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ABSTRACT

Enhancing the accuracy in predicting continuous values remains a significant challenge, especially when dealing with
imbalanced data and choosing appropriate models. Regression techniques are widely used in data mining, and machine
learning fields for this purpose. However, the traditional algorithms struggle to achieve high accuracy because of the
limitations in dealing with complex data and imbalanced distribution. This study addresses these gaps by proposing a
new framework that evaluates multiple regression models using the Boston House Pricing Dataset (BHD). The examined
models involve simple linear, multiple linear, Polynomial, Lasso, Ridge, Random Forest, Keras and Gradient Boosting
regression. The models are compared using evaluation metrics such as R-squared Score (R2), Mean Squared Error (MSE),
and Mean Absolute Error (MAE). Among the examined models, the first promising outcomes indicate that Random Forest
and Ridge regressors scored a high level of R2 i.e. 89.9 and 88.3, respectively. In addition, The Gradient Boosting model
offers the best result of R2 92 with MSE 0.72 and MAE 2.00. To further enhance the accuracy of the best model, this
research applies two techniques. Re-sampling and optimization using the RandomizedSearchCV tuned hyper-parameter
improved R2 score to 93.2 with a better MSE of 0.015 and MAE of 0.82. These findings prove a significant improvement
in model performance and offer a potential for practical application in real-world scenarios.

Keywords: Gradient Boosting, Keras, Lasso, Linear, Polynomial, Random Forest, Regression, Ridge

1. Introduction

Regression algorithms have become important in
many fields, such as marketing, economics, finance,
and healthcare because of their ability of supporting
decision-making and data analysis. However, achiev-
ing high accuracy in predicting continuous values has
long been a challenge due to data complexity and
model selection. Especially with a noisy or imbal-
anced dataset that contains a nonlinear relationship
[1, 2]. Addressing these challenges becomes crucial
for house pricing and financial problems.

The Boston Housing Dataset (BHD), is widely used
for regression research, due to its complexity and
relevance to real-world problems. Predicting house

pricing based on traditional features like location,
crime statistics, and socio-economic [3] identifies
the limitations of classic algorithms such as linear
regression which often fails to capture nonlinear com-
plex data. While classic regression approaches fail to
capture nonlinear complex data, sophisticated tech-
niques such as random forest and gradient boosting
offer greater results but demand important parameter
tuning to achieve optimal results [4, 5].

Studies tried to address these challenges, for exam-
ple [3] tested simple linear regression, polynomial
regression, ridge regression and lasso regression re-
sulting in the best Ridge and Lasso’s Regression regis-
tered R2 scores of 88.28 and 89.79 respectively. Other
research investigated ensemble and sophisticated
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machine learning techniques. [6] revealed that XG-
Boost is superior in capturing complicated associa-
tions, whereas support vector machines (SVM) are
inferior in accuracy and interpretability [7]. The Au-
thors suffer from choosing a suitable model with
high accuracy, i.e. R2 of 0.920, 0.570, 0.860, 0.640
and 0.910. Random forest approaches have also been
frequently used due to their resilience, as noted
by Sharma et al. [8], though reasonable tuning is
required to avoid overfitting and efficiency when
dealing with imbalanced data [9]. Despite Random
Forest holds a lot of promise, it is not always sufficient
to achieve the highest possible level of accuracy. As
an instance, [10] discovered that merging random
forest with other approaches enhanced outcomes, but
it also brought to light the requirement to deal with
the amount of time of training and memory. Simi-
larly, [11] highlighted the potential of deep learning
algorithms, such as Keras, to model complicated non-
linear interactions. However, this promise comes at
the expense of increased processing intensity and
longer training time. The efficiency of advanced gra-
dient boosting methods was further proved by [12],
who revealed that these methods could outperform
conventional regression techniques when combined
with hyperparameter tuning and data resampling pro-
cedures.

This research addresses these challenges by propos-
ing a new framework that merges sophisticated
regression and optimal preprocessing with the fol-
lowing key contributions. First, this research presents
a robust Gradient Boosting technique using SMOTE-
Tomek resampling and RandomizedSearchCV hy-
perparameter optimization to overcome regression
model constraints and improve accuracy. Second, A
comprehensive comparison of regression models, in-
cluding linear regression, ridge regression, random
forest, and deep learning techniques (Keras), evalu-
ated using metrics such as R2, MSE, and MAE [13, 14]
and [7]. Third, Validation of the proposed model by
illustrating its superiority over traditional techniques
regarding accuracy and reliability.

This article is structured as follows: Section 1
presents the introduction. Section 2 states the liter-
ature review. Section 3 describes the methodology.
Section 4 and Section 5 present the results and dis-
cussion, respectively. Section 6 states the conclusion
and future work.

2. Related work

Regression techniques are frequently used in ma-
chine learning and data mining fields because of
their capacity to handle complex data patterns. How-

ever, predicting continuous values using BHD was a
challenge for many researchers. Several studies have
examined different regression models to address this
issue, each approach with its strengths and limita-
tions.

[3] Implemented simple linear regression, polyno-
mial, lasso, and ridge regression on the BHD. While
Lasso regression outperformed among these models.
The authors proved that lasso is computationally in-
tensive because of cross-validation parameter tuning.
Compared to this study, it limits the performance of
complex data because it tends to oversimplify the
structure.

[6] Evaluated the use of linear regression, random
forest, XGBoost, and SVM for predicting BHD price.
XGBoost presented a superior performance because it
can deal with complex relationships, while the SVM
struggled to achieve high accuracy. In contrast, the
current research addresses this gap by integrating
RandomizedSearchCV for hyperparameter optimiza-
tion which refined model performance. Moreover, the
finding of [6] were supported by [7] who reported
butter R2 of XGBoost with low accuracy of SVM. Both
approaches are limited to hyper-parameter tuning or
improving the classical models to increase the accu-
racy.

[8] Highlighted the effectiveness of random forest
by capturing nonlinear relationships on BHD. While
random forest scored a reasonable performance, the
model limits to handle specific variables. [9] im-
proved the random forest accuracy by integrating
genetic algorithms. The results show reasonable per-
formance with strong stability and reliability. Despite
these improvements, the random forest model con-
sumed a long training time and did not achieve the
highest R2 scores compared to the improved methods.

[10] Compared the linear regression, random for-
est and SVM repressor using R2, MAE, and MSE
indicators. The study discovered that random forest
regression was the best among the tested mod-
els. However, the computational cost of assembling
multiple forests increased the training time. This lim-
itation sets the need for a more efficient method that
can achieve high accuracy without extra computa-
tional costs.

The current research experimented with advanced
techniques by integrating SMOTETomek resampling
and RandomizedSearchCV into Gradient Boosting to
address the gap in the literature. This framework not
only deals with imbalanced data effectively but also
tunes hyperparameters to achieve a high R2. It also
overcomes the Keras algorithm, presenting better ac-
curacy than previous research for instance [9].

This research fills the gaps by selecting the best
model, providing new experiment arguments, and
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Fig. 1. Model framework.

proposing a new framework applied to the best model
to improve the performance of the tested regression
algorithms.

3. Methodology

This research compares eight regression tech-
niques: simple linear, multiple, linear polynomial,
lasso, ridge, random forest, Keras, and gradient boost-
ing’ regression. Boston housing prices dataset (BHD)
is used as a benchmark for this research. BHD con-
tains n = 506 observations with p = 14 features.
This experimental research focuses on the algorithm
that scores high accuracy of R2 and on improving
its performance using integrated procedures. The ex-
periment started with linear regression, followed by
other regressors to seek the best accuracy on the
benchmarked BHD. The accuracy of the proposed
framework is calculated through evaluation indica-
tors R2, MSE and MAE. The best model with high
accuracy is then compared to the rest of the exper-
imented models until the best results are reached.
Finally, two techniques are applied to the best model,
i.e., re-sampling and optimization, to improve the
accuracy and fulfil the aim of this research, as shown
in Fig. 1 each model is discussed as follows.

3.1. Linear regression

In simple linear regression, a linear relationship is
established between the dependent variable y and a
single independent variable X. This relationship is
modeled by fitting a regression line represented by

Eq. (1).

y = β0 + β1X + ε (1)

β1, β1 refers to the vector of coefficients, and ε is the
error rate [4].

Nevertheless, it is crucial to recognize that the
simple linear regression model’s predictions may not
always be precise. The limitation of the model is
overcome by utilizing the error term ε. In this study,
Linear regression was examined first as a baseline for
the relationship between variables. It was considered
the starting point to determine a high level of accu-
racy. Still, due to the limit of a single predictor, a
further method is tested to obtain the best model with
the highest accuracy.

3.2. Multiple linear regression

Multiple Linear is an extension of simple linear
Regression [15]. It models the relationship between
several independent variables (X1, X2, . . ., Xp) and the
dependent variable y. It considers several features of
the dependent variable compared to ordinary linear
regression, as the latter only considers one indepen-
dent variable. Eq. (2) shows the form of the MLR
model.

y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε (2)

β0 represents the intercept, while β1, β2, . . ., βp are
coefficient of each predictor and ε is the error term
coefficient most used to resemble the data.

This algorithm has the potential to offer a more pre-
cise understanding of the correlation between each
aspect and the result. It also showed a better relative
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accuracy when compared to simple linear regression
because of the use of multiple predictors, but further
experiments are needed to fulfil the aim of this re-
search.

3.3. Polynomial features and feature scaling

Polynomial regression enhances the original fea-
tures by including additional variables of higher order
[5]. To identify and extend the simple linear regres-
sion with only one feature, X2, it is added as an extra
feature to express the general form of this regressor,
as shown in Eq. (3).

y = β0 + β1X + β2X2
+ ε (3)

X2 represents the n-degree of the polynomial fea-
ture. Including these polynomial features enables the
model to deal with curves, bends, and the impact on
the data. In addition, it improves its ability to detect
complicated patterns.

In this study, the polynomial model has shown
better performance when compared to the first two
algorithms because an appropriate feature scaling
procedure is employed to ensure the stability and
accuracy of the tested model. Further experiments
will be conducted to seek the best model with the best
accuracy applied to the BHD.

3.4. Lasso regression

Lasso algorithm [14] eliminates a fundamental
challenge in regression analysis, namely Overfitting.
When a model becomes complicated by fitting noise,
this could lead to poor generalization. The Lasso
overcomes this issue by incorporating a penalty term
into the linear regression equation, encouraging the
model to select a subset of the most pertinent features
while reducing the coefficients of less significant ones
toward zero. In contrast, the simple linear regression
aims to minimize the mean squared error (MSE) be-
tween predicted and actual y values. Lasso presents
a regularization term but conducts a selection of
variables by shrinking some coefficients to zero. The
objective function is in Eq. (4).

L(β) =
∑n

i=1
(yi − Xiβ)2

+

∑p

j=1
|β j| (4)

p is the number of predictors. λ is also known as
L1, which refers to the regularization parameter con-
trolling the shrinking degree. n is the number of
observations. |β j| is the absolute value of the coef-
ficient.

A drop in accuracy was noticed because the high
λ resulted in an overfitting in the lasso model using
BHD. In some experiments, however, under-fitting
could occur because of missing significant features.
Therefore, further experiments are required for better
accuracy for the best model to be applied to the BHD.

3.5. Ridge regression

Ridge regression modifies linear regression models
by adding regularizing terms to stop the overfitting
issues [13]. Because it reduces the influence of cor-
related features on coefficient estimates, it enhances
the stability of the model and is especially helpful
when handling multi-collinearity or highly correlated
features.

Ridge regression can reduce the impact of less rel-
evant features by reducing their coefficients closer to
zero. It selects the optimal value for finding the L2
regularization that balances model complexity and
performance as described in Eq. (5).

L(β) =
∑n

i=1
(yi − Xiβ)2

+

∑p

j=1
β2

j (5)

Unlike L1 regularization in Lasso Regression as a
penalty term of the loss function, L2, i.e. β2

j term,
reduces the coefficients while maintaining their inclu-
sion in the model. Ridge regression lowers variance
and increases model stability, especially with multi-
collinearity. Ridge regression showed better accuracy
than lasso but not the best in other experiments.
Therefore, further research is required to fill the gap
of stat-of-the-are.

3.6. Random forest regression

Random forest regression is an ensemble learning
approach for regression applications [16]. It builds
several decision trees during the training process. It
produces the average prediction of all the individ-
ual trees to manage complicated datasets with high
dimensionality and nonlinear correlations. It divides
the feature space into areas recursively, giving each
zone a constant value to reduce overfitting and de-
correlating the different trees. The average of all the
individual trees’ forecasts makes up the prediction of
a random forest regression model, as shown in Eq. (6).

Ȳ =
1
T

∑n

t=1
ht (X ) (6)

Where Ȳ is the predicted value, T is the total number
of trees. Ht (X ) is the prediction of the t-th tree.
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In this research, random trees improved the predic-
tive accuracy by controlling overfitting compared to
previously examined approaches. This model has sev-
eral benefits, such as better generalization, robustness
to outliers, and parallelization training individual
trees inside the forest.

3.7. Deep learning with keras algorithm

This study uses the Keras library [11] to apply
Neural Network regression. Keras’s model usually
includes one input layer with one or more hidden
layers to incorporate the regression process. In the
implemented Keras on BHD, medv was the target
variable. The input layer contained 128 neurons, and
the first input layer contained 64 neurons and ReLU
activation. The model continues with a multilayer
perceptron (MLP) design for one hidden layer fol-
lowed by two hidden layers. This design lets the
model learn complex, nonlinear relationships be-
tween the input features and the target variable.
Values shown in Eq. (7).

Ȳ = f (x) =W2 · ReLU (W1 · x+ b1)+ b2 (7)

W1 and W2W are the weights addressed to con-
nections between layers. b1 and b2 are bias vectors
that allow the model to fit better. ReLU stands for
Rectified Linear Unit, which activates the functions
applied to assist hidden to deal with non-linearity.
The dropout is adjusted to (0.2) between the hidden
layers. This mechanism encourages the model to not
depend strongly on a particular feature during the
training to promote generalization as deep learning.
The applied Keras resulted in reasonable accuracy
performance but indicated that it is not the best
model to predict the continuous values of the BHD.
Further, research is conducted to achieve the aim of
this study.

3.8. Gradient boosting regression

Gradient boosting regression is a powerful ML
method that has gained widespread popularity in pre-
dictive modelling. It handles complex relationships in
data and produces highly accurate predictions [12].
This regressor is an ensemble learning method that
improves predictions by successively fitting numer-
ous weak learners. It uses decision trees to create an
additive model, as illustrated in Eq. (8).

Ȳ =
M∑

m=1

γmhm(x1) (8)

Ȳ represents the predicted values of the iteration
i-th. M is the total number of the trees. γm is the weight
applied to trees. hm(xi) is the prediction of the trees
for the required observation.

In this research, gradient-boosting regression
scored with the best accuracy because weak learn-
ers were added one after the other; this reduced the
residual errors from the previous step until a strong
predictor was created. This made the model perform
better compared to all experiments in this research.
The learning rate of the shrinking technique prevents
overfitting for further enhancement. In addition, it
helps in feature selection and model interpretability.

3.9. Improving gradient boost regressor
(re-sampling & optimization)

The experiments of this study have proved that
the Gradient Boosting algorithm has achieved higher
accuracy on the BHD when compared to the state-
of-the-art. The proposed model suggests adding the
re-sampling and optimization techniques to the clas-
sic gradient algorithm to improve the accuracy.

First, the SMOTETOMEK technique is applied to
balance the sampling of the dataset. SMOTE produces
adequate samples of the minority class, whereas
TOMEK eliminates the nearest neighbors of the bor-
derline to balance and clean the dataset, as shown in
Eq. (9) [17].

xnew = xi + δ · (xnn − xi) (9)

xnew represents the new samples, while xi is the mi-
nority class. xnn as nearest neighbor subtracts the
minority class of xi. δ denotes the random number
of distributions between zero and one.

Second, RandomizedSearchCV is conducted to tune
the hyper-parameters. This technique samples a spe-
cific number of parameters randomly. It sets the
specified distributions and assesses them through val-
idation, as presented in Eq. (10).

2̂ = argminθε2
1
k

∑K

k=1
L(yK, f (XK, )) (10)

Integrating the two methods, SMOTETOMEK and
RandomizedSearchCV, into a gradient-boosting al-
gorithm improved the performance. The former in
Eq. (9), as a preprocessing to the dataset, enhances
the quality of the training to obtain a reliable model.
The latter, in Eq. (10), is a tuning parameter that guar-
antees the tuning of the model optimally for better
generalization, which improves accuracy. The follow-
ing steps describe the new proposed model applied to
the BHD.
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Proposed algorithm.

Step 1: Call libraries needed.
Step 2: Load the dataset.
Step 3: Make an optional Skewed Target Variable.
Step 4: Divide the dataset into training sets and testing sets.
Step 5: Re-sample training data using Tomek and SMOTE.
Step 6: Set the GradientBoostingRegressor model’s initialization.
Step 7: Establish the RandomizedSearchCV parameter grid.
Step 8: Conduct a random search.
Step 9: Fit the model.
Step 10: Predict the evaluation set.
Step 11: Model evaluation.
Step 12: Cross-Validation

The above steps describe a regression analysis ap-
proach that uses hyper-parameter optimization and
re-sampling to address the high accuracy of the BHD.

Step 1 is to import libraries for data manipulation,
such as sci-kit-learn and data handling tools.

Step 2 loads the regression dataset for analysis.
Step 3 to develop a skewed target variable (for

testing objectives). This step is mainly utilized in ex-
periments by purposefully distorting the target of the
variable’s distribution.

Step 4 Dividing dataset into testing and training:
a random split function is used to split the dataset
into training and testing sets. This division ensures
the model is tested on unseen data (testing set) and
train data (training set).

Step 5 was tested but did not achieve the highest
accuracy. It starts by re-sampling training data to
rebuild for imbalance: the training data’s class im-
balance is addressed by applying the SMOTETomek
re-sampling technique. This strategy involves two ap-
proaches: SMOTE (Synthetic Minority Oversampling
Technique): by producing artificial data points for the
minority class, this technique corrects the imbalance.
A re-sampled training dataset with a more balanced
class distribution is created by using SMOTETomek.
This step may enhance the performance in unbal-
anced regression issues.

Step 6, the GradientBoostingRegressor model is
instantiated. This model is widely preferred for re-
gression problems because of its versatility and
capability to handle nonlinear correlations between
data and the target variable.

In Step 7, the RandomizedSearchCV parameter grid
is created to optimize the model’s performance by
adjusting hyperparameters. In this phase, a grid is de-
signed to determine each hyper-parameter’s potential
values that must be adjusted. This grid defines the
boundaries of the search space for the optimization
technique.

Step 8 incorporates RandomizedSearchCV to deter-
mine the most optimal hyper-parameter configura-
tion. This method efficiently analyses the specified

parameter grid by randomly selecting a subset of
hyper-parameter combinations and assessing their ef-
ficacy. The technique identifies the combination that
produces the optimal performance on a validation set,
a subset of the training data utilized for adjusting
hyper-parameters.

Step 9 involves fitting the model using the hyper-
parameters determined by the RandomizedSearchCV
algorithm on the re-sampled training data, if applica-
ble.

In step 10, the model is applied to the previously
unseen testing data from step 4 to provide predic-
tions. This step allows the regressor to assess the
model’s ability to make accurate predictions.

In Step 11, the model’s efficacy is assessed using
metrics appropriate for regression tasks. R2 and (MSE,
MAE) are examples of standard metrics. These metrics
provide information on the accuracy and goodness-of-
fit of the model by quantifying the gap between the
predicted values and the actual target values.

Step 12. K-fold or stratified k-fold cross-validation
is applied using several random data splits, and this
technique iteratively repeats stages 4 through 11 of
the process. Unlike a single split technique, each iter-
ation offers an independent assessment of the model’s
performance, resulting in a more reliable and gener-
alizable evaluation.

To improve the accuracy of the Gradient Boost
Regressor, a re-sampling method of SMOTETomek is
used in Step 5. It generates synthetic samples for the
minority class and removes instances close to the ma-
jority class. The first high accuracy is reached 0.92.

The second fundamental part of the procedure in
step 6 is using RandomizedSearchCV to carry out
a thorough hyperparameter optimization. A prede-
termined grid of hyper-parameters, including the
number of estimators, maximum depth, learning rate,
subsample ratio, minimum samples needed for a split,
minimum samples required for a leaf, and maximum
features considered for a split, are searched across
by this method. The search type can find the ideal
hyper-parameters through hundreds of iterations to
tune the model with the perfect configuration. The
performance of this strategy is evaluated by calculat-
ing the (MSE), (MAE), and (R2). This approach has
shown a noticeable enhancement in predicting the
accuracy, resulting in better accuracy.

3.10. Computational complexity of the proposed
model

To evaluate the proposed model practically, it is
important to highlight the computational complexity
of the gradient boosting and RandomizedSearchCV
[18].
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Table 1. Computational complexity.

Regression model Time Memory usage Notes

Linear ∼ 0.2 second ∼ 20 MB Fast for small datasets.
Ridge ∼ 0.2–0.3 seconds ∼ 22 MB Similar to Linear Regression
Lasso ∼ 1 second ∼ 30 MB Additional time for feature selection.
Polynomial ∼ 2 seconds ∼ 50 MB Increases complexity with coefficients degree.
Random forest ∼ 5 seconds ∼ 100 MB Scales well; robust but slower.
Keras ∼ 15 seconds ∼ 250 MB Need more training; computationally intensive.
Gradient boosting ∼ 10 seconds ∼ 150 MB Accurate but slower for deep trees.
Proposed model ∼ 11 seconds ∼ 160 MB Best accurate performance

First, the gradient boosting technique depends on
the number of trees, samples and depth of each tree
i.e. (M, N and d) as shown in Eq. (11).

O(M.N.d.logN) (11)

Second, the process of hyperparameter optimiza-
tion utilizing RandomizedSearchCV includes execut-
ing T as a random iteration across a parameter grid, in
conjunction with a V which is a fold cross validation
as shown in Eq. (12).

O(T ·V ·M · N · d · logN) (12)

Table 1 shows the computational efficiency of the
tested models using standard hardware of a core i7
processor and 16 GB RAM. First of all, Linear and
Ridge regressions are the fastest with approximately
of ∼0.2 seconds and ∼(20–22) MB. Lasso and Poly-
nomial take slightly longer times ∼1 and ∼2 seconds
with ∼30 and ∼50 MBs. Random Forest takes higher
time of ∼5 seconds with moderate memory usage of
∼100 MB. In contrast, Keras is the most intensive
i.e. ∼ 15 seconds because of the complexity of the
Neural Networks. Finally, Gradient Boosting and the
proposed Model present high accuracy as an advan-
tage but require ∼ (10–11) seconds and ∼ (150–160)
MB which is suitable for capturing complex patterns
of the used dataset.

3.11. Evaluation and performance metrics

This research uses three metrics to examine the
best model performance. i.e. MSE, MAE and R2. The
metrics used are used to evaluate the performance
of the examined models. MSE calculates the average
squared difference between observed and predicted
values, which provides information on the variance
of prediction errors. Conversely, MAE computes the
average absolute distinctions between actual and
predicted values, providing a simple description of
prediction accuracy. R-squared measures the percent-
age of variance in the dependent variable compared
to the independent ones. It is usually considered a

model with a high R2 value) and low error metrics
(a low MSE and MAE) should be viewed as a better
performance when compared to other models.

4. Results

The suggested Gradient Boosting framework
showed better performance across all evaluated
regression models. Fig. 2 illustrates the correlation
analysis, highlighting the relationships among
important attributes in the (BHD), hence signifying
the dataset’s necessity for sophisticated modeling
approaches. Table 2 summarizes the results of each
model, including a comprehensive comparison of R2,
MSE, and MAE.

Linear regression is evaluated as a baseline, scor-
ing a R2 of 74.9, an MSE of 0.09, and an MAE of
0.02. This score signifies a limited capacity to handle
the dataset’s nonlinear associations. Ridge Regres-
sion enhanced this performance, achieving a R2 of
88.3. By using cross-validation in Ridge Regression,
the optimal selection of regularization parameters
was ensured, refining the model’s predictive perfor-
mance and bolstering its ability to generalize well
to unseen data. However, its prediction accuracy re-
mained lower compared to that of ensemble models.
Likewise, Lasso Regression produced a R2 of 65.0, in-
dicating its propensity to underfit the data as a result
of stringent feature selection as shown in Table 2.
It became apparent the necessity to experiment with
other regressors to obtain better results.

Multiple Linear Regression was tested as the sec-
ond model, providing a slightly better score of R2

76. as shown in Fig. 3. The model demonstrated an
improved predictive capability by including more fea-
tures but it did not the achieve target of this research.

Polynomial Regression proved competence in mod-
eling nonlinear relationships, with R2 of 83.0;
yet, the computational complexity escalated signif-
icantly with higher polynomial degrees. Ensemble
approaches such as Random Forest achieved no-
table enhancements, achieving R2 of 89.9, displaying
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Fig. 2. Correlation of each feature.

Fig. 3. Model performance.

resilience and adaptability. Nonetheless, the ap-
proach encountered difficulties with overfitting as the
number of trees increased.

The Keras deep learning model, employing a neu-
ral network with three layers, scored R2 of 87.0 but
required consideration for processing resources. In
addition, an extended training duration of around 19
seconds for the BHD. Although better performance
of Keras model but did not provide a considerable
advantage compared to classic approaches.

The suggested Gradient Boosting framework pro-
duced superior performance in general, illustrated
by a R2 of 93.2, an MSE of 0.015, and an MAE of
0.82. These scores demonstrate a significant improve-
ment compared to all other models, as illustrated

in Fig. 3. The enhanced performance is because of
the inclusion of SMOTETomek resampling, which
effectively addressed data imbalance. In addition,
RandomizedSearchCV hyperparameter optimization
is used, which refined the model variables for best ac-
curacy.

5. Discussion

The performance of several regression models
assessed by different authors provides a better un-
derstanding of each model. For this evaluation, the
(R2), (MSE), and (MAE) metrics are used, as shown
in Table 2.
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Table 2. Comparison of regressors.

Authors Regression R2 MSE MAE Dataset

[6] XGBoost 85.799520 0.628 2.936 Boston
Random forest 81.971735 0.81 1.348
Simple linear 71.218184 3.090 19.074
SVM 59.001585 0.0001 0.009

[8] Random Forest 91.3 0.49 1.115 Boston
[19] Ridge 69 17.882 2.793 Boston

GA-RF model 91 3.599 1.196
[10] Simple linear 74.66 19.07 3.09 Boston

Random forest 86.41 2.55 0.94
SVM 59.00 26.95 2.94

[3] Simple linear 73.66 Boston
Polynomial 74.27
Ridge 88.28
Lasso 88.79

[9] Random forest 90 0.702 1.900 Boston
[7] Simple linear 91 0.017 0.075 Boston

Multilayer 64 0.066 0.179
Random forest 86 0.025 0.112
SVM 57 0.079 0.211
XGBoost 92 0.015 0.84

The experiments of current study Simple linear 74.9 0.09 0.02 Boston
Multiple linear 76 2.50 10.0
Polynomial 83 5.50 1.80
Lasso 65 10.5 2.61
Ridge 88.3 5.01 1.71
Random forest 89.9 3.51 1.21
Keras 87 1.99 2.74
Gradient boosting 92 0.72 2.00
Improved gradient boosting 93.2 0.015 0.82

[6] stated that XGBoost scores robust performance
on the BHD, as demonstrated by its low MSE of 0.628,
MAE of 2.936, and R2 of 85.8%. With 82%, MSE of
0.81, and MAE of 1.348, Random Forest comes sec-
ond with predictive solid accuracy. The superiority of
ensemble methods in this situation is demonstrated
by the poorer performance of linear regression and
SVM, which noticeably have more errors.

[8] stated that the Random Forest model scores an
astounding 91.3%, with an MSE of 0.49 and an MAE
of 1.115. The strong R2 indicates excellent model
fit, and the comparatively low error metrics further
support its effectiveness in handling this dataset.

[19] claimed that the Ridge Regression and GA-
RF Model produce different outcomes for the Boston
dataset. The performance of Ridge Regression is indi-
cated by its R2 of 69%, MSE of 17.882, and MAE of
2.793. With an of 91%, MSE of 3.599, and MAE of
1.196, on the other hand, the GA-RF Model performs
remarkably well, highlighting the value of integrating
genetic algorithms and random forests.

The outcomes in [10] highlighted the benefits
of ensemble methods once more. With an 86.41%,
Random Forest performs noticeably better than SVM-
Regressor 59% and Linear Regression 74.66%. The
predictive accuracy of Random Forest is further

demonstrated by its reduced MSE and MAE (2.55 and
0.94, respectively).

The only numbers provided by the [3] are those
for Ridge Regression (88.28%) and Lasso Regres-
sion (88.79%), which are considered to be strong
competitors. Linear and Polynomial Regression have
comparable, if somewhat lower, values of 73.66%
and 74.27%.

[9] argued that Random Forests of 90%, MSE of
0.702, and MAE of 1.900 confirm its reliable perfor-
mance in many investigations for the BHD.

[7] stated that the 91% and 92% scores, respec-
tively, Linear Regression and XGBoost stand out
among the several models this study examines using
the Boston dataset. Their low MAEs (0.075 and 0.84)
and MSEs (0.017 and 0.015) indicate their excel-
lent predictive performance. Lower values are shown
in Multilayer Perceptron, Random Forest, and SVM-
Regressor, indicating less predictive accuracy.

The contrast in Table 2 shows that the results of R2

of SVM are similar to those reported by the [6, 10]
and [7]. Therefore, SVM was excluded from the pro-
posed model because of the low level of R2. [6, 10]
and [3] share around 75% of R2, similar to the pro-
posed model. However, no significant increase was
detected in the proposed model because the proposed
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Fig. 4. Comparison of model performance metrics.

model scored R2 of 74.9. Further analysis shows that
the R2 in [6] and [10] are similar to those reported
in [7]. The random forest reveals that (80-86) %
of R2 shows promising results. However, in [8] and
[9], reassuring results encouraged the author in this
research to obtain a reasonable level of R2, i.e. 89.9.
Both results in [19] and [3] reveal that the R2in
Ridge regression scores of (69 and 88.28) respec-
tively, whereas this research registered an increase
of 88.3 with better performance. No rise of R2 was
detected in this research of Lasso, while [3] obtained
notable performance. However, the experiments of
the Polynomial model of the current study show a
better level of R2 83 when compared to [3].

Compared to the current research results in [7]
and [6], Gradient Boosting outperforms the score
of R2 in XGBoost, as shown in Table 2. The R2

of 0.92 in the Gradient Boosting technique using
SMOTETomek scored a competitive level of accu-
racy. With optimization technique, the best obtaining
of the greatest R2 0.932%, lowest MSE (0.015) and
MAE (0.82) as shown in Fig. 4. The comparison of
the proposed model with previous sources highlights
the benefit and originality of the current research.
In addition, the results provide the importance of
the Gradient Boosting model over the tested model
in the current suggested framework. The improved
Gradient Boosting appeared as the best solution due
to its balance of accuracy and computational effi-
ciency. Despite consuming ∼11 seconds and ∼160
MB of RAM, it beat other models by efficiently cap-
turing complicated patterns. Thus, it is perfect for
achieving great accuracy while requiring minimal
resources. The proposed approach can be applied

in real-world scenarios. It can be utilized in hous-
ing price prediction, and financial analysis, where
accurate and reliable predictions are important for
decision-making and data mining. The framework is
suitable for applications that need precision without
extra computational cost.

6. Conclusion

The ability of different regression approaches to
accurately predict continuous values differs signifi-
cantly, as can be seen by comparing them. Gradient
Boosting performed better than all the other tested
models, especially after optimization, with the low-
est MSE of 0.015, the highest R2 score of 93.2, and
the lowest MAE of 0.82. It shows how well Gradient
Boosting handles complex data patterns and gener-
ates accurate predictions. Random Forest and Ridge
Regression also showed an outstanding performance,
demonstrating that these models are appropriate for
tasks requiring high prediction accuracy. However,
the effectiveness of Lasso Regression and Linear Re-
gression was comparatively lower, highlighting the
necessity for more advanced techniques in specific
situations.

The findings highlight the necessity of selecting and
optimizing appropriate regression algorithms to im-
prove the accuracy of continuous value predictions,
providing functional visions for future research and
application in various domains.

Further research will examine the Early Stopping
approach in the training process to reduce the errors
in the validation and prevent overfitting. In addition,
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more advanced regression methods will be experi-
mented with using different datasets to enhance the
accuracy.
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