 

3. DATASET 

The dataset used in this study was thoroughly prepared in the Laboratory Oncology Unit of Dr. B.R.A ICTR 
and Human Genetics Institute, All India Institute of Medical Sciences (AIIMS), New Delhi, India. The slides 
were conscientiously made by the experimental method using marrow aspirate from both control- and patient 
subjects and contained normal cells obtained from all uninvolved individuals and cancer cells acquired from 
patients newly diagnosed with B-cell ALL (B-ALL). The preparation process involved placing the slides on a 
Jenner–Giemsa stain to help highlight the desired cells. Then, the slides were observed under a Nikon 
microscope with a Nikon DS5M camera for capturing 2560 × 1920 size images of the slide. The format for 
saving the images was BMP. 
The slide images that were recorded using a microscope were picked up after word-by-word debugging by an 
onco-pathologist, who is a specialist in that field, to identify cells of interest, particularly lymphoblasts, which 
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are the leading cause of B-ALL. As the examination of the image produced a considerable number of cell 
types, including lymphoblasts, plasma cells, and red blood cells, the lymphoblasts must be separated and 
marked out for further study. The lymphoblast identifier was created by a single pathologist specializing in co-
oncology, who was aware of the significance and accuracy of maintaining consistency. 
For 2 years, the dataset compilation process encountered variability in stain color among subjects’ slides. A 
stain color normalization technique known as the GCTI-SN method was employed to mitigate this variability, 
utilizing a reference image to standardize stain colors across images. Subsequently, cell images were 
segmented from the microscopic images by using an in-house segmentation pipeline, which successfully 
separated cells even within clustered formations. This meticulous workflow culminated in the creation of a 
dataset comprising 7108 single-cell images obtained from 118 subjects, including 49 control (healthy) subjects 
and 69 cancer subjects. 
Given the inherent variations in cell image sizes, a standard size of 350 × 350 was uniformly achieved for each 
image by padding columns and rows with zero intensity, ensuring consistency across the dataset [26]. 

4. BASIC CONCEPTS 

In this section, the basic concepts and networks needed for introducing the proposed method were explained, 

4.1 CNN 

CNN is a type of feedforward neural network designed for automatic feature extraction through convolutional 

structures. In contrast to traditional methods requiring manual feature extraction, CNNs automatically learn 

and extract features. The architecture is inspired by visual perception, where artificial neurons correspond to 

biological neurons, CNN kernels act as receptors for various features, and activation functions mimic the 

transmission of neural signals above a threshold. 

CNNs offer several advantages compared with general ANNs. First, they employ local connections, where 

each neuron connects to only a small number of neurons in the previous layer, reducing parameters and 

accelerating convergence. Second, weight sharing allows a group of connections to share the same weights, 

further reducing parameters. Third, down-sampling through pooling layers leverages local image correlations, 

reducing data size while preserving essential information and eliminating trivial features. These three 

characteristics establish CNNs as a prominent algorithm in the deep learning field [27]. This network consists 

of different layers as follows: 

• Convolutional Layer: 

The convolutional layer is the fundamental building block of a CNN. It performs convolution operations on 

the input data by using filters or kernels. These filters slide over the input to detect spatial patterns such as 

edges, textures, and shapes. This process involves sliding a window over the image, learning features through 

shared weights and biases, and creating feature maps that capture local receptive fields. Equations 1 and 2 

describe the output matrix size without padding and the convolution operation, and Equation 3 illustrates the 

output size with padding to maintain the input image size as follows: 

𝑁𝑋𝑁 ∗ 𝑓𝑋𝑓 = 𝑁 − 𝐹 + 1 ,   [1] 

𝑂 = 𝜎(𝑏 + ∑ ∑ 𝑤𝑖,𝑗  ℎ𝑎+𝑖,𝑏+𝑗
31
𝑗=0

31
𝑖=0 ),  [2] 

𝑁𝑋𝑁 ∗ 𝑓 ∗ 𝑓 =
(𝑁+2𝑃−𝑓)

(𝑆+1)
  ,  [3] 

where O represents the output, P denotes padding, s refers to stride, b means bias, σ is the sigmoidal 

activation function, w is a 32 × 32 weight matrix of shared weights, and ℎ𝑥,𝑦 is the input activation at position 

x, y. Convolutional layers help the network automatically learn hierarchical features from the input [28]. 

• Batch Normalization: 

Batch Normalization is a technique used to normalize the inputs of a layer within a mini-batch. It helps in 

reducing internal covariate shifts, leading to accelerated convergence during training. By normalizing the 

inputs, batch normalization improves the stability and generalization of the network. 

• Rectified Linear Unit (ReLU): 

https://doi.org/10.25195/ijci.v50i2.502
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ReLU is an activation function that introduces nonlinearity to the model by outputting the input for positive 

values and zero for negative values (Equation 4). The ReLU layer maintains the size of the input, with the x 

and y dimensions being the same. Essentially, the ReLU functions as a truncation carried out individually for 

each element within the input. The primary objective of incorporating ReLU in a CNN is to enhance its 

nonlinearity. Given that the semantic information in images involves complex relationships, the CNN’s input-

to-output mapping must exhibit strong nonlinearity. Despite its simplicity, the ReLU function serves this 

purpose by introducing a nonlinear element, as depicted in Figure 1 [29]. 

𝑅𝑒𝐿𝑈 =  {
0,      𝑖𝑓 𝑥 < 0 
𝑥      𝑖𝑓 𝑥 ≫ 0

     [4] 

• Dropout: 

Dropout is a regularization technique used to prevent overfitting in neural networks. During training, random 

units in the network are “dropped out” by setting their weights to zero. This helps prevent the network from 

relying too much on specific neurons, thus promoting more robust and generalized learning. 

 

Fig. 1: ReLU function 

• Global Average Pooling (GAP): 

GAP is a technique used to reduce the spatial dimensions of the input while preserving important features. 

Unlike traditional fully connected layers, GAP calculates the average value of each feature map across its 

entire spatial dimensions. It reduces the number of parameters and helps prevent overfitting. 

• Fully Connected (FC) Layer: 

FC layers connect every neuron in one layer to every neuron in the next layer. These layers are often used 

towards the end of the CNN architecture to combine high-level features and make predictions. The FC layer 

comprises neurons that establish direct connections with neurons in the two neighboring layers, without 

establishing connections with any layers in between. This arrangement shows how neurons are organized in 

conventional types of ANNs [30]. 

• Softmax: 

The softmax layer serves as an effective means for illustrating categorical distribution. It predominantly 

employs the softmax function in the output layer, which entails normalizing the exponentiated output values. 

This function, being differentiable, signifies a probability associated with each output. The exponential 

component contributes to enhancing the probability of the maximum value. The softmax equation can be 

expressed as follows: 

𝑜𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑀
𝑖=1

      [5] 

In softmax, the output for category i is then normalized to give o_i, the output features are z_i for category i, 

and the number of output nodes is M [31]. 

https://doi.org/10.25195/ijci.v50i2.502
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In sum, CNNs are breakthroughs in the science of computer vision that use the convolutional layers, batch 

normalization, ReLu activation, dropout, global average pooling, fully connected layers, and softmax 

activation methodologies to autonomously extract and learn hierarchical pattern features from the image data 

and precisely classify the objects and other visual objects regardless of the input dimensions and size. 

4.2 Standard Autoencoder 

 

One of the regular autoencoder’s major steps is compressing the image into a smaller set of numbers. First, 

the entrance of the data is altered using encoding into code hidden. An activation function, such as the 

sigmoid or hyperbolic tangent, is used as a step function for the input data to enable transformation. The y-

intercept (b) and slope (w) are the activations function’s parameters that determine its curves. The coded data 

are the output that correlates to the size of the data used. 

Second, the encoding phase is the same as decoding in disguise; it means that input data is formulated by 

decoding. Out of reconstruction processes, another set of weights and biases is involved that gives the result 

when applying the activation function (ϕ). The emitted output, if not otherwise stated, ought to closely mimic 

the given input data. 

Further, the error squares between the original input data and the output reconstruction are calculated to 

evaluate the autoencoder performance. This error is called the quadratic error cost function; it can be done by 

the squared Euclidean distance. The autoencoder, especially suitable for image and audio processing, has 

been used in the fields of 3D mask synthesis, image denoising, and recognition. The reduction is achieved by 

these iterative processes [32]. 

4.3 CAE 

CAE is the encoder in a built-in feature of the standard autoencoder being replaced by a convolutional layer. 

It has many convolutional layers in it, and the convolutional layers are powerful for structured grid-like data 

such as images. Similar to the simple autoencoder, the input layer and output layer have the same size. While 

CAE uses transposed convolutional layers for the decoder network, in the convolutional autoencoder the 

decoder network is used. Thus, the used architecture is made of convolutional layers in the encoder and 

transposed convolutional layers in the decoder, and they are responsible for feature extraction and 

decomposition. As shown in Figure 2, CAE represents data encoded and passing through a deep learning 

model. The encoder part includes convolutional layers for encoding the data input, and the decoder utilizes 

the transposed convolution layers to decipher the original input. Through adaptation, going to a more spatial 

hierarchy is possible than in a completely connected design. Each convolutional layer is characterized by a set 

of parameters, which mostly play the role of forming the receptive field and the output feature space on each 

layer. All these parameters directly influence the general performance and capacity of the convolutional 

machine autoencoder system. 

The main idea of a CAE (a kind of neural network) is to determine a kind of compressed representation or 

code for each of the samples by minimizing the mean square error(s) between the input and the output. In 

CAE, two layers correspond to the encoder fW(⋅) and the decoder gU(⋅). These layers are modified to include 

convolutional operations. The encoder part fW(⋅) typically involves convolutional layers that capture spatial 

hierarchies and patterns in the input data. The decoder gU(⋅) consists of transposed convolutional layers to 

reconstruct the original input from the encoded representation. For a fully connected autoencoder, the encoder 

and decoder functions can be expressed as follows (Equations 6 and 7):  

𝑓𝑤(𝑥) = 𝜎(𝑊𝑥) ≡ ℎ,    [6] 

𝑔𝑢(ℎ) = 𝜎(𝑈ℎ),     [7] 
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Fig. 2: Convolutional autoencoder structure 

 

where x represents the input vector; h is the embedded code or representation; σ is an activation function 

(e.g., ReLU or sigmoid); and W and U are the weight matrices associated with the encoder and decoder, 

respectively. The bias terms are omitted for simplicity. During training, CAE minimizes the MSE between the 

input and output over all samples, following the objective function as follows:  

𝑚𝑖𝑛𝑤,𝑢
1

𝑛
∑ ‖𝑔𝑢

𝑛
𝑖=1 (𝑓𝑤(𝑥𝑖)) − (𝑥𝑖)‖.2

2                    [8] 

After training, the embedded code h serves as a new, more compact representation of the input sample, 

capturing essential features and patterns in the data. This compressed representation is often useful for various 

tasks such as image reconstruction, denoising, or feature extraction [33]. 

5. METHODOLOGY 

The method involves feature extraction using a CAE curve, which is essentially a deep learning architecture 

long known to be relatively proficient in extracting compact and well-informative solutions of the provided 

data. In the light of ALL diagnoses, CAE can be similar to professionally recognizing main points from 

lymphoblast cell images, resulting in correct classification. A CAE that enables essential features that 

characterize lymphoblast ALL, such as size and texture, while still maintaining details of the original image 

during the extraction process was created to obtain informative features from lymphoblast cell images. The 

CAE architecture contains three convolutional parts for the encoder; each part has a convolutional layer, a 

leaky RELU activation layer, and a max pooling layer. This decision is, therefore, based on the hierarchical 

nature of the features of images, which play a vital role in CAE because as the network progresses, it goes 

through more abstract representations. Within each block of convolutional layers, the number of filters is less 

than three due to the dimensions of the images (450 × 450 × 3). A network with three filters per layer can be 

equipped with higher spatial resolutions because it can be employed to determine patterns and textures in 

lymphoblast cell images. The numbers of convolution kernels in the first last layers were set as 9, 27, and 27, 

respectively, enabling details extraction from images at multiple levels of abstraction. The initial layer with 9 

kernels focuses on detecting basic features such as edges and textures. Progressing deeper into the network, 

the number of kernels was increased to 27 in the subsequent layers to capture more complex and abstract 

features. Leaky ReLU activation functions were involved to treat the problem of death neurons by permitting 

a gradual flow of small non-zero gradients in which the unit is inactive. Feature extraction must learn 

infrequent or negative examples. However, this robustness ensures it still discovers informative features 

providing high accuracy and a low error rate. The decoder was built with the opposite structure of the encoder 

with the depth-to-space layer applied instead of the pooling function to expand the depth of the image to the 

original image size for better image reconstruction. This selection is important because it enables a good 

portrayal of input images while simultaneously preserving the spatial cues, crucial for ALL cells to be 

captured as they are. The arrangement of the CAE’s bottleneck layer is similar to the transforming feature 

maps from 2D to 1D, and its size is 67,500 × 1. This “squished” model is designed was represent significant 

aspects of input images for efficient feature extraction that could be helpful in the subsequent neural network 

classifier. States from the encoded one-dimensional feature space are very descriptive because they may be 

applied in mapping the lymphoblast cell images through the decoder. The reviving of the process 

(reconstructing) guarantees that less-important aspects, such as the cell size, shape, and texture, are well-

https://doi.org/10.25195/ijci.v50i2.502
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preserved, which, in turn, gives the extracted features credibility when considering them for leukemia 

diagnosis. In addition, hierarchical convolutions in CAE enable the detection of hierarchical features that are 

determined by either local or global neighbors of ALL cells. This system adoption advances the capability of 

the model to identify the minuscule differences between normal white blood cells and cancerous leukemic 

blasts, thus enhancing the diagnostic precision. Fig. 3 presents the structure of the CAE with which the 

learnable parameters and the convolution operator are associated. Around 15.9k of the learnable parameters 

are employed in the network, and they could be affected by the environment while the training stumbles on 

the feature extraction and reconstruction performance. 

After features are automatically encoded using CAE, the extracted features are processed by CNN for final 

classification. Here, the developed CNN model decreases the time of ALL diagnosis and keeps it robust and 

accurate. 

The CNN structure introduces discriminative features and categorizes lymphoblast cell images; however, this 

structure is carefully configured to classify them into leukemia and normal conditions. The CNN architecture 

part was built using two convolutional blocks made up of 1D convolutional layers, followed by batch 

normalization layers, ReLU activation layers, and layer normalization layers. This design plan aims at 

retaining important features of the high-dimensional space seen through CAE dynamics and encouraging 

stability and efficiency of the training algorithm. Within every convolutional layer, these 1D convolutional 

slots are employed to process the feature space moving across spatial patterns and structural element 

extractions. The feature space generated by the CAE was felled to 67,500 features for each sample. Thus, the 

size of the filter was chosen to be 32 to insert this and consider the vast nature of the feature space, further 

demonstrating that the larger filter size applied in CNN can efficiently capture intricate spatial interconnection 

and patterns across the lymphoblast cell images. In the first level of the convolutional layer, 40 filters were 

used to completely grab the significant information aspects of the data for leukemia detection. Meanwhile, 80 

filters were deployed in the second convolution layer to move one step further but towards refining the feature 

representations and building more weak points against the pattern to be identified. The decision to use these 

40 filters was based on optimizing CNN’s ability to extract and refine features necessary for accurate 

classification of lymphoblast cell images. In the initial layer, 40 filters were employed to comprehensively 

capture significant information aspects from the data relevant to leukemia detection. This number strikes a 

balance between capturing diverse spatial patterns and maintaining computational efficiency. As the network 

progressed to the second convolutional layer, increasing the number of filters to 80 allowed for a deeper 

exploration of feature representations. This higher filter count enhanced the network’s capability to discern 

finer details and subtle variations in the images, thereby refining the feature maps to better differentiate 

between leukemia and normal conditions. This hierarchical approach ensures that the CNN can effectively 

learn and represent complex patterns essential for precise classification, ultimately improving diagnostic 

accuracy in clinical applications. Thus, feature map design guarantees that the CNN could be able to properly 

discern the representation features for the input data in a wide scope. Hence, correct classification could be 

facilitated. Dropout with a rate of 0.5 was employed after each convolutional block to avoid overfitting the 

training set and to boost the generalization ability of the model. The dropout layer randomly zeroes out a 

fraction of input units during the training, so that the network is not highly dependent on interconnections 

between the neurons and does not over-rely on a few specific features or patterns in training data by avoiding 

that. The dropout rate of 0.5 (50%) is a commonly used heuristic in deep learning. It strikes a balance between 

reducing overfitting by regularizing the network and maintaining sufficient information flow during training. 

This rate has been found effective in preventing co-adaptation of neurons and promoting robust feature 

learning, contributing to better generalization of the model across different datasets and conditions. The CNN 

architecture comes to an end with a global average. pooling layer whose task is to sum up all the spatial 

information from each feature map, and then a fully connected layer and softmax layer classify the image. 

The global average pooling layer creates a reduction in the spatial and dimensional aspects of the feature 

matrix. It keeps the important information while simplifying the classification process. Figure 4 shows the 

architecture of the designed CNN for the detection of ALL , its network structure, and the approximately 86.5 

million learnable parameters’ distribution. Network design complexity is an important feature when 

diagnosing leukemia clinically, and it asks for a developed solution to correctly classify lymphoblast cell 

images.  
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Fig. 3: Structure of the designed CAE and its learnable parameters 
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Fig. 4: Structure of the designed CNN and its learnable parameters 

 

6. EVALUATION METRICS 

Multiple reliability measurement tools, including accuracy, precision, recall, and F1 score, were used to 

assess the CNN model for diagnosing leukemia. 

1. Accuracy: 

Precision gives us an idea of the ratio of accurately predicted instances to the total instances, and accuracy 

provides us with the overall correctness of the model. Accuracy at a high level indicates precision with which 

ALL and HEM instances are labeled correctly. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    [9] 

2. Precision : 

Accuracy means a probability that test data classify the nearest label what be a positive outcome of a model. 

Recall is determined by the number of true positives divided by the total true positives + false negatives. 

Accuracy was measured by determining the number of correctly made diagnoses among all the predicted 

cases that fit the diagnosis of  ALL. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     [10] 

3. Recall: 
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Recall, another more term for sensitivity, implies the capacity of the model to accurately identify all 

background instances of a specific class. The indicator is a proportion of the real all cases that are diagnosed 

and detected in a healthcare facility. It demonstrates that the model is capable of covering ALL cases, thus 

minimizing the possibility of false negative outcomes. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      [11] 

4. F1 Score: 

The F1 score is the averaging mean of precision and recall. It splits the positive and negative comments even 

if negative comments are not enough to be even. Therefore, this algorithm is beneficial when the ratio of 

positive and negative instances in the dataset is not balanced. 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     [12] 

The fever classification model observes that instances correctly classified as ALL are under true positives 
(TPs), whereas instances correctly classified as HEM are under true negatives (TNs). Meanwhile, instances 
incorrectly classified as ALL are under the FP category, and instances incorrectly classified as HEM come 
under the FN category. 

7. SIMULATION RESULTS 

A complete account of detailed studies carried out on the proposed method of ALL diagnosis was presented. 

MATLAB 2023b was used as the opening software for the planned technology. 

7.1 Adjustments of CAE  

 

The parameters were carefully set during CAE training to obtain the best feature extraction. Thus, the 

equilibrium of the process of convergence was squeezed between the speed convergence and stability by 

setting the learning rate to 0.001. Here, the parameter selection plus a large batch size of 6 proportionately 

utilize system resources and employ memory, thus providing efficient training cycles that smoothly operate. 

The ADAM optimization algorithm was used for training the CAE because it can easily adjust for changing 

learning rates and it is more efficient when handling complex optimization areas. The recognition algorithms 

of ADAM can obtain informative representations of the input lymphoblast cell images through its potential 

capabilities. The process of how the training occurs is shown in Figure 5, where the number of epochs 

improved, and the construction of loss decreased progressively. 
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Fig. 5: Training progress of the designed CAE 

 

 

Fig. 6: Results of reconstruction of acute lymphoblastic leukemia cell images using the trained CAE 

 

Post-training evaluation focuses on assessing the regenerative capability of the CAE and evaluating its 

proficiency in capturing salient features from the input images. Figure 6 presents the reconstructed images 

generated by the trained CAE, demonstrating its ability to reproduce key patterns and structures present in the 

original images. 
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The correlation coefficient between the reconstructed lymphoblastic cells and the original images was 

computed, as depicted in Figure 7, to further explore the reconstruction performance. The obtained correlation 

coefficient of 0.987 underscores the remarkable ability of CAE in capturing essential characteristics of the 

input images, thus highlighting its efficacy as a feature extraction tool for leukemia diagnosis. 

 

Fig. 7: Correlation coefficient of lymphoblastic leukemia cell image reconstruction 

 

7.2 Adjustments of CNN Classifier  

After the performance of CAE was evaluated, the CNN classifier was assessed. In this regard, optimizing various 

parameters is crucial for effective training of CNN. Selecting a maximum of 15 epochs ensures convergence 

without the risk of overfitting, balancing model complexity and training time. A learning rate of 0.001 was chosen 

for its stability in convergence and its ability to allow subtle adjustments to weights during optimization, adapting 

well to dataset intricacies. 

The learning rate drop factor of 0.1 was used for training. It dynamically adjusts the learning rate, thus making a 

precise adjustment for parameters of the model, escaping from unfair local minima, and lowering the time required 

for optimizing. The CNN obtains a balance between the gradient parameter improvement and computational 

performance by having a batch size of 16, thus speeding up the training process. 

Several assessments were conducted to measure the effectiveness of the setup, and various metrics were used, 

including accuracy, precision, recall, F1-score, receiver operating characteristic (ROC) curve, and confusion matrix 

analytics, providing a statistically significant insight into the model performance of classifying patients with 

leukemia from those without leukemia. The currently established techniques and the proposed approach were 

compared to show the latter’s robustness and high efficiency in tackling leukemia diagnosis challenges. 

7.3 Confusion Matrix 

The learning rate drop factor of 0.1 was used for training. It dynamically adjusts the learning rate, thus making a 

precise adjustment for parameters of the model, escaping from unfair local minima, and lowering the time required 

for optimizing. The CNN obtains a balance between the gradient parameter improvement and computational 

performance by having a batch size of 16, thus speeding up the training process. 

Thereafter, several assessments will be conducted to measure the effectiveness of the setup and a variety of metrics 

will be used. The model assessment will include accuracy, precision, recall, F1-score, ROC curve, and confusion 

matrix analytics providing a statistically significant insight into the model performance of classifying the leukemia 

patients from non-leukemia patients. Alongside that, a comparison between the currently established techniques 

demonstrating the proposed approach's robustness and high efficiency in tackling leukemia's diagnosis challenges 

will be carried out. 
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Fig. 8: Confusion matrix for training data 

 

 

Fig. 9: Confusion matrix for test data 

7.4 ROC      

ROC curves have instrumental roles in the study of three separate operations: conducting the proposed 

diagnosis method, differentiating ALL and Hem classes, and optimizing the method. The ROC curves are 

shown in Figures 10 and 11, representing the types of discrimination connected to the test phase that 

constitute the visual demonstration of the model’s discriminatory capabilities. A trade-off between sensitivity 

and specificity is effectively displayed to understand the model’s performance along with the different 

thresholds. The highest range of performance is shown by the trend towards the top left-hand corner, which is 

a symptom of high sensitivity and low FP rates. The ROC curves exhibited value in assessing the precise 

diagnostic ability of the model. They can describe the model’s ability to choose classes of leukemia with the 

best possible clinical medicine. 
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Fig. 10: ROC curve for training data 

 

 

Fig. 11: ROC curve for test data. 

 

7.5 Performance Investigation Using Evaluation Metrics    

Figures 12 and 13 depict the results of leukemia diagnosis. These plot graphics demonstrate substantial 

advancement in terms of accuracy, which are 99.94% and 99.92% in the training and testing, respectively, 

with precision rates of 99.93% and 99.92%, respectively. Besides validating the outstanding potential of CAE 

in the process of feature extraction, the results further indicate the performance of the CNN algorithm. The 

network exhibited an extraordinary performance in classifying cells, demonstrated accurate diagnosis, and 

quickly and effectively showed the expected results. 
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Fig. 12: Evaluation of the proposed method using evaluation metrics for the training dataset. 

 

 

Fig. 13: Evaluation of the proposed method by using evaluation metrics for the test dataset. 

 

8. COMPARISON 

Paper [34] presents an ensemble strategy to automatically detect ALL cells in contrast to normal WBCs, 

structured in three stages: image preprocessing through oversampling to address unbalanced databases, deep 

spatial feature extraction using CNN alongside a gated recurrent unit (GRU) combined with bidirectional long 

short-term memory (BiLSTM) to capture long-distance dependencies and temporal features, and classification 

using a softmax function and a multiclass support vector machine (MSVM) classifier. This framework 

effectively classifies the C-NMC 2019 database into two categories, with a 90%–10% training-testing split, 

showcasing its novelty in the accurate diagnosis of ALL images. Despite utilizing existing tools, the proposed 

CNN-GRU-BiLSTM-MSVM framework demonstrates superior performance, with the DenseNet-201 model 

achieving an F1-score of 96.23% and an accuracy of 96.29% on the test dataset by using the MSVM 

classifier. These findings suggest that the proposed strategy can serve as a valuable complementary diagnostic 

tool for ALL and encourage further research to augment rare databases like blood microscopic images by 

integrating ML with deep learning algorithms for powerful diagnostic applications. A novel dataset of 500 

peripheral blood smear images, featuring normal, AML, and ALL images, was introduced in [35]. The 

proposed work achieved 97% accuracy for binary classification tasks, employing fine-tuned fully connected 

layers and the last three convolutional layers of VGG16, as well as 98% accuracy for DenseNet121 along 
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with SVM. In the three-class classification task, an accuracy of 95% was attained for ResNet50 along with 

SVM. 

Study [36] introduced a noninvasive diagnostic approach based on CNN using medical images. The proposed 

solution leverages a CNN model incorporating an Efficient Channel Attention (ECA) module with the Visual 

Geometry Group (VGG16) architecture from Oxford to enhance the extraction of deep features from the 

image dataset, resulting in improved feature representation and classification accuracy. The ECA module 

effectively addresses the morphological similarities between ALL cancer cells and healthy cells. Various data 

augmentation techniques were employed to enhance the quality and quantity of the training data. The study 

utilized the Classification of Normal vs. Malignant Cells (C-NMC) dataset, divided into seven folds to 

account for subject-level variability, a factor often overlooked in previous methods. The experimental results 

demonstrated that the proposed CNN model successfully extracted deep features, achieving an accuracy of 

91.1%. These findings suggest that the proposed method can effectively diagnose ALL and assist pathologists 

in their diagnostic efforts. 

However, the proposed method outperformed other previous methods, achieving an accuracy of 99.92%. 

Table 1 shows the comparison of the proposed method with other mentioned methods. 

Table 1: Comparison of the proposed method with previous methods 

Reference Method Accuracy Dataset 
Feature 

extraction 

[34] 

CNN-GRU-

BiLSTM-

MSVM 

96.29% 

C-NMC 

(Data 

set 

prepared 

by 

AIIMS) 

Based on 

CNN 

[35] 

Fine-tuned 

VGG16 + 

SVM (Binary 

Classification) 

97% 

C-NMC 

(Data 

set 

prepared 

by 

AIIMS) 

Based on 

CNN 

DenseNet121 

+ SVM 

(Binary 

Classification) 

98% 

ResNet50 + 

SVM (Three-

class 

Classification) 

95% 

[36] 

Convolutional 

Neural 

Networks 

(CNNs) 

91.1% 

C-NMC 

(Data 

set 

prepared 

by 

AIIMS) 

Based on 

CNN 

Proposed 

method 

Convolutional 

Autoencoder 

+ CNN 

99.92% 

C-NMC 

(Data 

set 

prepared 

by 

AIIMS) 

Based on 

CNN 

 

9. CONCLUSION 

This work significantly advances leukemia diagnosis by introducing a novel and effective deep learning-based 
approach. The main contribution lies in the integration of a CAE for feature extraction with a CNN or 
classification. The proposed approach demonstrates exceptional accuracy and precision, with the CAE 
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effectively capturing essential features of lymphoblast cell images and the CNN robustly classifying these 
features to distinguish between leukemia and healthy cells. By leveraging hierarchical convolutions and 
advanced optimization techniques, this method not only enhances diagnostic precision but also speeds up the 
diagnosis process, making it a valuable tool for early detection and timely intervention in clinical practice. The 
high correlation coefficient and performance metrics underscore the method’s potential to revolutionize 
leukemia diagnostics through automated, reliable, and efficient deep learning technologies. 

The CAE showed high accuracy in the feature extraction work, with a notable correlation coefficient of 0.987 
for rebuilt images of lymphoblastic cells. This finding shows CAE’s skills that are decisive in fetching the key 
points essential in the diagnosis of leukemia. 

The latter shows the highest diagnostic accuracy, whereas CNN ranks second, with 99.92% precision in the 
diagnosis of ALL. The high accuracy remarkably proves the suitability and impressive recognition power of 
the CNN classifier in recognizing between leukemia and healthy cell images. 

Feature extraction technique and classification using the CAE model constitute a favorable method to improve 
the classification rates and performance of leukemia classification. The implementation of the suggested 
method, which involves the use of deep learning technologies along with automating the diagnostic process, 
could introduce a revolutionary approach to the diagnosis of leukemia, leading to early detection and timely 
intervention. 
However, this study has several limitations and challenges that warrant further investigation. The dataset size 
and diversity remain a concern because a larger and more varied dataset is crucial for ensuring the model’s 
robustness and generalizability. Additionally, the substantial computational resources required for training the 
CAE and CNN models may limit their practical application in resource-constrained clinical settings. Potential 
overfitting, despite dropout layers, and the lack of interpretability of deep learning models pose challenges, 
necessitating more transparent and explainable AI techniques to gain clinical trust. 
Future work should focus on acquiring larger and more diverse datasets, optimizing model architectures for 
efficiency, and integrating explainable AI methods to improve interpretability. Real-time implementation and 
extensive field testing in clinical settings could provide valuable feedback for further refinement. Exploring the 
integration of other diagnostic modalities and developing continuous learning systems could enhance the 
model’s diagnostic accuracy and adaptability. Addressing these limitations and challenges could considerably 
advance the practical applicability and reliability of deep learning approaches in leukemia diagnosis, paving the 
way for early detection and timely intervention. 
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